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1. Introduction

Qualitative behaviors of first-order delay differential equations with piecewise constant
arguments are the subject of many investigations (see, e.g., [1–19]), while those of higher-
order equations are not.

However, there are reasons for studying higher-order equations with piecewise
constant arguments. Indeed, as mentioned in [10], a potential application of these equations
is in the stabilization of hybrid control systems with feedback delay, where a hybrid system is
onewith a continuous plant andwith a discrete (sampled) controller. As an example, suppose
that a moving particle with time variable mass r(t) is subjected to a restoring controller
−φ(x[t])which acts at sampled time [t]. Then Newton’s second law asserts that

(
r(t)x′(t)

)′ = −φ(x[t]). (1.1)

Since this equation is “similar” to the harmonic oscillator equation

(
r(t)x′(t)

)′ + κx(t) = 0, (1.2)
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we expect that the well-known qualitative behavior of the later equation may also be found
in the former equation, provided appropriate conditions on r(t) and φ(x) are imposed.

In this paper we study a slightly more general second-order delay differential equation
with piecewise constant argument:

(
r(t)x′(t)

)′ + f(t, x([t])) = p(t), (1.3)

where f(t, x) is a real continuous function defined on R2 with positive integer period ω for
t; r(t) and p(t) are continuous function defined on R with period ω, r(t) > 0 for t ∈ R and∫ω
0 p(t)dt = 0.

By a solution of (1.3)wemean a function x(t)which is defined onR andwhich satisfies
the following conditions: (i) x′(t) is continuous on R, (ii) r(t)x′(t) is differentiable at each
point t ∈ R, with the possible exception of the points [t] ∈ R where one-sided derivatives
exist, and (iii) substitution of x(t) into (1.3) leads to an identity on each interval [n, n+ 1) ⊂ R
with integral endpoints.

In this note, existence and uniqueness criteria for periodic solutions of (1.3) will be
established. For this purpose, we will make use of a continuation theorem of Mawhin. Let X
and Y be two Banach spaces and L : DomL ⊂ X → Y is a linear mapping and N : X → Y
a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dim KerL = codimImL < +∞, and ImL is closed in Y. If L is a Fredholm mapping of index
zero, there exist continuous projectors P : X → X and Q : Y → Y such that ImP = KerL
and ImL = KerQ = Im(I −Q). It follows that L|DomL∩KerP : (I − P)X → ImL has an inverse
which will be denoted by KP . If Ω is an open and bounded subset of X, the mapping N will
be called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact. Since
ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Theorem A (Mawhin’s continuation theorem [18]). Let L be a Fredholm mapping of index zero,
and letN be L-compact on Ω. Suppose that

(i) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx /=λNx;

(ii) for each x ∈ ∂Ω ∩ KerL, QNx/= 0 and deg(JQN,Ω ∩ Ker, 0)/= 0.

Then the equation Lx = Nx has at least one solution in Ω ∩ domL.

2. Existence and Uniqueness Criteria

Our main results of this paper are as follows.

Theorem 2.1. Suppose that there exist constants D > 0 and δ � 0 such that

(i) f(t, x) sgn x > 0 for t ∈ R and |x| > D,

(ii) limx→−∞max0≤t≤ω(f(t, x)/x) ≤ δ (or limx→+∞max0≤t≤ω(f(t, x)/x) ≤ δ).

If ω2δ(max0≤t≤ω(1/r(t))) < 1, then (1.3) has an ω-periodic solution. Furthermore, the ω-periodic
solution is unique if in addition one has the following.

(iii) f(t, x) is strictly monotonous in x and there exists nonnegative constant b <
(4/ω2)min0≤t≤ωr(t) such that

∣∣f(t, x1) − f(t, x2)
∣∣ ≤ b|x1 − x2|, (t, x1), (t, x2) ∈ R2. (2.1)



International Journal of Mathematics and Mathematical Sciences 3

Theorem 2.2. Suppose that there exist constants D > 0 and δ � 0 such that

(i′) f(t, x) sgn x < 0 for t ∈ R and |x| > D,

(ii′) limx→−∞max0≤t≤ω(f(t, x)/x) � −δ (or limx→+∞max0≤t≤ω(f(t, x)/x) � −δ).
If ω2δ(max0≤t≤ω(1/r(t))) < 1, then (1.3) has an ω-periodic solution. Furthermore, the ω-periodic
solution is unique if in addition one has the following.

