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This paper presents a fuzzy goal programming (FGP) procedure for solving bilevel multiobjective
linear fractional programming (BL-MOLFP) problems. It makes an extension work of Moitra
and Pal (2002) and Pal et al. (2003). In the proposed procedure, the membership functions for
the defined fuzzy goals of the decision makers (DMs) objective functions at both levels as well
as the membership functions for vector of fuzzy goals of the decision variables controlled by
first-level decision maker are developed first in the model formulation of the problem. Then a
fuzzy goal programming model to minimize the group regret of degree of satisfactions of both
the decision makers is developed to achieve the highest degree (unity) of each of the defined
membership function goals to the extent possible by minimizing their deviational variables and
thereby obtaining the most satisfactory solution for both decision makers. The method of variable
change on the under- and over-deviational variables of the membership goals associated with
the fuzzy goals of the model is introduced to solve the problem efficiently by using linear goal
programming (LGP) methodology. Illustrative numerical example is given to demonstrate the
procedure.

1. Introduction

Bi-level mathematical programming (BLMP) is identified as mathematical programming
that solves decentralized planning problems with two decision makers (DMs) in a two-
level or hierarchical organization [1]. The basic connect of the BLMP technique is that a
first-level decision maker (FLDM) (the leader) sets his goals and/or decisions and then
asks each subordinate level of the organization for their optima which are calculated in
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isolation; the second-level DM (SLDM) (the follower) decisions are then submitted and
modified by the FLDM with consideration of the overall benefit for the organization; the
process continued until a satisfactory solution is reached. In other words, although the
FLDM independently optimizes its own benefits, the decision may be affected by the reaction
of the SLDM. As a consequence, decision deadlock arises frequently and the problem of
distribution of proper decision power is encountered in most of the practical decision
situations.

Most of the developments on BLMP problems focus on bi-level linear programming
[2–5], and many others for bilevel nonlinear programming and bi-level multiobjective
programming [2, 6–11]. A bibliography of references on bi-level programming in both linear
and non-linear cases, which is updated biannually, can be found in [12].

The use of the fuzzy set theory [13] for decision problems with several conflicting
objectives was first introduced by Zimmermann [14]. Thereafter, various versions of
fuzzy programming (FP) have been investigated and widely circulated in literature. In a
hierarchical decision making context, it has been realized that each DM should have a
motivation to cooperate with other, and a minimum level of satisfaction of the DM at a
lower-level must be considered for overall benefit of the organization. The use of the concept
of membership function of fuzzy set theory to BLMP problems for satisfactory decisions
was first introduced by Lai [15] in 1996. Thereafter, Lai’s satisfactory solution concept
was extended by Shih et al. [1] and a supervised search procedure with the use of max-
min operator of Bellman and Zadeh [16] was proposed. The basic concept of these fuzzy
programming (FP) approaches is the same as it implies that the SLDM optimizes his/her
objective function, taking a goal or preference of the FLDM into consideration. In the decision
process, considering the membership functions of the fuzzy goals for the decision variables of
the FLDM, the SLDM solves an FP problem with a constraint on an overall satisfactory degree
of the FLDM. If the proposed solution is not satisfactory to the FLDM, the solution search
is continued by redefining the elicited membership functions until a satisfactory solution is
reached [17, 18].

The main difficulty that arises with the FP approach of Shih et al. is that there is
possibility of rejecting the solution again and again by the FLDM and reevaluation of the
problem is repeatedly needed to reach the satisfactory decision, where the objectives of
the DMs are overconflicting. Even inconsistency between the fuzzy goals of the objectives
and the decision variables may arise. This makes the solution process a lengthy one
[17, 18]. To overcome the above undesirable situation, fuzzy goal programming (FGP)
technique introduced by Mohamed [19] is extended in this article to BL-MOLFP problems
[17, 18, 20].

