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Ramanujan and Ramanujan- Selberg- Gordon-Göllnitz continued fractions. One particular eval-
uation depends on a result from Ramanujan’s famous first letter to Hardy.

Copyright q 2009 R. Masri and K. Ono. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and Statement of Results

In a recent paper [1], Holroyd et al. defined probability models whose properties are linked
to the number theoretic functions pk(n), which count the number of integer partitions of n
which do not contain k consecutive integers among its summands. Their asymptotic results
for each k lead to a nice application: the calculation of thresholds of certain two dimensional
cellular automata (see [1, Theorem 4]).

In a subsequent paper [2], Andrews explained the deep relationship between the
generating functions for pk(n) and mock theta functions and nonholomorphic modular
forms. Already in the special case of p2(n), one finds an exotic generating function whose
unusual description requires both a modular form and a Maass form. This description plays
a key role in the recent work of Bringmann and Mahlburg [3], who make great use of the rich
properties of modular forms and harmonic Maass forms to obtain asymptotic results which
improve on [1, Theorem 3] in the special case of p2(n).

It does not come as a surprise that the seminal paper of Holroyd et al. [1] has inspired
further work at the interface of number theory and probability theory. (In addition to [2, 3],
we point out the recent paper by Andrews et al. [4]) Here we investigate another family of
probability problems which also turn out to be related to the analytical properties of classical
partition generating functions.
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These problems are relatives of the following standard undergraduate problem. Toss
a fair coin repeatedly until it lands heads up. If one flips n tails before the first head, what is
the probability that n is even? Since the probability of flipping n tails before the first head is
1/2n+1, the solution is

1
2
+

1
23

+
1
25

+ · · · = 1
1 − 1/2

− 1
1 − 1/4

=
2
3
. (1.1)

Instead of continuing until the first head, consider the situation where a coin is
repeatedly flipped: once, then twice, then three times, and so on. What is the probability
of the outcome that each nth turn, where n is odd, has at least one head?

More generally, let 0 < p < 1, and let {C1, C2, . . .} be a sequence of independent events
where the probability of Cn is given by

Pp(Cn) := 1 − pn. (1.2)

For each pair of integers 0 ≤ r < t, we let

A(r, t) :=
{
set of sequences where Cn occurs if n/≡ ± r mod t

}
. (1.3)

In the case where p = 1/2, one can think of Cn as the event where at least one of n tosses
of a coin is a head. Therefore, if p = 1/2, the problem above asks for the probability of the
outcome A(0, 2).

Remark 1.1. Without loss of generality, we shall always assume that 0 ≤ r ≤ t/2. In most cases
A(r, t) is defined by two arithmetic progressions modulo t. The only exceptions are for r = 0,
and for even t when r = t/2.

It is not difficult to show that the problem of computing

Pp(A(r, t)) := “probability of A(r, t)” (1.4)

involves partitions. Indeed, if p(r, t;n) denotes the number of partitions of n whose
summands are congruent to ±r (mod t), then we shall easily see that the probabilities are
computed using the generating functions

P(r, t; q) :=
∞∑

n=0

p(r, t;n)qn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∏

n=0

1
(
1 − qtn+r

)(
1 − qtn+t−r

) , if 0 < r <
t

2
,

∞∏

n=1

1
(
1 − qtn

) , if r = 0,

∞∏

n=0

1
(
1 − qtn+t/2

) , if r =
t

2
.

(1.5)

This critical observation is the bridge to a rich area of number theory, one involving class field
theory, elliptic curves, and partitions. In these areas, modular forms play a central role, and
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so it is natural to investigate the number theoretic properties of the probabilities Pr(A(r, t))
from this perspective.

Here we explain some elegant examples of results which can be obtained in this way.
Throughout, we let τ ∈ H, the upper-half of the complex plane, and we let qτ := e2πiτ . The
Dedekind eta-function is the weight 1/2 modular form (see [5]) defined by the infinite product

η(τ) := q1/24τ

∞∏

n=1

(
1 − qnτ

)
. (1.6)

We also require some further modular forms, the so-called Siegel functions. For u and v real
numbers, let B2(u) := u2 − u + 1/6 be the second Bernoulli polynomial, let z := u − vτ , and let
qz := e2πiz. Then the Siegel function gu,v(τ) is defined by the infinite product

gu,v(τ) := −qB2(u)/2
τ e2πiv(u−1)/2

∞∏

n=1

(
1 − qzq

n
τ

)(
1 − q−1z qnτ

)
. (1.7)

These functions are weight 0 modular forms (e.g., see [5]).
For fixed integers 0 ≤ r ≤ t/2, we first establish that Pp(A(r, t)) is essentially a value of

a single quotient of modular forms.

Theorem 1.2. If 0 < p < 1 and τp := − log(p) · i/2π, then

Pp(A(r, t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(t−1)/24
τp · η

(
τp
)

η
(
tτp
) , if r = 0,

q
−(t+2)/48
τp

1 − qt/2τp

· η
(
τp
)
η
(
tτp
)

η
(
(t/2)τp

) , if r =
t

2
,

−
q
−(2t+1)/24
τp e−πi(r/t)

1 − qrτp
· η

(
τp
)

g0,−r/t
(
tτp
) , otherwise.

(1.8)

One of the main results in the work of Holroyd et al. (see [1, Theorem 2]) was the
asymptotic behavior of their probabilities as p → 1. In Section 4 we obtain the analogous
results for logPp(A(r, t)).

Theorem 1.3. As p → 1, one has

− logPp(A(r, t)) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π2

6
(
1 − p

)
(
1 − 1

t

)
, if r = 0,

t

2
,

π2

6
(
1 − p

)
(
1 − 2

t

)
, otherwise.