(iii) f(t, x) is strictly monotonous in x and there exists nonnegative constant b <
(4/ω2)min0≤t≤ωr(t) such that (2.1) holds.

We only give the proof of Theorem 2.1, as Theorem 2.2 can be proved similarly.
First we make the simple observation that x(t) is an ω-periodic solution of the

following equation:

r(t)x′(t) = r(0)x′(0) −
∫ t

0

(
f(s, x([s])) − p(s)

)
ds, (2.2)

if, and only if, x(t) is an ω-periodic solution of (1.3). Next, let Xω be the Banach space
of all real ω-periodic continuously differentiable functions of the form x = x(t) which is
defined on R and endowed with the usual linear structure as well as the norm ‖x‖1 =∑1

i=0 max0≤i≤ω|x(i)(t)|. Let Yω be the Banach space of all real continuous functions of the form
y = αt + h(t) such that y(0) = 0, where α ∈ R and h(t) ∈ Xω, and endowed with the usual
linear structure as well as the norm ‖y‖2 = |α| + ‖h‖1. Let the zero element of Xω and Yω be
denoted by θ1 and θ2 respectively.

Define the mappings L : Xω → Yω andN : Xω → Yω, respectively, by

Lx(t) = r(t)x′(t) − r(0)x′(0), (2.3)

Nx(t) = −
∫ t

0

(
f(s, x([s])) − p(s)

)
ds. (2.4)

Let

h(t) = −
∫ t

0

(
f(s, x([s])) − p(s)

)
ds +

t

ω

∫ω

0
f(s, x([s]))ds. (2.5)

Since h ∈ Xω and h(0) = 0, N is a well-defined operator from Xω to Yω. Let us define P :
Xω → Xω and Q : Yω → Yω, respectively, by

Px(t) = x(0), n ∈ Z (2.6)

for x = x(t) ∈ Xω and

Qy(t) = αt (2.7)

for y(t) = αt + h(t) ∈ Yω.



4 International Journal of Mathematics and Mathematical Sciences

Lemma 2.3. Let the mapping L be defined by (2.3). Then

KerL = R. (2.8)

Proof. It suffices to show that if x(t) is a real ω-periodic continuously differentiable function
which satisfies

r(t)x′(t) = r(0)x′(0), t ∈ R, (2.9)

then x(t) is a constant function. To see this, note that for such a function x = x(t),

x′(t) =
r(0)x′(0)

r(t)
, t ∈ R. (2.10)

Hence by integrating both sides of the above equality from 0 to t, we see that

x(t) = x(0) + r(0)x′(0)
∫ t

0

ds

r(s)
, t ∈ R. (2.11)

Since r(t) is positive, continuous, and periodic,

∫∞

0

ds

r(s)
= ∞. (2.12)

Since x(t) is bounded, we may infer from (2.11) that x′(0) = 0. But then (2.9) implies x′(t) = 0
for t ∈ R. The proof is complete.

Lemma 2.4. Let the mapping L be defined by (2.3). Then

ImL =
{
y ∈ Xω | y(0) = 0

} ⊂ Yω. (2.13)

Proof. It suffices to show that for each y = y(t) ∈ Xω that satisfies y(0) = 0, there is a x =
x(t) ∈ Xω such that

y(t) = r(t)x′(t) − r(0)x′(0), t ≥ 0. (2.14)

But this is relatively easy, since we may let

α =
1

∫ω
0 (ds/r(s))

, (2.15)

x(t) =
∫ t

0

y(s)
r(s)

ds − α

∫ω

0

y(s)
r(s)

ds

∫ t

0

ds

r(s)
, t ≥ 0. (2.16)

Then it may easily be checked that (2.14) holds. The proof is complete.
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Lemma 2.5. The mapping L defined by (2.3) is a Fredholm mapping of index zero.

Indeed, from Lemmas 2.3 and 2.4 and the definition of Yω,dim KerL = codim ImL =
1 < +∞. From (2.13), we see that ImL is closed in Yω. Hence L is a Fredholm mapping of
index zero.

Lemma 2.6. Let the mapping L, P, and Q be defined by (2.3), (2.6), and (2.7), respectively. Then
ImP = KerL and ImL = Ker Q.

Indeed, from Lemmas 2.3 and 2.4 and defining conditions (2.6) and (2.7), it is easy to
see that ImP = KerL and ImL = Ker Q.

Lemma 2.7. Let L and N be defined by (2.3) and (2.4), respectively. Suppose that Ω is an open and
bounded subset of Xω. ThenN is L-compact on Ω.