To formulate the FGP Model of the BL-MOLFP problem, the fuzzy goals of the
objectives are determined by determining individual optimal solution. The fuzzy goals are
then characterized by the associated membership functions which are transformed into fuzzy
flexible membership goals by means of introducing over- and underdeviational variables and
assigning highest membership value (unity) as aspiration level to each of them. To elicit the
membership functions of the decision vectors controlled by the FLDM, the optimal solution of
the first-level MOLFP problem is separately determined. A relaxation of the FLDM decisions
is considered for avoiding decision deadlock.

The method of variable change on the under- and overdeviational variables of the
membership goals associated with the fuzzy goals of the model is introduced to solve the
problem efficiently by using linear goal programming (LGP) methodology.
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2. Problem Formulation

Assume that there are two levels in a hierarchy structure with first-level decision maker
(FLDM) and second-level decision maker (SLDM). Let the vector of decision variables
x = (x1, x2) ∈ Rn be partitioned between the two planners. The first-level decision maker
has control over the vector x1 ∈ Rn1 and the second-level decision maker has control over the
vector x2 ∈ Rn2 , where n = n1 + n2. Furthermore, assume that

Fi(x1, x2) : Rn1 × Rn2 −→ Rmi , i = 1, 2 (2.1)

are the first-level and second-level vector objective functions, respectively. So the BL-MOLFP
problem of minimization type may be formulated as follows [21–24]:
[1st Level]

Min
x1

F1(x1, x2) = Min
x1

(
f11(x1, x2), f12(x1, x2), . . . , f1m1(x1, x2)

)
, (2.2)

where x2 solves
[2nd Level]

Min
x2

F2(x1, x2) = Min
x2

(
f21(x1, x2), f22(x1, x2), . . . , f2m2(x1, x2)

)
(2.3)

subject to

x ∈ G =

⎧
⎪⎪⎨

⎪⎪⎩
x = (x1, x2) ∈ Rn | A1x1 +A2x2

⎛

⎜⎜
⎝

≤
=

≥

⎞

⎟⎟
⎠b, x ≥ 0, b ∈ Rm

⎫
⎪⎪⎬

⎪⎪⎭
/=φ, (2.4)

where

fij(x1, x2) =
cijx + αij
dijx + βij

,

j = 1, 2, . . . , m1, i = 1 for FLDM objective functions,

j = 1, 2, . . . , m2, i = 2 for SLDM objective functions,

(2.5)

and where

(i) x1 = (x1
1, x

2
1, x

3
1, . . . , x

n1
1 ), x2 = (x1

2, x
2
2, x

3
2, . . . , x

n2
2 ),

(ii) G is the the bi-level convex constraints feasible choice set,

(iii) m1 is the number of first-level objective functions,

(iv) m2 is the number of second-level objective functions,

(v) m is the number of the constraints,

(vi) Ai: m × ni matrix, i = 1, 2,
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(vii) cij ,dij ∈ Rn,dijx + βij > 0 for all x ∈ G,

(viii) βij , αij are constants.

3. Fuzzy Goal Programming Formulation of BL-MOLFP

In BL-MOLFP problems, if an imprecise aspiration level is assigned to each of the objectives
in each level of the BL-MOLFP, then these fuzzy objectives are termed as fuzzy goals. They
are characterized by their associated membership functions by defining the tolerance limits
for achievement of their aspired levels.

3.1. Construction of Membership Functions

Since the FLDM and the SLDM both are interested of minimizing their own objective
functions over the same feasible region defined by the system of constraints (2.4), the optimal
solutions of both of them calculated in isolation can be taken as the aspiration levels of their
associated fuzzy goals.

