
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2010, Article ID 357050, 15 pages
doi:10.1155/2010/357050

Research Article
An Elementary Construction on Nonlinear
Coherent States Associated to Generalized
Bargmann Spaces

Abdelkader Intissar1, 2

1 Equipe d’Analyse spectrale, UMR-CNRS n : 6134, Université de Corse,
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Consider the space L2(C, dμ(z)), where dμ(z) = e−|z|
2
dz ∧ dz is the Gaussian measure, and its

generalized Bargmann subspaces Em which are the null kernels of the operator Δ = −∂2/∂z∂z +
z(∂/∂z) − mI; m = 0, 1, . . . . In this work, we present an other construction of Em following the
Hermite functions which allows us to define a family of generalized Bargmann transform Bm

which maps isometrically Em into L2(R). The generalized coherent states | z〉m associated to Em

are constructed and some properties of them are given.

1. Introduction

The annihilation operator a and the creator operator a∗ are well-known from the quantum
theory of harmonic oscillator. They are defined by the commutation relation

[a, a∗] = 1. (1.1)

Of special interest is a representation of these operators a and a∗ as linear operators in
a separable HilbertH spanned by the eigenvectors |n〉; n = 0, 1, . . . of the positive semidefinite
number operator N = a∗a.

One has the well-known relations

a|n〉 =
√
n|n − 1〉, a∗|n〉 =

√
n + 1|n + 1〉. (1.2)
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The coherent states analysis is a very well-known tool in physics, in particular in
quantum optics and in quantum mechanics. The name “coherent states” was first used by
Glauber, Nobel prize in physics (2005), for his works in quantum optics and electrodynamics.
In the book of Klauder and Skagerstam [1], the reader can get an idea of the coherent states
application fields in physics and mathematical-physics.

A general mathematical theory of coherent states is detailed in [2].
Let us begin by reviewing the most important properties of the space I0 of coherent

states spanned by the set {|z〉0}, where

|z〉0 = e−1/2|z|
2

∞∑

n=0

zn√
n!
|n〉 (1.3)

for each complex z = x + iy.

(i) The vectors |z〉0 are the eigenvectors of the annihilation operator; one has a|z〉0 =
z|z〉0.

(ii) The space I0 of coherent states is a separable Hilbert space which is isomorphic to
the Hilbert space H spanned by {|n〉}.

(iii) |n〉 = a∗n/
√
n!|0〉.

(iv) |z〉0 = e−|z|
2/2eza

∗ |0〉.
(v) 0〈z| = 〈0|ezae−|z|2/2 is the adjoint vector of coherent state |z〉0, where z = x − iy.

From the above properties, we obtain

(vi) a∗|z〉0 = (z/2 + ∂/∂z)|z〉0,
(vii) a|z〉0 = (z/2 − ∂/∂z)|z〉0,

where ∂/∂z and ∂/∂z are the linear partial differential operators on R
2 given by

∂

∂z
=

∂

∂x
− i

∂

∂y
, z = x + iy,

∂

∂z
=

∂

∂x
+ i

∂

∂y
, z = x − iy.

(1.4)

Let Z = ∂/∂z + z/2 and Z = ∂/∂z − z/2
Then we define the linear partial differential operator L on R

2 by

L = −1
2

(
ZZ + ZZ

)
. (1.5)

The vector fields Z and Z and the identity operator form a basis for a Lie algebra in
which the Lie bracket of two elements is their commutator. In fact, −Z is the formal adjoint of
Z and L is an elliptic partial differential operator on R

2 given by

L = −
(

∂2

∂x2
+

∂2

∂y2

)
+
1
4

(
x2 + y2

)
− i

(
x

∂

∂y
− y

∂

∂x

)
. (1.6)
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Thus, L is the usual Hermite operator

−
(

∂2

∂x2
+

∂2

∂y2

)
+
1
4

(
x2 + y2

)
(1.7)

perturbed by the rotation operator

−i
(
x

∂

∂y
− y

∂

∂x

)
. (1.8)

The strongly continuous one parameter semigroup e−tL, t > 0 is ultracontractive in the sense
that for any t > 0, e−tL is a bounded linear operator from L2(R2) to L∞(R2), and it is
hypercontractive in the sense that for all t > 0, e−tL is a bounded linear operator from L2(R2)
to L4(R2).