Proof. It is easy to see that for any x ∈ Ω,

QNx(t) = − t

ω

∫ω

0
f(s, x([s]))ds, (2.17)

so that

‖QNx‖2 =
∣∣∣∣
1
ω

∫ω

0
f(s, x([s]))ds

∣∣∣∣, (2.18)

(I −Q)Nx(t) = −
∫ t

0

(
f(s, x([s])) − p(s)

)
ds +

t

ω

∫ω

0
f(s, x([s]))ds, t ≥ 0. (2.19)

These lead us to

KP (I −Q)Nx(t) = −
∫ t

0

1
r(v)

dv

∫v

0

(
f(s, x([s])) − p(s)

)
ds

+ α

(∫ω

0

dv

r(v)

∫v

0

(
f(s, x([s])) − p(s)

)
ds

)∫ t

0

1
r(v)

dv

+
1
ω

∫ t

0

v

r(v)
dv

∫ω

0
f(s, x([s]))ds

− α

ω

(∫ω

0

vdv

r(v)

∫ω

0
f(s, x([s]))ds

)∫ t

0

1
r(v)

dv,

(2.20)

where α is defined by (2.15). By (2.18), we see that QN(Ω) is bounded. Noting that (2.7)
holds and N is a completely continuous mapping, by means of the Arzela-Ascoli theorem

we know thatKP (I −Q)N(Ω) is relatively compact. ThusN is L-compact on Ω. The proof is
complete.
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Lemma 2.8. Suppose that g(t) is a real, bounded and continuous function on [a, b) and limx→ b−g(t)
exists. Then there is a point ξ ∈ (a, b) such that

∫b

a

g(s)ds = g(ξ)(b − a). (2.21)

The above result is only a slight extension of the integral mean value theorem and is
easily proved.

Lemma 2.9. Suppose that condition (i) in Theorem 2.1 holds. Suppose further that x(t) ∈ Xω satisfies

∫ω

0
f(s, x([s]))ds = 0. (2.22)

Then there is t1 ∈ [0, ω] such that |x(t1)| ≤ D.

Proof. From (2.22) and Lemma 2.8, we have ξi ∈ (i − 1, i) for i = 1, . . . , ω such that

ω∑

i=1

f(ξi, x(i − 1)) =
ω∑

i=1

∫ i

i−1
f(s, x([s]))ds

∫ω

0
f(s, x([s]))ds = 0. (2.23)

In case ω = 1, from the condition (i) in Theorem 2.1 and (2.23), we know that |x(0)| ≤ D.
Suppose ω ≥ 2. Our assertion is true if one of x(0), x(1), . . . , x(ω − 1) has absolute value
less than or equal to D. Otherwise, there should be x(η1) and x(η2) among x(0), x(1), . . .
and x(ω − 1) such that x(η1) > D and x(η2) < −D. Since x(t) is continuous, in view of the
intermediate value theorem, there is x(η3) such that −D ≤ x(η3) ≤ D, (here η1 > η3 > η2 or
η2 > η3 > η1). Since x(t) is periodic, there is t1 ∈ [0, ω] such that |x(t1)| = |x(η3)| ≤ D. The
proof is complete.

Now, we consider that following equation:

r(t)x′(t) − r(0)x′(0) = −λ
∫ t

0

(
f(s, x([s])) − p(s)

)
ds, (2.24)

where λ ∈ (0, 1).

Lemma 2.10. Suppose that conditions (i) and (ii) of Theorem 2.1 hold. If ω2δ(max0≤t≤ω(1/r(t))) <
1, then there are positive constants D0 and D1 such that for any ω-periodic solution x(t) of (2.24),

∣∣∣x(i)(t)
∣∣∣ ≤ Di, t ∈ [0, ω]; i = 0, 1. (2.25)

Proof. Let x(t) be a ω-periodic solution of (2.24). By (2.24) and our assumption that∫ω
0 p(s)ds = 0, we have

∫ω

0
f(s, x([s]))ds = 0. (2.26)
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By Lemma 2.9, there is t1 ∈ [0, ω] such that

|x(t1)| ≤ D. (2.27)

Since x(t) and x′(t) are with period ω, thus for any t ∈ [t1, t1 +ω],we have

x(t) = x(t1) +
∫ t

t1

x′(s)ds,

x(t) = x(t1 +ω) +
∫ t

t1+ω
x′(s)ds = x(t1) +

∫ t

t1+ω
x′(s)ds.