Let (x1j
1 , x

1j
2 ; fmin

1j , j = 1, 2, . . . , m1) and (x2j
1 , x

2j
2 ; fmin

2j , j = 1, 2, . . . , m2) be the optimal
solutions of FLDM and SLDM objective functions, respectively, when calculated in isolation.
Let gij ≥ fmin

ij be the aspiration level assigned to the ijth objective fij(x1, x2) (the subscript ij
means that j = 1, 2, . . . , m1 when i = 1 for FLDM problem, and j = 1, 2, . . . , m2 when i = 2 for
SLDM problem). Also, let x∗ = (x∗1, x

∗
2), x

∗
1 = (x1∗

1 , x
2∗
1 , . . . , x

∗n1
1 ) and x∗2 = (x1∗

2 , x
2∗
2 , ..., x

∗n2
2 ), be

the optimal solution of the FLDM MOLFP problem. Then, the fuzzy goals of the decision
makers objective functions at both levels and the vector of fuzzy goals of the decision
variables controlled by first-level decision maker appear as

fij(x1, x2) � gij , i = 1, 2, j = 1, 2, . . . , mi, x1 =
∼
x∗1, (3.1)

where “�” and “=
∼

” indicate the fuzziness of the aspiration levels and are to be understood as

“essentially less than” and “essentially equal to” [14, 25].
It may be noted that the solutions (x1j

1 , x
1j
2 ), j = 1, 2, . . . , m1, x

∗ = (x∗1, x
∗
2), and

(x2j
1 , x

2j
2 ), j = 1, 2, . . . , m2 are usually different because the objectives of FLDM and the

objectives of the SLDM are conflicting in nature. Therefore, it can reasonably be assumed
that the values f�m(x�m1 , x�m2 ) ≥ fmin

ij for all � = 1, 2, m = 1, 2, . . . , mi, and ij /= �m and

all values greater than fu�m = max[fij(x�m1 , x�m2 ), i = 1, 2, j = 1, 2, . . . , mi, and ij /= �m] are
absolutely unacceptable to the objective function f�m(x1, x2). As such, fu

�m
can be considered

as the upper tolerance limit u�m of the fuzzy goal to the objective functions f�m(x1, x2). Then,
membership functions μfij (fij(x1, x2)) for the ijth fuzzy goal can be formulated as in Figure 1:

μfij
(
fij(x1, x2)

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if fij ≤ gij ,
uij − fij(x1, x2)

uij − gij
, if gij ≤ fij ≤ uij , i = 1, 2, j = 1, 2, . . . , mi,

0, if fij ≥ uij .

(3.2)
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μfij (fij(x1, x2))

fij (x1, x2)

gij
uij

Figure 1: Membership function of minimization-type objective functions.

Following Lai [15] and Shih et al. [1], we include the membership functions for
the fuzzy goals of the decision variables controlled by first-level decision maker, x1 =
(x1

1, x
2
1, x

3
1, . . . , x

n1
1 ), in the proposed model in this article. To build these membership

functions, the optimal solution x∗ = (x∗1, x
∗
2) of the first-level MOLFP problem should be

determined first. Following Pal et al. approach [26], the optimal solution x∗ = (x∗1, x
∗
2) could

be obtained. It may be noted that any other approaches for solving MOLFP problems can be
used in solving the first-level MOLFP problem [27–31]. In Section 4, the FGP model of Pal et
al. [26], for solving the first-level MOLFP problem, is presented to facilitate the achievement
of x∗ = (x∗1, x

∗
2).

Let tLk and tRk , k = 1, 2, . . . , n1 be the maximum negative and positive tolerance
values on the decision vector considered by the FLDM. The tolerance tLk and tRk are not
necessarily same. The linear membership functions (Figure 2) for the decision vector x1 =
(x1

1, x
2
1, x

3
1, . . . , x

n1
1 ) can be formulated as

μxk1

(
xk1

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk1 −
(
xk

∗

1 − t
L
k

)

tL
k

, if xk
∗

1 − t
L
k ≤ x

k
1 ≤ x

k∗

1 ,
(
xk

∗

1 + tR
k

)
− xk1

tR
k

, if xk
∗

1 ≤ x
k
1 ≤ x

k∗

1 + tRk , k = 1, 2, . . . , n1,

0, if otherwise.