The theory of ultracontractive semigroups can be found in Davie’s book [3] and the
connections of hypercontractivity with constructive quantum field theory are attributed to
Nelson [4] and are explained in the Simon’s book [5].

Coming back to the space I0 of coherent states, it is closely related to Bargmann’s
space which was used in [6] for the canonical commutation rules as representation space
of quantum mechanics. Since then, it had occurred in many different contents, that is, in
representation theory of nilpotent Lie groups and in Reggeon field theory. This last theory is
governed by a nonselfadjoint Gribov operator [7, 8] constructed as a polynomial in a and a∗.

For any |φ0〉 ∈ I0, we can define an entire analytic function by

φ0(z) = e1/2|z|
2〈
φ0 | z

〉
0 =

∞∑

n=0

zn√
n!

〈
φ0 | n

〉
. (1.9)

As
∫

C
|〈φ0 | z〉0|2dx dy〈∞· then

∫

C

∣∣φ0(z)
∣∣2e−|z|

2
dx dy < ∞. (1.10)

We denote the Bargmann space by:

E0 =
{
φ0 : C −→ C entire;

∫

C

∣∣φ0(z)
∣∣2e−|z|

2
dx dy < ∞

}
. (1.11)

E0 is closed in L2(C, dμ(z)), where the measure dμ(z) = e−|z|
2
dx dy and is closed related

to L2(R) by an unitary transform of L2(R) onto E0 given in [6] by the following integral
transform (for some appropriate constant c):

φ0(z) =
[
B0f

]
(z) = c

∫

R

e−(1/2)z
2+

√
2uz−(1/2)u2

f(u)du. (1.12)

If f ∈ L2(R), the integral converges absolutely.
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In L2(C, dμ(z)), Askour et al. [9, 10] have introduced the so-called“generalized”
Bargmann spaces Em,m = 0, 1, . . . , as null kernels of the operator

Δ = − ∂2

∂z∂z
+ z

∂

∂z
−mI, m = 0, 1, . . . (1.13)

and have proved that L2(C, dμ(z)) is the direct sum of the Bargmann space E0 and all
“generalized” Bargmann spaces Em.

Otherwise, Vasilevski in [11] concerning the structure of polyanalytic Fock spaces has
introduced the so-called “true-poly-Fock” spaces and proved that L2(C, dμ(z)) is the direct
sum of the Bargmann space (Fock) and all “true-poly-Fock” spaces.

According to chapter 2 of Daubechies book [12], we give in this work a family of
embedding operators Bm from L2(R) into L2(C, dμ(z)) such that the range B0(L2(R)) is a
Bargmann space and Bm(L2(R)) are reproducing subspaces.

The construction of Bm is based on the Fourier-Bargmann transform which is an
isometry from L2(R) into L2(R2).

To do this, we consider h ∈ L2(R) as a windowed function and denote hu,v(x) =
eiuxh(x−v). Thenwe can consider the windowed transform (the Fourier-Bargmann transform
or the Gabor Fourier transform):

Bh : L2(R, dx) −→ L2

(
R

2
)
, f −→ Bhf(u, v) =

〈
f, hu,v〉

L2(R). (1.14)

In the nice Folland’s book [13], the Fourier-Bargmann transform is called wave packet
transform and is very close to the Bargmann transform and FBI transform; see also [14].