(2.28)

From (2.28), we see that for any t ∈ [t1, t1 +ω],

|x(t)| ≤ |x(t1)| + 1
2

∫ t1+ω

t1

∣∣x′(s)
∣∣ds = |x(t1)| + 1

2

∫ω

0

∣∣x′(s)
∣∣ds. (2.29)

It is easy to see from (2.27) and (2.29) that for any t ∈ [0, ω]

|x(t)| ≤ |x(t1)| + 1
2

∫ω

0

∣∣x′(s)
∣∣ds ≤ D +

1
2

∫ω

0

∣∣x′(s)
∣∣ds. (2.30)

In view of the condition ω2δ(max0≤t≤ω(1/r(t))) < 1, we know that there is a positive number
ε such that

η1 := ω2(δ + ε)
(
max
0≤t≤ω

1
r(t)

)
< 1. (2.31)

From condition (ii), we see that there is a ρ > D such that for t ∈ R and x < −ρ,

f(t, x)
x

< δ + ε. (2.32)

Let

E1 =
{
t | t ∈ [0, ω], x([t]) < −ρ}, (2.33)

E2 =
{
t | t ∈ [0, ω], |x([t])| ≤ ρ

}
, (2.34)

E3 = [0, ω] \ (E1 ∪ E2), (2.35)

M0 = max
0≤t≤ω,|x|≤ρ

∣∣f(t, x)
∣∣. (2.36)

By (2.32) and (2.33), we have

∫

E1

∣∣f(s, x([s]))
∣∣ds ≤ (δ + ε)

∫

E1

|x([s])|ds ≤ (δ + ε)ωmax
0≤t≤ω

|x(t)|. (2.37)
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From (2.34) and (2.36), we have

∫

E2

∣
∣f(s, x([s]))

∣
∣ds ≤ ωM0. (2.38)

In view of condition (i), (2.26), (2.37), and (2.38), we get

∫

E3

∣
∣f(s, x([s]))

∣
∣ds =

∫

E3

f(s, x([s]))ds

= −
∫

E1

f(s, x([s]))ds −
∫

E2

f(s, x([s]))ds

≤
∫

E1

∣∣f(s, x([s]))
∣∣ds +

∫

E2

∣∣f(s, x([s]))
∣∣ds

≤ (δ + ε)ωmax
0≤t≤ω

|x(t)| +ωM0.

(2.39)

It follows from (2.37), (2.38), and (2.39) that

∫ω

0

∣∣f(s, x([s]))
∣∣ds =

∫

E1

∣∣f(s, x([s]))
∣∣ds +

∫

E2

∣∣f(s, x([s]))
∣∣ds +

∫

E3

∣∣f(s, x([s]))
∣∣ds

≤ 2(δ + ε)ωmax
0≤t≤ω

|x(t)| + 2ωM0.

(2.40)

Since x(0) = x(ω), thus there is a t1 ∈ (0, ω) such that x′(t1) = 0. In view of (2.24) and the fact
that x′(t1) = 0, we conclude that for any t ∈ [t1, t1 +ω],

∣∣r(t)x′(t)
∣∣ =

∣∣∣∣∣
r(t1)x′(t1) − λ

∫ t

t1

(
f(s, x([s])) − p(s)

)
ds

∣∣∣∣∣

=

∣∣∣∣∣
−λ

∫ t

t1

(
f(s, x([s])) − p(s)

)
ds

∣∣∣∣∣

≤
∣∣∣∣∣

∫ t

t1

(
f(s, x([s])) − p(s)

)
ds

∣∣∣∣∣

≤
∫ t1+ω

t1

∣∣f(s, x([s]))
∣∣ds +

∫ t1+ω

t1

∣∣p(s)
∣∣ds

≤
∫ω

0

∣∣f(s, x([s]))
∣∣ds +

∫ω

0

∣∣p(s)
∣∣ds.