(3.3)

It may be noted that the decision maker may desire to shift the range of xk1 . Following
Pramanik and Roy [20], this shift can be achieved.

Now, in a fuzzy decision environment, the achievement of the objective goals to their
aspired levels to the extent possible is actually represented by the possible achievement of
their respective membership values to the highest degree. Regarding this aspect of fuzzy
programming problems, a goal programming approach seems to be most appropriate for
the solution of the first-level multiobjective linear fractional programming problem and the
bi-level multi-objective linear fractional programming problems [26].
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μxk1 (xk1 )

xk1

xk
∗

1 − t
L
k

xk
∗

1 xk
∗

1 + tR
k

Figure 2: Membership function of decision vectors xk1 .

3.2. Fuzzy Goal Programming Approach

In fuzzy programming approaches, the highest degree of membership function is 1. So, as in
[19], for the defined membership functions in (3.2) and (3.3), the flexible membership goals
with the aspired level 1 can be presented as

μfij
(
fij(x1, x2)

)
+ d−ij − d

+
ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

μxk1

(
xk1

)
+ d−k − d

+
k = 1, k = 1, 2, . . . , n1,

(3.4)

or equivalently as

uij − fij(x1, x2)
uij − gij

+ d−ij − d
+
ij = 1, i = 1, 2, j = 1, 2, . . . , mi,

xk1 −
(
xk

∗

1 − t
L
k

)

tL
k

+ dL−k − d
L+
k = 1, k = 1, 2, . . . , n1,

(
xk

∗

1 + tRk
)
− xk1

tR
k

+ dR−k − d
R+
k = 1, k = 1, 2, . . . , n1,

(3.5)

where d−
k

= (dL−
k
, dR−

k
), d+

k
= (dL+

k
, dR+

k
), and d−ij , d

L−
k
, dR−

k
, d+

ij , d
L+
k
, dR+

k
≥ 0 with d−ij × d

+
ij =

0, dL−
k
×dL+

k
= 0, and dR−

k
×dR+

k
= 0 represent the under- and overdeviations, respectively, from

the aspired levels.
In conventional GP, the under- and/or overdeviational variables are included in the

achievement function for minimizing them and that depend upon the type of the objective
functions to be optimized. In this approach, the over-deviational variables for the fuzzy goals
of objective functions, d+

ij , and the over-deviational and the underdeviational variables for the
fuzzy goals of the decision variables, dL−

k
, dL+

k
, dR−

k
, and dR+

k
, are required to be minimized to



International Journal of Mathematics and Mathematical Sciences 7

achieve the aspired levels of the fuzzy goals. It may be noted that any under-deviation from
a fuzzy goal indicates the full achievement of the membership value [26].

It can be easily realized that the membership goals in (3.2) are inherently nonlinear in
nature and this may create computational difficulties in the solution process. To avoid such
problems, a linearization procedure is presented in the following section.

The FGP approach to multiobjective programming problems presented by Mohamed
[19] is extended here to formulate the FGP approach to bi-level multi-objective linear
fractional programming. Therefore, considering the goal achievement problem of the goals
at the same priority level, the equivalent fuzzy bilevel multiobjective linear fractional goal
programming model of the problem can be presented as

min Z =
m1∑

j=1

w+
1jd

+
1j +

n1∑

k=1

[
wL
k

(
dL+k + dL−k

)
+wR

k

(
dR+k + dR−k

)]
+

m2∑

j=1

w+
2jd

+
2j

subject to μf1j

(
f1j(x1, x2)

)
+ d−1j − d

+
2j = 1, j = 1, 2, . . . , m1,

μf2j

(
f2j(x1, x2)