By taking h(x) = (1/π4)e−x
2/2, Daubechies has pointed out that Bh(L2(R)) is

isomorphic to the Bargmann space.
In this work, taking h0(x) = (1/π4)e−x

2/2 and the Hermite functions hm(x) =
(1/

√
2mm!)(x − d/dx)mh0(x) as windowed functions, we point out that Bhm(L2(R)) (Gabor

space with the mth Hermite window hm) is isomorphic to a “generalized” Bargmann space
Em.

We adopt this last construction to give a “generalized” Bargmann transform Bm

associated to Em and we construct the phase spaces Im of “generalized coherent states” |z〉m
associated to Em.

To do this, let z = u + iv and m = 0, 1, . . . ,we use the following integral transform:

Bhm : L2(R, dx) −→ L2

(
R

2, du dv
)
, f −→ Bhmf (1.15)

such that

Bhmf : R
2 −→ C,

(u, v) −→ Bhmf(u, v) =
〈
f, hz

m

〉
L2(R) =

∫

R

e−iuxhm(x − v)f(x)dx,
(I)
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where

hz
m(x) = eiuxhm(x − v). (1.16)

We try to be self-contained and elementary as far as possible in this paper which is
organized as follows: in Section 2, we present a construction of “generalized” Bargmann
spaces following the Hermite functions by using the integral transform (I) for all m, and
we define the “generalized” Bargmann transform associated to Em. In Section 3, we construct
the “generalized coherent states” |z〉m, m = 0, 1, . . . , associated to “generalized” Bargmann
spaces Em and give some properties of them.

2. Construction of Generalized Bargmann Spaces
Following the Hermite Functions

Let us consider the Hamiltonian oscillator Hosc = 1/2(P 2 +Q2) on L2(R), where Q, P are the
usual position and momentum operators ([Q,P] = iI). It is well-known that the eigenvalues
and the eigenvectors of Hosc are given by

Hoschm =
(
m +

1
2

)
hm, (2.1)

where hm are the following Hermite functions:

hm(x) =
1√
2mm!

(
x − d

dx

)m 1
π4

1√
2mm!

e−x
2/2 =

1
π4

1√
2mm!

e−x
2/2Hm(x) (2.2)

andHm(x) =
∑[m/2]

j=0 (−1)j(m!/j!(m−2j)!)(2x)m−2j are the Hermite polynomials satisfying the
recursion relations xHm(x) = mHm−1(x) + (1/2)Hm+1(x).

Remark 2.1. (i) It is well-known that λm = m+ 1/2 may also be seen as the eigenvectors of the
usual Schrödinger operator HS on R

2 in presence of a constant magnetic field. Namely HS

acting in L2(R2) is given by

HS = −1
4

[(
∂

∂x
+ iy

)2

+
(

∂

∂y
− ix

)2
]
. (2.3)

(ii) HS has an infinite degeneracy.
(iii) It is well-known that the complex Hermite polynomials

Hn,k(z, z) = (−1)m+ke|z|
2 ∂m+k

∂zm∂zk
e−|z|

2
(2.4)

are an orthogonal basis of the Hilbert space L2(C, dμ(z)) and we can see in [15] how it was
used to give some spectral properties of Cauchy transform on L2(C, dμ(z)).
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If we formally take z to be real in (2.4), the complex Hermite polynomials Hn,k(z, z)
become the well-known real Hermite polynomials Hn+k(x).

Now, let z = u + iv and m = 0, 1, . . . , we define the following integral transforms:

Bhm : L2(R, dx) −→ L2

(
R

2, du dv
)
, f −→ Bhmf, (2.5)

by

Bhmf(u, v) =
〈
f, hz

m

〉
L2(R) =

∫

R

e−iuxhm(x − v)f(x)dx, (2.6)

where

hz
m(x) = eiuxhm(x − v). (2.7)

(1) If we take in (2.6) f(x)=hm+k(x) for k=0, 1, . . . , then we can use the formulas on
the Hermite functions given in [16, 17], in particular the famous formula:

∫

R

hm+k

(
x − v

2

)
e−iuxhm

(
x +

v

2

)
dx =

( −i√
2

)k
√

m!
(m + k)!

e−1/4[u
2+v2](u − iv)kLk

m

(
|z|2
2

)
,

(2.8)

where Lk
m(t) is the Laguerre polynomial defined by the Rodriguez formula as

Lk
m(t) =

1
m!

t−ket
(

d

dt

)m(
tk+me−t

)
, t ∈ R. (2.9)

The same formula appeared in [18, Chapter 23].
After a simple variable change, the formula (2.8) can be also expressed as

∫

R

hm+k(x)e−iuxhm(x + v)dx =
( −i√

2

)k
√

m!
(m + k)!

e−1/4[u
2+v2−2iuv](u − iv)kLk

m

(
|z|2
2

)
.

(2.10)

From (2.10), we deduce for k = 0, 1, 2, . . . that

Bhmhm+k(u, v) =
( −i√

2

)k
√

m!
(m + k)!

e−1/4[u
2+v2+2iuv](u + iv)kLk

m

(
|z|2
2

)
(2.11)
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or

Bhmhm+k(u, v) = ω(u, v)
( −i√

2

)k
√

m!
(m + k)!

(u + iv)kLk
m

(
|z|2
2

)
(2.12)

where

ω(u, v) = e−1/4[u
2+v2+2iuv] = ω(z). (2.13)

(2) If 0≤k≤m, we have the following formula:

∫

R

hm−k(x)e−iuxhm(x − v)dx =
( −i√

2

)k
√

(m − k)!
m!

e−1/4[u
2+v2+2iuv](u − iv)kLk

m−k

(
|z|2
2

)
.

(2.14)

That permits us to write for 0 ≤ k ≤ m

Bhmhm−k(u, v) = ω(u, v)
( −i√

2

)k
√

(m − k)!
m!

e−1/4[u
2+v2+2iuv](u − iv)kLk

m−k

(
|z|2
2

)
. (2.15)

Denoting z′ = u′+ iv′, then the reproducing kernelNhm of Bhm(L2(R)) can be computed
as

Nhm

(
u, v, u′, v′) =

〈
hz
m, h

z′
m

〉

L2(R2)
. (2.16)

Hence we have

Nhm

(
u, v, u′, v′) =

∫

R

e−iuxhm(x − v)eiu
′xhm

(
x − v′)dx. (2.17)

After a simple variable change, for example x = y + v′, then Nhm(u, v, u
′, v′) can be also

expressed as

Nhm

(
u, v, u′, v′) =

∫

R

hm

(
y
)
hm

(
y + v′ − v

)
e−i(u−u

′)(y+v′)dy. (2.18)

Hence

Nhm

(
u, v, u′, v′) = e−1/4[u

2+v2+2iuv]e−1/4[u
′2+v′2−2iu′v′]e(u+iv)(u

′−iv′)/2Lm

(
(u − u′)2 + (v − v′)2

2

)

(2.19)
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or

Nhm

(
u, v, u′, v′) = ω(u, v)ω(u, v)e(u+iv)(u

′−iv′)/2Lm

(
(u − u′)2 + (v − v′)2

2

)
. (2.20)

The reproducing relation in Bhm(L2(R)) can be written as

Bhmf(u, v) =
∫

R2
Nhm

(
u, v, u′, v′)Bhmf

(
u′, v′)du′ dv′, (2.21)

then Bhm(L2(R)) is a reproducing space with the reproducing kernelNhm .
Introducing the complex structures z and z′, the above formulas can be rewriten as

Bhmhm+k(z) = ω(z)
(−iz√

2

)k
√

m!
(m + k)!

Lk
m

(
|z|2
2

)
,

Bhmhm−k(z) = ω(z)
(−iz√

2

)k
√

(m − k)!
m!

