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By using critical point theory, we obtain some new results on the existence of multiple solutions for
a class of n-dimensional discrete boundary value problems. Results obtained extend or improve
existing ones.

1. Introduction

Let N, Z, R be the set of all natural numbers, integers, and real numbers, respectively. For any
a, b ∈ Z, define Z(a) = {a, a + 1, a + 2, . . .}, Z(a, b) = {a, a + 1, . . . , b}when a < b.

In this paper, we consider the existence of multiple solutions for the following n-
dimensional discrete nonlinear boundary value problem:

Δ
[
p(k)ΔX(k − 1)

]
+ q(k)X(k) = f(k,X(k)), k ∈ Z(a + 1, b),

X(a) + αX(a + 1) = A, X(b + 1) + βX(b) = B,
(1.1)

where n ∈ N, X(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ R

n, Δ is the forward difference
operator defined by ΔX(k) = X(k + 1) − X(k), f : Z × R

n → R
n with f(k,U) =

(f1(k,U), f2(k,U), . . . , fn(k,U))T , and is continuous for U. a, b ∈ Z with a < b, α and β are
constants, A = (a1, a2, . . . , an)

T and B = (b1, b2, . . . , bn)
T are n-dimensional vectors, p(k) and

q(k) are real value functions defined on Z(a+1, b+1) and Z(a+1, b), respectively, and p(k)/= 0.
Existence of solutions of discrete boundary value problems has been the subject of

many investigations. Motivated by Hartman’s landmark paper [1], Henderson [2] showed
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that the uniqueness of solutions implies the existence of solutions for some conjugate
boundary value problems. In recent years, by using various methods and techniques, such
as nonlinear alternative of Leray-Schauder type, the cone theoretic fixed point theorem,
and the method of upper and lower solution, a series of existence results for the solutions
of the BVP (1.1) in some special cases, for example, n = 1, α = β = 0, A = B = 0;
n = 1, α = 0, β = −1, A = B = 0 have been obtained in literatures. We refer to [3–7].

The critical point theory has been an important tool for investigating the periodic
solutions and boundary value problems of differential equations [8–10]. In recent years, it
is applied to the study of periodic solutions [11–13] and boundary value problems [14–17] of
difference equations.

For the case when n = 1, the scalar BVP (1.1) was studied by Yu and Guo in [17].
By using critical point theorem, they obtained various conditions to guarantee the existence
of one solution, but they did not obtain the existence conditions of multiple solutions. In
this scalar case, the BVP can be viewed as the discrete analogue of the following self-adjoint
differential equation:

d

dt

(
p(t)

dy

dt

)
+ q(t)y = f

(
t, y
)
, (1.2)

which is a generalization of Emden-Fowler equation:

d

dt

(
tρ
dy

dt

)
+ tδyγ = 0. (1.3)

The Emden-Fowler equation originated from earlier theories of gaseous dynamics in
astrophysics [18], and later, found applications in the study of fluid mechanics, relative
mechanics, nuclear physics, and in the study of chemical reaction system [19].

For the case where p(k) ≡ −1, q(k) ≡ 0, A = B = θ (the zero vector of R
n), BVP (1.1)

are reduced to

−Δ2X(k − 1) = f(k,X(k)), k ∈ Z(a + 1, b),

X(a) = −αX(a + 1), X(b + 1) = −βX(b),
(1.4)

which were studied by Jiang and Zhou in [15]. They obtained the existence results of multiple
solutions by using critical point theory again.

In the aforementioned references, most of the difference equations involved are scalar.
The purpose of this paper is further to demonstrate the powerfulness of critical point theory
in the study of existence of discrete boundary value problems and obtain various conditions
for the existence of at least two nontrivial solutions for the BVP (1.1).

The remaining of this paper is organized as follows. First, in Section 2, wewill establish
the variational framework associated with (1.1) and transfer the problem of the existence of
solutions of (1.1) into that of the existence of critical points of the corresponding functional.
Some basic results will also be recalled. Then, in Section 3, we present various new conditions
on the existence of at least two nontrivial solutions for the BVP (1.1). Some examples are
given to illustrate the conclusions. We mention that our results generalize the ones in [15]
and improve the ones in [20].
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To conclude the introduction, we refer to [21, 22] for the general background on
difference equations.