)
+ d−2j − d

+
2j = 1, j = 1, 2, . . . , m2,

μxk1

(
xk1

)
+ d−k − d

+
k = I, k = 1, 2, . . . , n1,

A1x1 +A2x2

⎛

⎜⎜
⎝

≤
=

≥

⎞

⎟⎟
⎠b, x ≥ 0,

d−ij , d
+
ij ≥ 0, with d−ij × d

+
ij = 0,

d−k , d
+
k ≥ 0, with d−k × d

+
k = 0,

(3.6)

and the above problem can be rewritten as

min Z =
m1∑

j=1

w+
1jd

+
1j +

n1∑

k=1

[
wL
k

(
dL+k + dL−k

)
+wR

k

(
dR+k + dR−k

)]
+

m2∑

j=1

w+
2jd

+
2j

subject to
u1j − f1j(x1, x2)

u1j − g1j
+ d−1j − d

+
1j = 1, j = 1, 2, . . . , m1,

u2j − f2j(x1, x2)
u2j − g2j

+ d−2j − d
+
2j = 1, j = 1, 2, . . . , m2,

xk1 −
(
xk

∗

1 − t
L
k

)

tLk
+ dL−k − d

L+
k = 1, k = 1, 2, . . . , n1,

(
xk

∗

1 + tR
k

)
− xk1

tR
k

+ dR−k − d
R+
k = 1, k = 1, 2, . . . , n1,
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A1x1 +A2x2

⎛

⎜
⎜
⎝

≤
=

≥

⎞

⎟
⎟
⎠b, x ≥ 0,

d−ij , d
+
ij ≥ 0, with d−ij × d

+
ij = 0, i = 1, 2, j = 1, 2, . . . , mi,

dL−k , dL+k ≥ 0, with dL−k × d
L+
k = 0, k = 1, 2, . . . , n1,

dR−k , dR+k ≥ 0, with dR−k × d
R+
k = 0, k = 1, 2, . . . , n1.

(3.7)

3.3. Linearization of Membership Goals

Following Pal et al. [26], the ijth membership goal in (3.5) can be presented as

Lijuij − Lijfij(x1, x2) + d−ij − d
+
ij = 1, where Lij =

1
uij − gij

. (3.8)

Introducing the expression of fij(x1, x2) from (2.5), the above goal can be presented as

Lij uij − Lij
cijx + αij
dijx + βij

+ d−ij − d
+
ij = 1

=⇒ Lijuij
(
dijx + βij

)
− Lij

(
cijx + αij

)
+ d−ij

(
dijx + βij

)
− d+

ij

(
dijx + βij

)
=
(
dijx + βij

)

=⇒ −Lij
(
cijx + αij

)
+ d−ij

(
dijx + βij

)
− d+

ij

(
dijx + βij

)
=
[
1 − Lijuij

](
dijx + βij

)

=⇒ −Lij
(
cijx+αij

)
+d−ij

(
dijx+βij

)
−d+

ij

(
dijx + βij

)
= L/ij

(
dijx + βij

)
, where L/ij = 1 − Lijuij

=⇒
(
−Lijcij − L/ijdij

)
x + d−ij

(
dijx + βij

)
− d+

ij

(
dijx + βij

)
= Lijαij + L/ijβij

=⇒ Cijx + d−ij
(
dijx + βij

)
− d+

ij

(
dijx + βij

)
= Gij ,

(3.9)

where

Cij = −Lijcij − L/ijdij , Gij = Lijαij + L/ijβij . (3.10)

Now, using the method of variable change as presented by Kornbluth and Steuer [29],
Pal et al. [26], and Steuer [32], the goal expression in (3.9) can be linearized as follows.