Lk
m−k

(
|z|2
2

)
,

Nhm

(
z, z′

)
= ω(z)ω(z)Nm

(
z, z′

)
,

(2.22)

with

Nm

(
z, z′

)
= ezz

′/2Lm

(
|z − z′|2

2

)
. (2.23)

We also can see that by changing the variable z into
√
2ξ and z′ into

√
2ξ′ thatNm(z, z′)

can be transformed to kernels given in [9, Theorem 2]

Km

(
ξ, ξ′

)
= eξξ

′
Lm

(∣∣ξ − ξ′
∣∣2
)
. (2.24)

Now, we can define the “generalized” Bargmann transforms by

Bmf(z) =
1

ω(z)
Bhmf(z) (2.25)

and the “generalized” Bargmann spaces by

Em = Bm[L2(R)]. (2.26)

Now, the consequences of all the above computations are summarized in the following form.
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Theorem 2.2. (i) Bm[L2(R)] is a subspace of L2(C, e−|z|
2
dudv).

(ii)

Bmhm+k(z) =
(−iz√

2

)k
√

m!
(m + k)!

Lk
m

(
|z|2
2

)
, k = 0, 1, . . . . (2.27)

(iii) For m = 0, 1/
√
k!(−iz/√2)k is a basis of classical Bargmann space E0.

(iv)

Bmhm−k(z) =
(−iz√

2

)k
√

(m − k)!
m!

Lk
m−k

(
|z|2
2

)
, k = 0, . . . , m. (2.28)

(v)

Bmf(z) =
1

ω(z)

∫

R

eiuxf(x)
(
x − v − d

dx

)m

e−(x−v)
2
dx

=

√
2mm!
ω(z)

∫

R

e−1/2(x
2+v2)+izxHm(x − v)f(x)dx.

(2.29)

(vi)

Bmf(iz) =
√
2mm!

∫

R

e−(z/2−x)
2
Hm

(
x − z + z

2

)
f(x)dx. (2.30)

Remark 2.3. (i) The operator A∗ = −∂/∂z + z is the adjoint of the operator A = ∂/∂z in
L2(C, e−|z|

2
dudv) and Δ = A∗A; see for example [19] or [20].

(ii) In [9, 10] the “generalized” Bargmann spaces Em are constructed as null spaces
of the second-order differential operator Δ = −∂2/∂z∂z + z(∂/∂z) − mI in L2(C, e−|z|

2
dudv)

but in this section we have given another construction of these spaces which allows us to
construct the “generalized” Bargmann transforms (2.25).

3. Construction of Generalized Coherent States |z〉m Associated to
Generalized Bargmann Spaces Em

In the separable Hilbert spaceH spanned by the eigenvectors |n〉 n = 0, 1, 2, . . . of the positive
semidefinite number operator N = a∗a, one can define for each complex number z = x + iy

|z〉m = e−1/2|z|
2

∞∑

n=0

A∗m zn√
n!
|n〉, (3.1)

where

A∗ = − ∂

∂z
+ z. (3.2)
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The space Im spanned by the set {|z〉m} is a separable Hilbert space which is in fact
isomorphic to H. This space is called the “generalized” space of coherent states. It is closely
related to the “generalized” Bargmann space Em.

For any |φm〉 ∈ Im, we can define a function by

φm(z) = e1/2|z|
2〈
φm | z〉m =

∞∑

n=0

A∗m zn√
n!

〈
φm | n〉. (3.3)

As
∫

C
|〈φm | z〉m|2dx dy < ∞, then

∫

C

∣∣φm(z)
∣∣2e−|z|

2
dx dy < ∞. (3.4)

Theorem 3.1. Let A = ∂/∂z and A∗ = −∂/∂z + z, then the following statements hold.

(i) AA∗mf(z) = mA∗m−1
f(z); m = 1, 2, . . . for any holomorphic function f(z).

(ii) Let φm(z) = e1/2|z|
2〈φm | z〉m, then φm(z) is in the “generalized” Bargmann space Em;

m = 0, 1, . . .