2. Preliminary and Variational Framework

Let E be a real Hilbert space, J ∈ C1(E,R), which means that J is a continuously Frećhet-
differentiable functional defined on E. J is said to satisfy Palais-Smale condition (P-S
condition for short), if any sequence {xn}∞n=1 ⊂ E for which {J(xn)}∞n=1 is bounded and
J ′(xn) → 0 as n → ∞ possesses a convergent subsequence in E.

Let Bρ be the open ball in E with radius ρ and centered at 0 and let ∂Bρ denote its
boundary. The following lemmas will be useful in the proofs of our main results.

Lemma 2.1. (Mountain Pass Lemma [10]). Let E be a real Hilbert space, and assume that J ∈
C1(E,R) satisfies the P-S condition and the following conditions.

(1) There exist constant ρ > 0 and a > 0 such that J(x) ≥ a, ∀x ∈ ∂Bρ, where Bρ = {x ∈ E :
‖x‖E < ρ}.

(2) J(0) ≤ 0 and there exists x0 /∈Bρ such that J(x0) ≤ 0.

Then J possesses a critical value c ≥ a. Moreover, c = infh∈Γ maxs∈[0,1]J(h(s)), where

Γ = {h ∈ C([0, 1], E) | h(0) = 0, h(1) = x0}. (2.1)

Lemma 2.2. Let ai ≥ 0, γ > 2, i ∈ Z(1, m), then

1√
m

m∑

i=1

ai ≤
√√√
√

m∑

i=1

a2
i ≤

m∑

i=1

ai. (2.2)

Without loss of generality, we assume that a = 0, b = m where m ∈ N, and there
exists a function P(k,U) ∈ C1(Z(1, m) × R

n,R), such that for any (k,U) ∈ Z(1, m) × R
n,

∇UP(k,U) = f(k,U), where ∇UP(k,U) = (∂P/∂u1, . . . , ∂P/∂un)
T is the gradient of P(k,U)

in U, and P(k, θ) ≥ 0 where θ is the zero vector in R
n.

Let c(k) = q(k) − p(k) − p(k + 1), then BVP (1.1) reduces to

p(k + 1)X(k + 1) + c(k)X(k) + p(k)X(k − 1) = f(k,X(k)), k ∈ Z(1, m), (2.3)

X(0) + αX(1) = A, X(m + 1) + βX(m) = B, (2.4)

where X(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ R

n, ∀k ∈ Z(0, m + 1).



4 International Journal of Mathematics and Mathematical Sciences

Define

H =
{
X = (X(1), . . . , X(m))T | X(k) = (x1(k), . . . , xn(k)) ∈ R

n, ∀k ∈ Z(1, m)
}
. (2.5)

Then, H can be equipped with the inner product

〈X,Y〉H =
m∑

k=1

(X(k), Y (k)) =
m∑

k=1

n∑

i=1

xi(k)yi(k), (2.6)

by which the norm ‖ · ‖H can be induced by

‖X‖H =

√√√
√

m∑

k=1

‖X(k)‖2n, ∀X ∈ H, (2.7)

where X(k) = (x1(k), x2(k), . . . , xn(k))
T , Y (k) = (y1(k), y2(k), . . . , yn(k))

T ∈ R
n, and ‖ · ‖n and

(·, ·) are the norm and the inner product in R
n, respectively.

Define a linear mapping L : H → R
mn by

L(X) = (x1(1), . . . , x1(m), x2(1), . . . , x2(m), . . . , xn(1), . . . , xn(m))T . (2.8)

Then L is a linear and one to one mapping. Clearly, ‖LX‖mn = ‖X‖H .
With this mapping, BVP (2.3) and (2.4) can be represented by the matrix equation:

ML(X) +N = L(F(X)), (2.9)

where X ∈ H, F(X) = (f(1, X(1)), f(2, X(2)), . . . , f(m,X(m))) ∈ H and

M =

⎛

⎜⎜⎜⎜⎜⎜
⎝

Q · · · 0

Q · · ·
...

...
. . .

...

0 · · · Q

⎞

⎟⎟⎟⎟⎟⎟
⎠

mn×mn

(2.10)
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with

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c(1) − αp(1) p(2) 0 · · · 0 0

p(2) c(2) p(3) · · · 0 0

0 p(3) c(3) · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · c(m − 1) p(m)

0 0 0 · · · p(m) c(m) − βp(m + 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

m×m

,

N =

⎛

⎜⎜⎜⎜⎜⎜
⎝

η1

η2

...

