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We introduce a class of noncommutative and noncocommutative weak Hopf algebras with infinite
Ext quivers and study their structure. We decompose them into a direct sum of two algebras. The
coalgebra structures of these weak Hopf algebras are described by their Ext quiver. The weak
Hopf extension of Hopf algebra Hn has a quotient Hopf algebra and a sub-Hopf algebra which are
isomorphic to Hn.

1. Introduction

Weak Hopf algebra was introduced by Li in 1998 as a generalization of Hopf algebras [1]. It
had been proved in [1, 2]; for some sorts of finite dimensional weak Hopf algebras H, the
quantum quasidouble D(H) of H is quasibraided equipped with some quasi-R-matrix R.
Hence R is a solution of the Quantum Yang-Baxter Equation.

First two examples of noncommutative and noncocommutative weak Hopf algebras
were given in [3]. Up to now, many examples of weak Hopf algebras have been found [2, 4–
7]. So far, all examples of weak Hopf algebras were based on some Hopf algebras and were
constructed by weak extension.

In this paper, we first give a Hopf algebra, denoted by Hn. By weak extension, we
construct a weak Hopf algebra W(n1, n2, n3) corresponding to Hn and study their structure.
W(n1, n2, n3) has a quotient Hopf algebra and a sub-Hopf algebra which are isomorphic to
Hn. And as an algebra, W(n1, n2, n3) can be decomposed into a direct sum of two algebras,
one of which is Hn. The coalgebra structures of these weak Hopf algebras are described by
their Ext quiver [8, 9].

We organize our paper as follows. In Section 2, we introduce the Hopf algebra Hn.
In Section 3, we define a class of weak Hopf algebras W(n1, n2, n3). In Section 4, we study
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the structure of W(n1, n2, n3) and decompose W(n1, n2, n3) into a direct sum of Hn and some
algebra of polynomials as an algebra. We give the Ext-quiver of coalgebra of W(n1, n2, n3)
and prove that W(n1, n2, n3) has a quotient Hopf algebra and a sub-Hopf algebra which are
isomorphic to Hn.

2. A Quiver Hopf Algebra

The Hopf Algebra F(q) is defined in [10]. Let q ∈ k \ 0. As a k-algebra F(q) is generated by a, b,
and x subject to the relations

ab = 1, ba = 1, xa = qax, xb = q−1bx. (2.1)

The coalgebra structure of F(q) is determined by

Δ(a) = a ⊗ a, Δ(b) = b ⊗ b, Δ(x) = x ⊗ a + 1 ⊗ x.

ε(1) = ε(a) = ε(b) = 1, ε(x) = 0.
(2.2)

We generalize F(q) to Hn, which is defined as follows. Let k be a field, q ∈ k \ 0, i =
1, 2, . . . , n. As a k-algebra Hn is generated by K, K−1, and Xi, i = 1, 2, . . . , n subject to the
relations

KK−1 = 1, K−1K = 1, XiK = qKXi, XiK
−1 = q−1K−1Xi. (2.3)

The coalgebra structure of Hn is determined by

Δ(K) = K ⊗K, Δ
(
K−1

)
= K−1 ⊗K−1,

Δ(Xi) = Xi ⊗K + 1 ⊗Xi,

ε(K) = ε
(
K−1

)
= 1, ε(Xi) = 0.

(2.4)

The antipode S is induced by

S(K) = K−1, S
(
K−1

)
= K, S(Xi) = −K−1Xi. (2.5)

3. A Class of Weak Hopf Algebras

In this section, we construct a class of weak Hopf algebra corresponding to Hn.
First recall the definition of weak Hopf algebra [1].

Definition 3.1. A k-bialgebra H = (H,μ, η,Δ, ε) is called a weak Hopf algebra if there exists
T ∈ Homk(H,H) such that id∗T ∗ id = id and T ∗ id∗T = T where T is called a weak antipode
of H.
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A weak Hopf algebra is called pointed if it is pointed as a coalgebra. If a weak Hopf
algebra H is pointed, then the set of all group-like elements G(H) is a regular monoid [6].

Now we construct weak Hopf algebraW corresponding toHn. The setG(W) of group-
like elements of weak Hopf algebra W is a regular monoid which has generators g, g, 1,
subject to gg = gg, g2g = g, g2g = g.