(2.41)
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From (2.40) and (2.41), we see that

max
0≤t≤ω

∣
∣x′(t)

∣
∣ ≤

(
max
0≤t≤ω

1
r(t)

){
2(δ + ε)ωmax

0≤t≤ω
|x(t)| + 2ωM0 + max

0≤t≤ω

∣
∣p(t)

∣
∣
}
. (2.42)

It follows from (2.30), (2.31), and (2.42) that

max
0≤t≤ω

|x(t)| ≤ D +
1
2

∫ω

0

∣
∣x′(s)

∣
∣ds

≤ ω2
(
max
0≤t≤ω

1
r(t)

)
(δ + ε)max

0≤t≤ω
|x(t)| +M1

= η1max
0≤t≤ω

|x(t)| +M1,

(2.43)

where

M1 = D +
(
max
0≤t≤ω

1
r(t)

)(
2ωM0 + max

0≤t≤ω

∣∣p(t)
∣∣
)
. (2.44)

Let D0 = M1/(1 − η1), then from (2.43) we have

max
0≤t≤ω

|x(t)| ≤ D0. (2.45)

From (2.42) and (2.45), for any t ∈ [0, ω], we have

max
0≤t≤ω

∣∣x′(t)
∣∣ ≤ D1, (2.46)

where

D1 =
(
max
0≤t≤ω

1
r(t)

){
2(δ + ε)ωD0 + 2ωM0 + max

0≤t≤ω

∣∣p(t)
∣∣
}
. (2.47)

The proof is complete.

Lemma 2.11. Suppose that condition (iii) of Theorem 2.1 is satisfied. Then (1.3) has at most one
ω-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two ω-periodic solutions of (1.3). Set z(t) = x1(t) −
x2(t). Then we have

(
r(t)z′(t)

)′ + f(t, x1([t])) − f(t, x2([t])) = 0. (2.48)
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Case (i). For all t ∈ [0, ω], z(t)/= 0. Without loss of generality, we assume that z(t) > 0, that is,
x1(t) > x2(t) for t ∈ [0, ω]. Integrating (2.48) from 0 to ω, we have

∫ω

0

[
f(t, x1(x1([t]))) − f(t, x2([t]))

]
dt = 0. (2.49)

Combining condition (iii) and x1(t) > x2(t), either

f(t, x1([t])) − f(t, x2([t])) > 0, t ∈ [0, ω] (2.50)

or

f(t, x1([t])) − f(t, x2([t])) < 0, t ∈ [0, ω] (2.51)

holds. This is contrary to (2.49).

Case (ii). There exist ξ ∈ [0, ω] such that z(ξ) = 0. As in the proof of (2.30) in Lemma 2.10, we
have

max
0≤t≤ω

|z(t)| ≤ |z(ξ)| + 1
2

∫ω

0

∣∣z′(s)
∣∣ds =

1
2

∫ω

0

∣∣z′(s)
∣∣ds. (2.52)

On the other hand, since z(0) = z(ω), thus there is a t1 ∈ (0, ω) such that z′(t1) = 0. In view of
(2.48), we conclude that for any t ∈ [t1, t1 +ω],

r(t)z′(t) = r(t1)z′(t1) −
∫ t

t1

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds,

r(t)z′(t) = r(t1 +ω)z′(t1 +ω) −
∫ t

t1+ω

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds

= r(t1)z′(t1) −
∫ t

t1+ω

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds.

(2.53)

By (2.53) and the fact that z′(t1) = 0, we have for any t ∈ [t1, t1 +ω],

r(t)z′(t) = r(t1)z′(t1) − 1
2

∫ t

t1

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds

+
1
2

∫ t1+ω

t

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds.

= −1
2

∫ t

t1

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds

+
1
2

∫ t1+ω

t

(
f(s, (x1([s]))) − f(s, x2([s]))

)
ds.

(2.54)
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It follows that for any t ∈ [t1, t1 +ω],

∣
∣r(t)z′(t)

∣
∣ ≤ 1

2

∫ t1+ω

t1

∣
∣f(s, (x1([s]))) − f(s, x2([s]))

∣
∣ds

≤ 1
2

∫ω

0

∣
∣f(s, (x1([s]))) − f(s, x2([s]))

∣
∣ds

≤ 1
2
bωmax

0≤t≤ω
|z(t)|.

(2.55)

We know that for any t ∈ [0, ω],

∣∣r(t)z′(t)
∣∣ ≤ 1

2
bωmax

0≤t≤ω
|z(t)|. (2.56)

From (2.56), we have

max
0≤t≤ω

∣∣z′(t)
∣∣ ≤ bω

2

(
max
0≤t≤ω

1
r(t)

)
max
0≤t≤ω

|z(t)|. (2.57)

By (2.52), we get

max
0≤t≤ω

|z(t)| ≤ ω

2
max
0≤t≤ω

∣∣z′(t)
∣∣. (2.58)

It is easy to see from (2.57) and (2.58) that

max
0≤t≤ω

|z(t)| ≤ bω2

4

(
max
0≤t≤ω

1
r(t)

)
max
0≤t≤ω

|z(t)|. (2.59)

By condition (iii) of Theorem 2.1, we see that (bω2/4)(max0≤t≤ω(1/r(t))) < 1. Thus (2.58)
leads us to max0≤t≤ω|z(t)| = 0,which is contrary to x1 /=x2. So (1.3) has at most oneω-periodic
solution. The proof is complete.