Let D−ij = d−ij(dijx + βij), and D+
ij = d+

ij(dijx + βij); the linear form of the expression in
(3.9) is obtained as

Cijx +D−ij −D
+
ij = Gij (3.11)

with D−ij , D
+
ij ≥ 0 and D−ij ×D

+
ij = 0 since d−ij , d

+
ij ≥ 0 and dijx + βij > 0.
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Now, in making decision, minimization of d+
ij means minimization of D+

ij = d+
ij(dijx +

βij), which is also a non-linear one.
It may be noted that when a membership goal is fully achieved, d+

ij = 0 and when its
achievement is zero, d+

ij = 1 are found in the solution [26]. So, involvement of d+
ij ≤ 1 in the

solution leads to impose the following constraint to the model of the problem:

D+
ij

dijx + βij
≤ 1, that is,−dijx +D+

ij ≤ βij . (3.12)

Here, on the basis of the previous discussion, it may be pointed out that any such
constraint corresponding to d−ij does not arise in the model formulation [26].

Therefore, under the framework of minsum GP, the equivalent proposed FGP model of
problem (3.7) becomes

min Z =
m1∑

j=1

w+
1jD

+
1j +

n1∑

k=1

[
wL
k

(
dL+k + dL−k

)
+wR

k

(
dR+k + dR−k

)]
+

m2∑

j=1

w+
2jD

+
2j

subject to C1jx +D−1j −D
+
1j = G1j , j = 1, 2, . . . , m1,

C2jx +D−2j −D
+
2j = G2j , j = 1, 2, . . . , m2,

xk1 −
(
xk

∗

1 − t
L
k

)

tLk
+ dL−k − d

L+
k = 1, k = 1, 2, . . . , n1,

(
xk

∗

1 + tR
k

)
− xk1

tRk
+ dR−k − d

R+
k = 1, k = 1, 2, . . . , n1,

− dijx +D+
ij ≤ βij , i = 1, 2, j = 1, 2, . . . , mi,

A1x1 +A2x2

⎛

⎜⎜
⎝

≤
=

≥

⎞

⎟⎟
⎠b, x ≥ 0,

D−ij , D
+
ij ≥ 0, i = 1, 2, j = 1, 2, . . . , mi,

dL−k , dL+k ≥ 0 with dL−k × d
L+
k = 0, k = 1, 2, . . . , n1,

dR−k , dR+k ≥ 0, with dR−k × d
R+
k = 0, k = 1, 2, . . . , n1,

(3.13)

where Z represents the fuzzy achievement function consisting of the weighted over-
deviational variables D+

ij of the fuzzy goals gij and the underdeviational and the over-
deviational variables dL−

k
, dR−

k
, dL+

k
, and dR+

k
, k = 1, 2, . . . , n1 for the fuzzy goals of the decision

variables x1
1, x

2
1, x

3
1, . . . , x

n1
1 , where the numerical weights w+

ij , w
L
k , and wR

k represent the
relative importance of achieving the aspired levels of the respective fuzzy goals subject to
the constraints set in the decision situation.
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To assess the relative importance of the fuzzy goals properly, the weighting scheme
suggested by Mohamed [19] can be used to assign the values to w+

ij and w−1 . In the present
formulation, the values of w−ij and w−1 are determined as

w+
ij =

1
uij − gij

, i = 1, 2, j = 1, 2, . . . , mi,

wL
k =

1
tLk
, wR

k =
1
tRk
, k = 1, 2, . . . , n1,

(3.14)

The FGP model (3.13) provides the most satisfactory decision for both the FLDM and
the SLDM by achieving the aspired levels of the membership goals to the extent possible in
the decision environment. The solution procedure is straightforward and illustrated via the
following example.

4. The FGP Model for MOLFP Problems

In this section, the FGP model of Pal et al. [26], for solving the first-level MOLFP problem, is
presented here to facilitate the achievement of x∗ = (x∗1, x

∗
2). This solution is used to elicit the

membership functions of the decision vectors x1 = (x1
1, x

2
1, x

3
1, . . . , x

n1
1 ), that included in the

FGP approach for solving BL-MOLFP problems proposed in this article.
The first-level MOLFP problem is

Min F1(x1, x2) = Min
(
f11(x1, x2), f12(x1, x2), . . . , f1m1(x1, x2)

)

subject to x ∈ G =

⎧
⎪⎪⎨

⎪⎪⎩
x = (x1, x2) ∈ Rn | A1x1 +A2x2

⎛

⎜⎜
⎝

≤
=

≥

⎞

⎟⎟
⎠b, x ≥ 0, b ∈ Rm

⎫
⎪⎪⎬

⎪⎪⎭
/=φ.