To construct all possible weak extension we need the following discussion.
Recall, for any coalgebra C, that the group-like elements in C are the set G(C) = {a ∈

C | a/= 0 and Δ(a) = a⊗a}; necessarily ε(a) = 1 for a ∈ G(C). Note that a simple subcoalgebra
D of C is one-dimensional ⇔ D = ka for some a ∈ G(C). A coalgebra is pointed if all of its
simple subcoalgebras are one-dimensional. For a, b ∈ G(C), the a, b-primitive elements in C
are the set Pa,b(C) = {c ∈ C | Δ(c) = c ⊗ a + b ⊗ c}; necessarily ε(c) = 0 for c ∈ Pa,b(C).
Note that k(a − b) = {l(a − b) | l ∈ k} ⊂ Pa,b(C); an a, b-primitive element c is nontrivial if
c /∈ k(a − b) = {l(a − b) | l ∈ k}. If a = b = 1, the 1, 1-primitives are simply called primitive;
otherwise they are called skew primitive.

The following result is a generalization of [11].

Lemma 3.2. LetW be the weak Hopf algebra defined above. One has

gPa,b(W) ⊆ Pga,gb(W), gPa,b(W) ⊆ Pga,gb(W). (3.1)

Proof. Let u ∈ Pa,b(W), then Δ(u) = u ⊗ a + b ⊗ u. Hence,

Δ
(
gu

)
= Δ

(
g
)
Δ(u)

=
(
g ⊗ g

)
(u ⊗ a + b ⊗ u)

= gu ⊗ ga + gb ⊗ gu ∈ Pga,gb(W).

(3.2)

The second inclusion is proved similarly.

Corollary 3.3. ForW , one has

dimPgi+1,gi(W) = dimPgi,gi−1(W), i ≥ 2,

dimPgi,gi+1(W) = dimPgi−1,gi(W), i ≥ 2,

dimPg,g2(W) = dimPgg,g(W) = dimPg,gg(W) = dimPg2,g(W).

(3.3)

Proof. We only prove the first equation. In fact, the map ϕ : Pgi,gi−1(W) → Pgi+1,gi(W), u 
→ gu
is a linear map with inverse ψ : Pgi+1,gi(W) 
→ Pgi,gi−1(W), v 
→ gv. Hence, Pgi,gi−1(W) and
Pgi+1,gi(W) are isomorphic as vector spaces.

Since all the dimensions in Corollary 3.3 are same, we have the following corollary.

Corollary 3.4. One has

dimP1,g(W) ≤ dimPg,gg(W), dimPg,1(W) ≤ dimPg,gg(W). (3.4)
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Proof. The map ϕ : Pg,1(W) → Pg,gg(W), u 
→ ggu is a linear map. If ϕ(u) = ggu = l(g − gg),
for some l ∈ k, then u ∈ kG(W), the vector space spanned by all group-like elements, because
W is graded. Hence, u = l(g − 1). Therefore, the linear map ϕ is an injection. Consequently,

dimP1,g(W) ≤ dimPg,gg(W). (3.5)

The proof of the second inequality is similar.

By the above discussion we know that weak Hopf algebraW is determined by P1,g(W),
Pg,1(W), and Pg,gg(W). Take x1, . . . , xn1 to be linearly independent nontrivial elements in
P1,g(W), and y1, . . . , yn2 linearly independent nontrivial elements in Pg,1(W). Let

Pg,gg(W) =
(
ggP1,g(W) + gPg,1(W)

)
⊕ V, (3.6)

and z1, . . . , zn3 a basis of V . Then W is determined by x1, . . . , xn1 , y1, . . . , yn2 , z1, . . . , zn3 .
To summarize, we define weak Hopf algebra W(n1, n2, n3) corresponding to Hn as

follows.

Definition 3.5. Let k be a field. For any positive integers n1, n2, n3, and nonzero element q ∈ k,
we define W(n1, n2, n3) to be associative algebra over field k generated by 1, g, g, xi, yj , zk,
i = 1, 2, . . . , n1, j = 1, 2, . . . , n2, k = 1, 2, . . . , n3, subject to

gg = gg, gg2 = g, g2g = g, (3.7)

gxi = qxig, gxi = q−1xig, i = 1, 2, . . . , n1, (3.8)

gyj = qyjg, gyj = q−1yjg, j = 1, 2, . . . , n2, (3.9)

gzkg = qzk, k = 1, 2, . . . , n3. (3.10)

W(n1, n2, n3) can be endowed with coalgebra structure by

Δ
(
g
)
= g ⊗ g, (3.11)

Δ(xi) = xi ⊗ g + 1 ⊗ xi, (3.12)