ηn

⎞

⎟⎟⎟⎟⎟⎟
⎠

mn×1

, ηj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p(1)aj

0

...

0

p(m + 1)bj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

m×1

, j = 1, 2, . . . , n.

(2.11)

Define a functional J on H as

J(X) =
1
2
(MLX,LX) + (N,LX) −W(X), (2.12)

where W(X) =
∑m

k=1 P(k,X(k)). Then J ∈ C1(H,R).
For any X = (X(1), X(2), . . . , X(m)) ∈ H, denote

X = (X(0), X(1), . . . , X(m), X(m + 1)), (2.13)

where X(0), X(1), X(m), X(m+ 1) satisfying (2.4). Thus, there is a one to one correspondence
from H to

H =
{
(X(0), X(1), . . . , X(m + 1)) | X(0) + αX(1) = A,X(m + 1) + βX(m) = B

}
. (2.14)

Clearly, J ′(X) = 0 if and only ifX satisfies (2.3) and (2.4). Therefore, the existence of solutions
to BVP (2.3) and (2.4) is transferred to the existence of the critical point of the functional J on
H.

By a solution {X(k)}m+1
k=0 of (2.3) and (2.4), we mean that {X(k)}mk=1 satisfies (2.3), and

(2.4) holds. {X(k)}m+1
k=0 is nontrivial if ‖(X(1), . . . , X(m))‖H /= 0.

3. Main Results

In this section, we will suppose that the matrix Q defined in (2.11) is positive definite, λmin,
λmax are the minimal eigenvalue and maximal eigenvalue of Q, respectively. It is clear that
λmin, λmax are also the minimal eigenvalue and maximal eigenvalue of M, respectively. The
first result is as follows.
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Theorem 3.1. If there exist constants α1, α2 : 0 < α1 < λmin ≤ λmax < α2, and ρ > 0, γ ≥ 0,
δ > d = 2‖N‖mn/(λmin − α1) satisfying

W(X) ≤ 1
2
α1‖X‖2H, ∀X ∈ H, ‖X‖H < δ, (3.1)

W(X) ≥ 1
2
α2‖X‖2H − γ, ∀X ∈ H, ‖X‖H > ρ, (3.2)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Proof. Since P(k, θ) ≥ 0, we know that W(θ) ≥ 0 where θ denotes the zero element of H. By
(3.1), we get W(θ) = 0 and J(θ) = 0. Let

ω = max
{∣∣∣∣W(X) − 1

2
α2‖X‖2H + γ

∣∣∣∣ : X ∈ H, ‖X‖H ≤ ρ

}
. (3.3)

Then by (3.2), we get

W(X) ≥ 1
2
α2‖X‖2H − (γ +ω

)
=

1
2
α2‖X‖2H − γ ′, ∀X ∈ H, (3.4)

where γ ′ = γ +ω ≥ 0. Then for all X ∈ H, we have

J(X) =
1
2
(MLX,LX) + (N,LX) −W(X)

≤ 1
2
λmax‖X‖2H + ‖N‖mn‖X‖H −

(
1
2
α2‖X‖2H − γ ′

)

=
λmax − α2

2
‖X‖2H + ‖N‖mn‖X‖H + γ ′.

(3.5)

Since λmax < α2, we see that J(X) → −∞ as ‖X‖H → +∞. Thus J(X) is bounded from
above on H, and J(X) can achieve its maximum on H. In other words, there exists X1 ∈ H,
such that J(X1) = supX∈HJ(X). So X1 is a critical point of J(X), and X1 is a solution of BVP
(2.3) and (2.4).

For any X ∈ H with d < ‖X‖H < δ, we have

J(X) ≥ λmin − α1

2
‖X‖2H − ‖N‖mn‖X‖H > 0. (3.6)

So J(X1) = supX∈HJ(X) > 0 and X1 is a nontrivial solution to BVP (2.3) and (2.4).
To obtain another nontrivial solution of BVP (2.3) and (2.4), we will use Mountain

Pass Lemma. We first show that J(X) satisfies P-S condition.
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In fact, for any sequence {X(k)}∞k=1 inH, {J(X(k))}∞k=1 is bounded and limk→∞J ′(X(k)) =
0, then there exists K > 0 such that J(X(k)) > −K, and it follows from (3.5) that

−K ≤ J
(
X(k)

)
≤ λmax − α2

2

∥∥∥X(k)
∥∥∥
2

H
+ ‖N‖mn

∥∥∥X(k)
∥∥∥
H
+ γ ′, (3.7)

that is,

λmax − α2

2
‖Xk‖2H + ‖N‖mn‖Xk‖H + γ ′ +K ≥ 0. (3.8)

Since λmax < α2, this implies that {X(k)}∞k=1 is bounded and possesses a convergent
subsequence. So J(X) satisfies P-S condition onH.