(4.1)

And the FGP model of Pal et al. [26] is

min Z =
m1∑

j=1

w+
1j D

+
1j

subject to C1jx +D−1j −D
+
1j = G1j , j = 1, 2, . . . , m1,

− d1jx +D+
1j ≤ β1j , j = 1, 2, . . . , m1,

A1x1 +A2x2

⎛

⎜⎜
⎝

≤
=

≥

⎞

⎟⎟
⎠b, x ≥ 0,

D−1j , D
+
1j ≥ 0, j = 1, 2, . . . , mi.

(4.2)
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5. The FGP Algorithm for BL-MOLFP Problems

Following the above discussion, we can now construct the proposed FGP algorithm for
solving the BL-MOLFP problems.

Step 1. Calculate the individual minimum and maximum of each objective function in the
two levels under the given constraints.

Step 2. Set the goals and the upper tolerance limits for all the objective functions in the two
levels.

Step 3. Elicit the membership functions μf1j (f1j(x1, x2)), j = 1, 2, . . . , m1 for each of the
objective functions in the first level.

Step 4. Formulate the Model (4.2) for the first level MOLFP problem.

Step 5. Solve the Model (4.2) to get x∗ = (x∗1, x
∗
2).

Step 6. Set the maximum negative and positive tolerance values on the decision vector x1 =
(x1

1, x
2
1, x

3
1, . . . , x

n1
1 ), tLk and tRk , k = 1, 2, . . . , n1.

Step 7. Elicit the membership functions μxk1 (x
k
1 ) for decision vector x1 = (x1

1, x
2
1, x

3
1, . . . , x

n1
1 ).

Step 8. Elicit the membership functions μf2j (f2j(x1, x2)), j = 1, 2, . . . , m2 for each of the
objective functions in the second level.

Step 9. Formulate the Model (3.13) for the BL-MOLFP problem.

Step 10. Solve the Model (3.13) to get the satisfactory solution of the BL-MOLFP problem.

6. Numerical Example

To demonstrate proposed FGP procedure, consider the following bi-level multi-objective
linear fractional programming problem:
[1st Level]

Min
x1

(
f11 =

x1 + x2 − 1
x1 − 2x2 + 1

, f12 =
2 − 2x1 − x2

x2 + 4

)
, (6.1)

where x2 solves
[2nd Level]

Min
x2

(
f21 =

−x1 + 4
−x2 + 3

, f22 =
x1 − 4
x2 + 1

, f23 = x1 − x2

)
(6.2)
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Table 1: Coefficients αij , βij , cij , and dij for the first- and second-level objectives of the BL-MOLFP problem.

f11 f12 f21 f22 f23

αij −1 2 4 −4 0
βij 7 4 3 1 1
cij (−1, 0) (−1, 0) (−1, 0) (1, 0) (−1, 0)
dij (0,−1) (0,−1) (0,−1) (0, 1) (0,−1)
minG fij −0.143 −1.61 −0.308 −4 0
maxG fij 0.51 0.5 1.3333 0.2667 4
gij 0 −0.5 −0.3 −4 0
uij 0.5 0.5 1.3 0 4
Lij 2 1 0.625 0.25 0.25
L/ij 0 0.5 0.1875 1 0

Cij (2, 2) (0.5, 0.5) (0.625, 0.1875) (−0.25,−1) (−0.25, 0.25)
Gij −2 4 3.0625 0 0
wij 2 1 1 0.25 0.25

subject to

−x1 + 4x2 ≤ 0,

x1 −
1
2
x2 ≤ 4,

x1, x2 ≥ 0.