Δ
(
yj
)
= yj ⊗ 1 + g ⊗ yj , (3.13)

Δ(zk) = zk ⊗ g + gg ⊗ zk, (3.14)

ε(1) = ε
(
g
)
= ε

(
g
)
= 1, ε(xi) = 0, ε

(
yj
)
= 0, ε(zk) = 0, (3.15)

while the weak antipode T is induced by

T(1) = 1, T
(
g
)
= g, T

(
g
)
= g, (3.16)

T(xi) = −xig, T
(
yj
)
= −gyj , T(zk) = −zkg, (3.17)
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Theorem 3.6. For any positive integers n1, n2, n3,W(n1, n2, n3) is a weak Hopf algebra.

Proof. First we must check that the coproduct Δ is an algebra map. It suffices to prove that Δ
preserves the relations (3.7)–(3.10). It is easy to see that Δ preserves the relations (3.7). And

Δ
(
gxi

)
=
(
g ⊗ g

)(
xi ⊗ g + 1 ⊗ xi

)

= gxi ⊗ g2 + g ⊗ gxi

=
(
qxig

)
⊗ g2 + g ⊗

(
qxig

)

= q
(
xi ⊗ g + 1 ⊗ xi

)(
g ⊗ g

)

= Δ
(
qxig

)
,

Δ
(
gyj

)
=
(
g ⊗ g

)(
yj ⊗ 1 + g ⊗ yj

)

= gyj ⊗ g + gg ⊗ gyj

=
(
qyjg

)
⊗ g + gg ⊗

(
qyjg

)

= q
(
yj ⊗ 1 + g ⊗ yj

)(
g ⊗ g

)

= Δ
(
qyjg

)
,

Δ
(
gzkg

)
=
(
g ⊗ g

)(
zk ⊗ g + gg ⊗ zk

)(
g ⊗ g

)

= gzkg ⊗ ggg + gggg ⊗ gzkg

=
(
qzk

)
⊗ g + gg ⊗

(
qzk

)

= Δ
(
qzk

)
.

(3.18)

Next we prove that T is the weak antipode. It suffices to prove that for each generator
g, g, xi, yj , zk, the action of T ∗ id ∗ T is the same as that of T , and the action of id ∗ T ∗ id
is the same as that of id.

Since

(Δ ⊗ id)Δ(xi) = (Δ ⊗ id)
(
xi ⊗ g + 1 ⊗ xi

)

=
(
xi ⊗ g + 1 ⊗ xi

)
⊗ g + 1 ⊗ 1 ⊗ xi

= xi ⊗ g ⊗ g + 1 ⊗ xi ⊗ g + 1 ⊗ 1 ⊗ xi,

(3.19)

we get

(id ∗ T ∗ id)(xi) = xigg +
(
−xig

)
g + xi = xi = id(xi),

(T ∗ id ∗ T)(xi) =
(
−xig

)
gg + xig +

(
−xig

)

= −xi
(
ggg

)
= −xig = T(xi).

(3.20)
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Since

(Δ ⊗ id)Δ
(
yj
)
= (Δ ⊗ id)

(
yj ⊗ 1 + g ⊗ yj

)

=
(
yj ⊗ 1 + g ⊗ yj

)
⊗ 1 + g ⊗ g ⊗ yj

= yj ⊗ 1 ⊗ 1 + g ⊗ yj ⊗ 1 + g ⊗ g ⊗ yj ,

(3.21)

it follows that

(id ∗ T ∗ id)
(
yj
)
= yj + g

(
−gyj

)
+ ggyj = yj = id

(
yj
)
,

(T ∗ id ∗ T)
(
yj
)
=
(
−gyj

)
+ gyj + gg

(
−gyj

)
= −gyj = T

(
yj
)
.

(3.22)

Since

(Δ ⊗ id)Δ(zk) = (Δ ⊗ id)
(
zk ⊗ g + gg ⊗ zk

)

=
(
zk ⊗ g + gg ⊗ zk

)
⊗ g + gg ⊗ gg ⊗ zk

= zk ⊗ g ⊗ g + gg ⊗ zk ⊗ g + gg ⊗ gg ⊗ zk,

zkgg = q−1gzkggg = q−1gzkg = zk,

ggzk = q−1gggzkg = q−1gzkg = zk,

(3.23)

we get

(id ∗ T ∗ id)(zk) = zkgg + gg
(
−zkg

)
g + ggggzk

= zk − qgzkg + ggzk

= zk − zk + zk = zk = id(zk),

(T ∗ id ∗ T)(zk) =
(
−zkg

)
gg + ggzkg + gggg

(
−zkg

)

=
(
−zkg

)
+ zkg +

(
−zkg

)
= −zkg = T(zk).