(iii)

|z〉m =
m∑

j=0
(−1)jCj

mz
m−ja∗j |z〉0, (3.5)

where a∗|n〉 =
√
n + 1|n + 1〉 and C

j
m = m!/j!(m − j)!

Proof. (i) Let f(z) be holomorphic function; then by applying the commutation relation
[A,A∗] = I and the Cauchy-Riemann equation, we deduce that (i) is satisfied for m = 1
and by induction that

AA∗m+1
f(z) = A∗AA∗mf(z) +A∗mf(z) = (m + 1)A∗mf(z). (3.6)

(ii) For m = 0, we have |z〉0 = e−1/2|z|
2 ∑∞

n=0(z
n/

√
n!)|n〉, and φ0(z) is in the classical

Bargmann space E0.
Form/= 0 and φm(z) =

∑∞
n=0 A

∗m(zn/
√
n!)〈φm | n〉we have

A∗Aφm(z) =
∞∑

n=0

A∗AA∗m zn√
n!

〈
φm | n〉. (3.7)
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As the function f(z) = zn is holomorphic, we can apply property (i). Premultiplying by A∗

the equation AA∗mf(z) = mA∗m−1
f(z), we obtain

A∗Aφm(z) =
∞∑

n=0

A∗AA∗m zn√
n!

〈
φm | n〉

=
∞∑

n=0

mA∗m zn√
n!

〈
φm | n〉 = mφm(z).

(3.8)

(iii) Let

a∗j |z〉0 = e−1/2|z|
2
∞∑

n=0

zn√
n!
a∗j |n〉 = e−1/2|z|

2
∞∑

n=0

(
∂

∂z

)j zn√
n!
|n〉,

|z〉m = e−1/2|z|
2
∞∑

n=0

A∗m zn√
n!
|n〉.

(3.9)

As ∂/∂z(zf(z)) = z(∂/∂z)f(z), we have

A∗m =
(
z − ∂

∂z

)m

=
m∑

j=0
(−1)jCj

mz
m−j

(
∂

∂z

)j

, (3.10)

where Cj
m = m!/j!(m − j)!Then

|z〉m =
m∑

j=0
(−1)jCj

mz
m−ja∗j |z〉0. (3.11)

The action of the annihilation operator a on |z〉m for m/= 0 is presented below, in the form of
a theorem.

Theorem 3.2. (i) a|z〉m = z|z〉m −m|z〉m−1.
(ii) There exists an operator Tm such that Tm|z〉m = z|z〉m.

Proof. (i) Let |z〉m = e−1/2|z|
2 ∑∞

n=0 A
∗mzn/

√
n!|n〉, where A∗ = −∂/∂z + z.

By applying the operator a = z/2 − ∂/∂z on |z〉m,we get

a|z〉m =
z

2
|z〉m − ∂

∂z

(
e−1/2|z|

2
∞∑

n=0

A∗m zn√
n!
|n〉

)

=
z

2
|z〉m +

z

2
|z〉m − e−1/2|z|

2 ∂

∂z

( ∞∑

n=0

A∗m zn√
n!
|n〉

)

= z|z〉m − e−1/2|z|
2
∞∑

n=0

∂

∂z
A∗m zn√

n!
|n〉

(3.12)
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Now as f(z) = zn is a holomorphic function and A = ∂/∂z, we have ∂/∂zA∗mf(z) =
mA∗m−1

f(z) and we get

a|z〉m = z|z〉m −me−1/2|z|
2
∞∑

n=0

A∗m−1 zn√
n!
|n〉; (3.13)

that is,

a|z〉m = z|z〉m −m|z〉m−1. (3.14)

(ii) In the above property (i) of the present theorem, it is shown that the “generalized”
coherent states are not eigenstates of the annihilation operator. Nevertheless, we will show
that these “generalized” coherent states can be interpreted as nonlinear coherent states, see
for example the theory of Photon-added coherent states used in [21] or the approach of
nonlinear coherent states given in [22].