(6.3)

Table 1 summarizes the coefficients αij , βij , cij , and dij for the first- and second-level
objectives of the BL-MOLFP problem. Also, the optimal minimum and maximum separate
solutions of these objectives subjected to given constraints. The decided aspiration levels and
upper tolerance limits to the objective functions are also mentioned. The values Lij , L

/
ij ,Cij ,Gij

and the weights wij are calculated and also contained in the table.
Following the procedure, the FGP model for the first-level multi-objective linear

fractional programming problem is obtained as

min Z = 2D+
11 +D

+
12

subject to − 2x1 − 2x2 +D−11 −D
+
11 = −2,

0.5x1 + 0.5x2 +D−11 −D
+
11 = 4,

− x1 + 2x2 +D+
11 ≤ 7,

− x2 +D+
12 ≤ 4,

− x1 + 4x2 ≤ 0,

x1 −
1
2
x2 ≤ 4,

x1, x2 ≥ 0, D−11, D
+
11, D

−
12, D

+
12 ≥ 0.

(6.4)
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Using the LP-ILP linear and integer programming software program, version 1 for
windows, the optimal solution of the problem is (x1, x2) = (0.8, 0.2). Let the first level DM
decide x∗1 = 0.8 with the negative and positive tolerance tR1 = tL1 = 0.4.

Then, following the procedure, the proposed FGP model for the bi-level multi-
objective linear fractional programming problem is obtained as

min Z = 2D+
11 + D+

12 +D
+
21 + 0.25D+

22 + 0.25D+
23 + 2.5

(
dL−1 + dL+1

)
+ 2.5

(
dR−1 + dR+1

)

subject to − 2x1 − 2x2 +D−11 −D
+
11 = −2,

0.5x1 + 0.5x2 +D−11 −D
+
11 = 4,

x1 +D−21 −D
+
21 = 4,

− 0.25x1 − x2 +D−22 −D
+
22 = 0,

− 0.25x1 + 0.25x2 +D−23 −D
+
23 = 0,

− x1 + 2x2 +D+
11 ≤ 7,

− x2 +D+
12 ≤ 4,

x2 +D+
21 ≤ 3,

− x2 +D+
22 ≤ 1,

D+
23 ≤ 1,

2.5x1 + dL−1 − d
L+
1 = 2,

2.5x1 − dR−1 + dR+1 = 2,

− x1 + 4x2 ≤ 0,

x1 −
1
2
x2 ≤ 4,

x1, x2 ≥ 0,

dL−1 , dL+1 , dR−1 , dR+1 ≥ 0,

D−11, D
+
11, D

−
12, D

+
12, D

−
21, D

+
21, D

−
22, D

+
22, D

−
23, D

+
23 ≥ 0.

(6.5)

The optimal satisfactory of the problem is (x1, x2) = (0.8, 0.2) with objective functions
values f11 = 0, f12 = 0.048, f21 = 1.143, f22 = −2.667, and f23 = 0.6, with membership functions
values μ11 = 1, μ12 = 0.45, μ21 = 0.1, μ22 = 0.667, and μ23 = 0.1.

7. Conclusion

This paper presents a fuzzy goal programming procedure for solving bi-level multi-objective
linear fractional programming (BL-MOLFP) problems. A fuzzy goal programming model
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to minimize the group regret of degree of satisfactions of both the decision makers is
developed to achieve the highest degree (unity) of each of the defined membership
function goals to the extent possible by minimizing their deviational variables and thereby
obtaining the most satisfactory solution for both decision makers. The main advantage of
the proposed fuzzy goal programming procedure is that the possibility of rejecting the
solution again and again by the FLDM and reevaluation of the problem repeatedly, by
redefining the elicited membership functions, needed to reach the satisfactory decision
does not arise. A linearization process of solving BL-MOLFP problems via minsum
FGP is investigated. An illustrative numerical example is given to demonstrate the
procedure.
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