(3.24)

4. The Structure of W(n1, n2, n3)

In this section we study the algebra and coalgebra structure of W(n1, n2, n3).
It is easy to prove that the elements gg and 1 − gg are a pair of orthogonal central

idempotents. Set W1 =W(n1, n2, n3)gg, W2 =W(n1, n2, n3)(1 − gg). We have the following.

Theorem 4.1. W(n1, n2, n3) can be written as a direct sum of two-sided ideals W(n1, n2, n3) =
W1

⊕
W2. And one has the following.

(1) As an algebra,W1 is isomorphic toHn, where n = n1 + n2 + n3.

(2) As an algebra,W2 is isomorphic to the free associative algebra k〈Y1, . . . , Yt〉 of t generators,
where t = n1 + n2.
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Proof. (1) Since gg and 1 − gg are a pair of orthogonal central idempotents,

W(n1, n2, n3) =W(n1, n2, n3)gg ⊕W(n1, n2, n3)
(
1 − gg

)
=W1 ⊕W2. (4.1)

The isomorphism W1 → Hn is induced by xigg 
→ Xi, yjgg 
→ Xn1+j , zkgg 
→ Xn1+n2+k,
gg 
→ 1, g2g 
→ K.

(2) Note that zk(1 − gg) = 0 and xi(1 − gg)yj(1 − gg) = yj(1 − gg)xi(1 − gg). Since
xi(1 − gg), yj(1 − gg) are generators of W2, the isomorphism W2 → k〈Y1, . . . , Yt〉 is defined
by (1 − g2) 
→ 1, xi(1 − g2) 
→ Yi, yj(1 − g2) 
→ Yn1+j .

A weak Hopf ideal J of a weak Hopf algebra H is a bi-ideal such that T(J) ⊂ J , where
T is the weak antipode of H. It is easy to see that H/J has a natural structure of a weak Hopf
algebra.

Theorem 4.2. The ideal J inW(n1, n2, n3) generated by 1−gg is a weak Hopf ideal. And the quotient
weak Hopf algebraW(n1, n2, n3)/J is a Hopf algebra, which is isomorphic toHn, where n = n1 +n2 +
n3.

Proof. Since

Δ
(
1 − gg

)
= 1 ⊗ 1 − gg ⊗ gg

= 1 ⊗ 1 − gg ⊗ 1 + gg ⊗ 1 − gg ⊗ gg

=
(
1 − gg

)
⊗ 1 + gg ⊗

(
1 − gg

)
,

T
(
1 − gg

)
= T(1) − T

(
g
)
T
(
g
)
= 1 − gg,

(4.2)

J is a weak Hopf ideal in W(n1, n2, n3).
The isomorphism W(n1, n2, n3)/J → Hn is defined by g + J 
→ K, g + J 
→ K−1,

xi + J 
→ Xi, gyj + J 
→ Xn1+j , zk + J 
→ Xn1+n2+k.

Now we give the Ext quiver of W(n1, n2, n3). For the definition and calculation of Ext
quiver, we refer to [5, 8, 9, 12].

The Ext quiver of W(n1, n2, n3) is shown in Figure 1. The multiplicity of arrow g· → ·1
is n1. The multiplicity of arrow 1· → ·g is n2. The multiplicity of other arrows is all n.

Theorem 4.3. The sub-coalgebra H related to the subquiver in Figure 2 is isomorphic to Hn as
coalgebra.

Proof. The isomorphism H → Hn is induced by gg 
→ 1, g 
→ K, g 
→ K−1, xi 
→ Xi, gyj 
→
Xn1+j , zk 
→ Xn1+n2+k.

Remark 4.4. The isomorphisms described in Theorem 4.1 are not isomorphisms of bialgebras.

Remark 4.5. The weak Hopf algebras discussed in [4, 5] also have quotient Hopf algebras and
sub-Hopf algebras which are isomorphic to the related Hopf algebras.
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· · ·
g3 g2 g

· · ·
g3g2g

1

gg

Figure 1: Ext quiver of W(n1, n2, n3).

· · ·
g3 g2 g

· · ·
g3g2g

gg

Figure 2: A subquiver of Ext quiver of W(n1, n2, n3).
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