Choosing r ∈ (d, δ), then for X ∈ ∂Br = {X ∈ H : ‖X‖H = r}, from (3.6), we get

J(X) ≥ λmin − α1

2
r2 − ‖N‖mnr = a > 0. (3.9)

This shows that J satisfies condition (1) of the Mountain Pass Lemma.
On the other hand, from (3.5), J(X) → −∞ as ‖X‖H → +∞, so there exists P > r

such that J(X) < 0 for ‖X‖H > P . Pick X0 ∈ H such that ‖X0‖H > P > r, then X0 ∈ H \ Br ,
and J(X0) < 0. So the condition (2) of the Mountain Pass Lemma is satisfied. Therefore, J
possesses a critical value c = infh∈Γ maxs∈[0,1]J(h(s)),where

Γ =
{
h ∈ C([0, 1],H) : h(0) = θ, h(1) = X0

}
. (3.10)

A critical point corresponding to c is nontrivial as c ≥ a > 0. Let X2 be a critical point
corresponding to the critical value c of J . If X2 /=X1, then we are done. Otherwise, X2 = X1,
which gives

max
X∈H

J(X) = J(X1) = J(X2) = inf
h∈Γ

max
s∈[0,1]

J(h(s)). (3.11)

Pick h(s) = sX0, s ∈ [0, 1], then h ∈ Γ, and we have

max
X∈H

J(X) = J(X1) = J(X2) = inf
h∈Γ

max
s∈[0,1]

J(h(s)) ≤ max
s∈[0,1]

J(sX0). (3.12)

Thus, there exists s0 ∈ (0, 1) such that J(X2) = J(s0X0), and X3 = s0X0 is also a critical point
of J(X) inH.

If X3 /=X1, then Theorem 3.1 holds. Otherwise, X3 = X1 = s0X0. In this situation, we
replace X0 with −X0 in the above arguments; then J possesses a critical value c∗ ≥ a and
c∗ = infh∈Γ∗ maxs∈[0,1]J(h(s)),where

Γ∗ =
{
h ∈ C([0, 1],H) : h(0) = θ, h(1) = −X0

}
. (3.13)
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Assume that X4 is a critical point corresponding to c∗. If X4 /=X1, then the proof is complete.
Otherwise, X4 = X1. Similarly, we can find a critical point X5 of J such that X5 = −s1X0 holds
for some s1 ∈ (0, 1). Clearly, X5 /=X3. The proof of Theorem 3.1 is now complete.

From Theorem 3.1, we have the following corollaries.

Corollary 3.2. If there exist constants α1, α2 : 0 < α1 < λmin ≤ λmax < α2, and ρ > 0, γ ≥ 0,
δ > d = 2‖N‖mn/(λmin − α1) satisfying

P(k,U) ≤ 1
2
α1‖U‖2n, ‖U‖n < δ, k ∈ Z(1, m),

P(k,U) ≥ 1
2
α2‖U‖2n − γ, ‖U‖n > ρ, k ∈ Z(1, m).

(3.14)

Then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Proof. For any X ∈ H, ‖X‖H < δ, then ‖X(k)‖n ≤ ‖X‖H < δ, k ∈ Z(1, m). So

W(X) =
m∑

k=1

P(k,X(k)) ≤
m∑

k=1

1
2
α1‖X(k)‖2n =

1
2
α1‖X‖2H, (3.15)

and condition (3.1) of Theorem 3.1 is satisfied. Let

γ ′ = max
{∣∣∣∣P(k,U) − 1

2
α2‖U‖2n + γ

∣∣∣∣ : ‖U‖n ≤ ρ, k ∈ Z(1, m)
}
. (3.16)

Then

P(k,U) ≥ 1
2
α2‖U‖2n − γ1, k ∈ Z(1, m), U ∈ R

n, (3.17)

where γ1 = γ + γ ′. So, for any X ∈ H,

W(X) =
m∑

k=1

P(k,X(k)) ≥
m∑

k=1

1
2

[
α2‖X(k)‖2n − γ1

]
=

1
2
α2‖X‖2H −mγ1, (3.18)

and condition (3.2) of Theorem 3.1 is satisfied. The conclusion follows from Theorem 3.1.