To do this, we have to show that |z〉m obeys to the equation

Tm|z〉m = z|z〉m (3.15)

with a suitable choice for the operator Tm. Let us now construct the explicit form of Tm.
From (3.11), we have z〉m =

∑m
j=0(−1)jCj

mz
m−ja∗j |z〉0, then z〉m is in the space Fm

spanned by {zm−ja∗j |z〉0}j=0,1, ... ,m.
By definition, the coherent states |z〉0 satisfy

a|z〉0 = z|z〉0. (3.16)

Premultiplying the both sides of this equation by a∗j leads

a∗j a|z〉0 = za∗j |z〉0. (3.17)

Using the commutation relation [a, a∗] = I, the above equation is written as

aa∗j − ja∗j−1 |z〉0 = za∗j |z〉0. (3.18)

which, making use of the identity (a∗a + I)−1aa∗ = I, leads to

[
a − j(a∗a + I)−1a

]
a∗j |z〉0 = za∗j |z〉0 (3.19)

In the following, we introduce

Rj =
(
I − j(a∗a + I)−1

)
a (3.20)
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and Pj the projection operator on the space spanned by the system {zm−ja∗j |z〉0}, j =
0, 1, . . . , m

Pkz
m−ja∗j |z〉0 = δjkz

m−ja∗j |z〉0, (3.21)

where δjk = 1 if k = j and δjk = 0 if k /= j.
Let

Tm =
m∑

j=0

RjPj . (3.22)

Acting Tm on |z〉m leads to

Tm|z〉m =
m∑

j=0

RjPj

m∑

j=0
(−1)jCj

mz
m−ja∗j |z〉0

=
m∑

j=0
(−1)jCj

mRjz
m−ja∗j |z〉0

=
m∑

j=0
(−1)jCj

mz
m−jRja

∗j |z〉0

=
m∑

j=0
(−1)jCj

mz
m−jza∗j |z〉0

= z
m∑

j=0
(−1)jCj

mz
m−ja∗j |z〉0,

(3.23)

that is,

Tm|z〉m = z|z〉m. (3.24)

To sum up, we have used the Gabor spaces Bhm(L2(R)) with the mth Hermite window hm to
give another construction of generalized Bargmann spaces Em which is different from that
given in [9, 10] or [11] and have constructed a family of “generalized” Bargmann transforms
attached to these spaces. The states |z〉m constructed in this work with m/= 0 are nonclassical
and can be interpreted as nonlinear coherent states in nonanalytic representation. The spaces∧

m := Em−1, m = 1, 2, . . . , are constituted by the polyanalytic functions φ(z) of order m, that
is,

(
∂

∂z

)m

φ(z) = 0, m = 1, 2, . . . (3.25)
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which are not polyanalytic of any lower order and satisfy

∫

C

∣∣φ(z)
∣∣2e−|z|

2
dx dy〈∞ . (3.26)

The functions φ(z) in
∧

m,m = 1, 2, . . . , can be uniquely expressed in the form

φ(z) =
∑

0≤k≤m−1
zk

∞∑

j=0

aj,kz
j . (3.27)

Finally, the spaces Em defined in this work are the “true polyanalytic Fock spaces” of [11] or
the “generalized Bargmann spaces” of [9, 10].

When m is not zero, we give (in a further work) a complete spectral analysis of the
nonselfadjoint operator HI = B∗(B + B∗)B on

∧
m or on ⊕m

j=1

∧
m (the natural generalization of

the Bargmann space, since (3.25) generalizes the Cauchy-Riemann equation (∂/∂z)φ(z) = 0),
where B = ∂/∂z and B∗ = −∂/∂z + z.

The restriction ofHI on the Bargmann space E0 is the Heun’s operator and it has been
studied in detail in [23].
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