We now turn to the proof of Theorem 2.1. Suppose ω2δ(max0≤t≤ω(1/r(t))) < 1. Let
L,N, P, and Q be defined by (2.3), (2.4), (2.6), and (2.7), respectively. By Lemma 2.10, there
are positive constantsD0 andD1 such that for anyω-periodic solution x(t) of (2.24) such that
(2.25) holds. Set

Ω =
{
x ∈ Xω | ‖x‖1 < D

}
, (2.60)

whereD is a fixed number which satisfiesD > D +D0 +D1. It is easy to see that Ω is an open
and bounded subset of Xω. Furthermore, in view of Lemmas 2.5 and 2.7, L is a Fredholm
mapping of index zero and N is L-compact on Ω. Noting that D > D0 +D1, by Lemma 2.10,
for each λ ∈ (0, 1) and x ∈ ∂Ω, Lx /=λNx. Next note that a function x ∈ ∂Ω ∩ KerL must be
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constant: x(t) ≡ D or x(t) ≡ −D. Hence by (i) and (2.17), x(t) ≡ −D. Hence by conditions (i),
(iii) and (2.17),

QNx(t) = − t

ω

∫ω

0
f(s, x([s]))ds = − t

ω

∫ω

0
f(s, x)ds, (2.61)

soQNx/= θ2. The isomorphism J : ImQ → KerL is defined by J(tα) = α for α ∈ R and t ∈ R.
Then

JQNx = − 1
ω

∫ω

0
f(s, x)ds

1
ω

/= 0. (2.62)

In particular, we see that if x = D, then

JQNx = − 1
ω

∫ω

0
f
(
s,D

)
ds < 0, (2.63)

and if x = −D, then

JQNx = − 1
ω

∫ω

0
f
(
s,−D

)
ds > 0. (2.64)

Consider the mapping

H
(
x, μ

)
= μx +

(
1 − μ

)
JQNx, 0 ≤ μ ≤ 1. (2.65)

From (2.63) and (2.65), for each μ ∈ [0, 1] and x = D,we have

H
(
x, μ

)
= μD +

(
1 − μ

)−1
ω

∫ω

0
f
(
s,D

)
ds < 0. (2.66)

Similarly, from (2.64) and (2.65), for each μ ∈ [0, 1] and x = −D,we have

H
(
x, μ

)
= μD +

(
1 − μ

)−1
ω

∫ω

0
f
(
s,−D

)
ds < 0. (2.67)

By (2.66) and (2.67), H(x, μ) is a homotopy. This shows that

deg(JQNx,Ω ∩ KerL, θ1) = deg(−x,Ω ∩ KerL, θ1)/= 0. (2.68)

By Theorem A, we see that equation Lx = Nx has at least one solution in Ω ∩ DomL.
In other words, (1.3) has an ω-periodic solution x(t). Furthermore, if (iii) is satisfied, from
Lemma 2.11, we know that (1.3) has an ω-periodic solution only. The proof is complete.
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3. Example

Consider the equation

(
x′(t) exp

(
−2 − cos

2πt
5

))′
+
(
3 − sin

2πt
5

)
arctanx([t]) = cos

2πt
5

, (3.1)

and we can show that it has a nontrivial 5-periodic solution. Indeed, take

r(t) = exp
(
2 − cos

2πt
5

)
, p(t) = cos

2πt
5

,

f(t, x) =
1
100

(
3 − sin

2πt
5

)
arctanx.

(3.2)

We see that min0≤t≤5r(t) = e. LetD > 0 and δ = b = 1/25. Then condition (i) of Theorem 2.1 is
satisfied:

lim
x→−∞

max
0≤t≤ω

f(t, x)
x

=
1
25

. (3.3)

Let D > 0 and δ = b = 1/25. Then conditions (i), (ii) and (iii), of Theorem 2.1 are satisfied.
Note further that 52δ(max0≤t≤ω(1/r(t))) = e−1 < 1. Therefore (3.1) has exactly one 5-periodic
solution. Furthermore, it is easy to see that any solution of (3.1) must be nontrivial. We have
thus shown the existence of a unique nontrivial 5-periodic solution of (3.1).
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