International Journal of Mathematics and Mathematical Sciences 9

Remark 3.3. For the special case where p(k) ≡ −1, q(k) ≡ 0, A = B = θ, the BVP (2.3) and (2.4)
was studied in [15]. Here, the corresponding matrix Q becomes

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 + α −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1
0 0 0 . . . −1 2 + β

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

m×m

, (3.19)

which is positive definite when α > −1, β ≥ −1 and N = (0, . . . , 0)T . So, d = 0. In this case,
Corollary 3.2 reduces to Theorem 3.1 of [15]. Therefore, our results extend the ones in [15].
Corollary 3.2 also improves the conclusion of Theorem 1 in [20].

Corollary 3.4. If there exist constants α1 < λmin, α2 > 0, ρ > 0, γ > 0, δ > d = 2‖N‖mn/(λmin−α1)
and τ > 2 such that (3.1) holds and

W(X) ≥ 1
2
α2‖X‖τH − γ, ∀X ∈ H, ‖X‖H > ρ, (3.20)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Proof. It suffices to prove that (3.20) implies (3.2). In fact, pick ρ′ = max{ρ, ((λmax +
1)/α2)

1/(τ−2)}, then

W(X) ≥ 1
2
α2‖X‖τ−2H · ‖X‖2H − γ ≥ 1

2
(λmax + 1)‖X‖2H − γ (3.21)

for ‖X‖H > ρ′, so condition (3.2) of Theorem 3.1 is satisfied, and the proof are complete.

The following corollaries is obvious.

Corollary 3.5. If there exist α1 : 0 < α1 < λmin, δ > d = 2‖N‖mn/(λmin − α1) such that (3.1) holds
and

lim
‖X‖H →∞

W(X)

‖X‖2H
= β >

λmax

2
. (3.22)

Then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Corollary 3.6. If there exists constants α1 : 0 < α1 < λmin, δ > d = 2‖N‖mn/(λmin − α1) such that
(3.14) holds and

lim
‖U‖n →∞

P(k,U)

‖U‖2n
>

λmax

2
, ∀k ∈ Z(1, m). (3.23)

Then BVP (2.3) and (2.4) has at least two nontrivial solutions.
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Now we will give an example to illustrate our results.

Example 3.7. Consider the discrete boundary problem:

2X(k + 1) + 10X(k) + 2X(k − 1) = f(k,X(k)), k ∈ Z(1, 5) (3.24)

with

X(0) +X(1) = A, X(6) + 2X(5) = B, (3.25)

where

f(k,U) =
9

400k
U
(
4‖U‖22 − 2 sin ‖U‖22

)
(3.26)

for k ∈ Z(1, 5) and A = (1, 0)T , B = (0, 0)T .
In this example, m = 5, n = 2, p(k) ≡ 2, c(k) ≡ 10, α = 1, β = 2, η1 = (2, 0, 0, 0, 0)T ,

η2 = (0, 0, 0, 0, 0)T ,N = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

M =

(
Q

Q

)

, Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

8 2 0 0 0

2 10 2 0 0

0 2 10 2 0

0 0 2 10 2

0 0 0 2 6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

P(k,U) =
9

400k

[
‖U‖42 −

(
1 − cos ‖U‖22

)]
.

(3.27)

So, ‖N‖10 = 2. With the Matlab software, we can get the approximate eigenvalue of matrix Q:

λ1 = 4.9957, λ2 = 6.3645, λ3 = 8.4127, λ4 = 11.0445, λ5 = 13.1826. (3.28)

Thus Q is positive definite and 4.9 < λmin < 5, 13.1 < λmax < 13.2. Take α1 = 4.5, we find that

8 =
4

5 − 4.5
< d =

2‖N‖10
λmin − α1

<
4

4.9 − 4.5
= 10. (3.29)

Pick α2 = 14, δ = 10 > d, ρ = 100, then for any U ∈ R
2 : ‖U‖2 < δ = 10, k ∈ Z(1, 5), we have

P(k,U) ≤ 9
400

‖U‖42 <
9
4
‖U‖22 =

α1

2
‖U‖22. (3.30)
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For any U ∈ R
2, ‖U‖2 > ρ = 100, k ∈ Z(1, 5),

P(k,U) =
9

400k

[
‖U‖42 −

(
1 − cos ‖U‖22

)]
≥ 9

2000

(
‖U‖42 − 2

)
>

α2

2
‖U‖22 −

9
1000

. (3.31)

In view of Corollary 3.2, we see that the boundary value problem (3.24) and (3.25) has
at least two nontrivial solutions.

By a similar method, we can obtain the following results.

Theorem 3.8. Assume that P(k, θ) = 0 for any k ∈ Z(1, m). If there exist constants α1, α2 : 0 <
α2 < λmin ≤ λmax < α1, ρ > 0, γ ≥ 0, and δ > d = 2‖N‖mn/(α1 − λmax) satisfying

W(X) ≥ 1
2
α1‖X‖2H, ∀X ∈ H, ‖X‖H < δ, (3.32)

W(X) ≤ 1
2
α2‖X‖2H + γ, ∀X ∈ H, ‖X‖H > ρ. (3.33)

Then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Corollary 3.9. Assume that P(k, θ) = 0 for any k ∈ Z(1, m). If there exist constants α1, α2 : 0 <
α2 < λmin ≤ λmax < α1, ρ > 0, γ ≥ 0, and δ > d = 2‖N‖mn/(α1 − λmax) satisfying

P(k,U) ≥ 1
2
α1‖U‖2n, ‖U‖n < δ, k ∈ Z(1, m), (3.34)

P(k,U) ≤ 1
2
α2‖U‖2n + γ, ‖U‖n > ρ, k ∈ Z(1, m), (3.35)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Corollary 3.10. Assume that P(k, θ) = 0 for any k ∈ Z(1, m). If there exist constants α1 > λmax,
α2 > 0, δ > d = 2‖N‖mn/(α1 − λmax) and 1 < τ < 2 such that (3.32) holds and

W(X) ≤ 1
2
α2‖X‖τH + γ, ∀X ∈ H, ‖X‖H > ρ, (3.36)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.

Corollary 3.11. Assume that P(k, θ) = 0 for any k ∈ Z(1, m). If there exist constants α1 > λmax,
and δ > d = 2‖N‖mn/(α1 − λmax) such that (3.32) holds and

lim
‖X‖H →∞

W(X)
‖X‖H

= β <
λmin

2
, (3.37)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.
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Corollary 3.12. Assume that P(k, θ) = 0 for any k ∈ Z(1, m). If there exist α1 > λmax, and δ > d =
2‖N‖mn/(α1 − λmax) such that (3.34) holds and

lim
‖U‖n →∞

P(k,U)

‖U‖2n
<

λmin

2
, k ∈ Z(1, m), (3.38)

then BVP (2.3) and (2.4) has at least two nontrivial solutions.

At last, we will give another example.

Example 3.13. Consider the boundary value problem (3.24) and (3.25) where f(k, u) is replaced by

f(k,U) =

(
800(4 + ‖U‖2)
k(2 + ‖U‖2)2

+ 2 sin ‖U‖22
)

U. (3.39)

Clearly,

P(k,U) =
800‖U‖22

k(2 + ‖U‖2)
+
(
1 − cos ‖U‖22

)
, (3.40)

and P(k, θ) = 0. Pick α1 = 13.4, α2 = 4.8, then we have 0 < α2 < λmin ≤ λmax < α1, and

40
3

=
4

13.4 − 13.1
< d =

2‖N‖mn

α1 − λmax
<

4
13.4 − 13.2

= 20. (3.41)

Pick δ = 20 > d, ρ = 200, then for any U ∈ R
2 : ‖U‖2 < δ = 20, we can see that

P(k,U) =
800‖U‖22

k(2 + ‖U‖2)
+
(
1 − cos ‖U‖22

)
≥ 800‖U‖22

5(2 + 20)
=

80‖U‖22
11

>
α1

2
‖U‖22. (3.42)

For any U ∈ R
2 : ‖U‖2 > ρ = 200, we can get

P(k,U) =
800‖U‖22

k(2 + ‖U‖2)
+
(
1 − cos ‖U‖22

)
≤ 800‖U‖22

2 + 200
+ 2 =

80‖U‖22
202

+ 2 <
α2

2
‖U‖22 + 2. (3.43)

According to Corollary 3.9, we know that the given BVP in this example has at least two
nontrivial solutions.

Remark 3.14. When Q is negative definite, we can get similar conclusions. We do not repeat
here.
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