(1.9)
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Table 1: Values of L(p).

p Pp(A(2, 5)) Pp(A(1, 5)) L(p)
0.3 0.692 · · · 0.883 · · · 0.61607 · · ·
0.4 0.576 · · · 0.776 · · · 0.61778 · · ·
...

...
...

...
0.97 6.43 · · · × 10−14 1.03 · · · × 10−13 0.61803 · · ·
0.98 5.65 · · · × 10−21 9.11 · · · × 10−21 0.61803 · · ·
0.99 3.11 · · · × 10−42 5.03 · · · × 10−42 0.61803 · · ·

To fully appreciate the utility of Theorem 1.2, it is important to note that the relevant
values of Dedekind’s eta-function and the Siegel functions can be reformulated in terms of
the real-analytic Eisenstein series (see [5])

Eu,v(τ, s) :=
∑

(m,n)∈Z
2

(m,n)/= (0,0)

e2πi(mu+nv) ys

|mτ + n|2s
, τ = x + iy ∈ H, Re(s) > 1. (1.10)

One merely makes use of the Kronecker Limit Formulas (e.g., see [5, Part 4]). These limit
formulas are prominent in algebraic number theory for they explicitly relate such values of
modular forms to values of zeta-functions of number fields.

We give two situations where one plainly sees the utility of these observations. Firstly,
one can ask for amore precise limiting behavior than is dictated by Theorem 1.3. For example,
consider the limiting behavior of the quotient L(p) := Pp(A(2, 5))/Pp(A(1, 5)), as p → 1.
Table 1 is very suggestive.

Theorem 1.4. The following limits are true:

lim
p→ 1

Pp(A(2, 5))
Pp(A(1, 5))

=
−1 +√

5
2

,

lim
p→ 1

Pp(A(3, 8))
Pp(A(1, 8))

= −1 +√
2.

(1.11)

Remark 1.5. Notice that (1/2)(−1 +√
5) = −1 + φ, where φ is the golden ratio

φ :=
1
2

(
1 +

√
5
)
= 1.61803 . . . . (1.12)

Theorem 1.4 is a consequence of our second application which concerns the problem
of obtaining algebraic formulas for all of these ratios, not just the limiting values. As a function
of p, one may compute the ratios of these probabilities in terms of continued fractions. To ease
notation, we let

a1

b1 +

a2

b2 +

a3

b3 +··· (1.13)
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denote the continued fraction

a1

b1 +
a2

b2 +
a3

b3 + · · ·

.
(1.14)

The following continued fractions are well known:

1
1+

1
1+

1
1+···

=
1

1 +
1

1 +
1

1 + · · ·

=
−1 +√

5
2

,

1
2+

1
2+

1
2+···

=
1

2 +
1

2 +
1

2 + · · ·

= −1 +
√
2.

(1.15)

Theorem 1.4 is the limit of the following exact formulas.

Theorem 1.6. If 0 < p < 1 and τp := − log(p) · (i/2π), then one has that

Pp(A(2, 5))
Pp(A(1, 5))

=

(
1
1+

qτp
1 +

q2τp
1 +

q3τp
1 +···

)

,

Pp(A(3, 8))
Pp(A(1, 8))

=

(
1

1 + qτp +

q2τp

1 + q3τp +

q4τp

1 + q5τp +

q6τp

1 + q7τp +···

)

.

(1.16)

Theorem 1.6 can also be used to obtain many further beautiful expressions, not just
those pertaining to the limit as p → 1. For example, we obtain the following simple corollary.

Corollary 1.7. For p1 = 1/e2π and p2 = 1/eπ , one has that

Pp1(A(2, 5))
Pp1(A(1, 5))

= e−2π/5
(

−φ +
√

1
2

(
5 +

√
5
))

,

Pp2(A(3, 8))
Pp2(A(1, 8))

= e−π/2
(√

4 + 2
√
2 −
√
3 + 2

√
2
)
.

(1.17)

Remark 1.8. The evaluation of Pp(A(2, 5))/Pp(A, 1, 5))when p = 1/e2π follows from a formula
in Ramanujan’s famous first letter to Hardy dated January 16, 1913.

Theorem 1.6 and Corollary 1.7 follow from the fact that the Fourier expansions of
the relevant modular forms in Theorem 1.2 are realized as the q-continued fractions of
Rogers-Ramanujan and Ramanujan-Selberg-Gordon-Göllnitz. We shall explain these results
in Section 5.
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We chose to focus on two particularly simple examples of ratios, namely,

Pp(A(2, 5))
Pp(A(1, 5))

,
Pp(A(3, 8))
Pp(A(1, 8))

. (1.18)

One can more generally consider ratios of the form

Pp(A(r1, t))
Pp(A(r2, t))

. (1.19)

It is not the case that all such probabilities, for fixed r1 and r2, can be described by a single
continued fraction. However, one may generalize these two cases, thanks to Theorem 1.2, by
making use of the so-called Selberg relations [6] (see also [7]) which extend the notion of a
continued fraction. Arguing in this way, onemay obtain Theorem 1.6 in its greatest generality.
Although we presented Theorem 1.4 as the limiting behavior of the continued fractions in
Theorem 1.6, we stress that its conclusion also follows from the calculation of the explicit
Fourier expansions at cusps of the modular forms in Theorem 1.2. In this way one may also
obtain Theorem 1.4 in generality. Turning to the problem of obtaining explicit formulas such
as those in Corollary 1.7, we have the theory of complex multiplication at our disposal. In
general, one expects to obtain beautiful evaluations as algebraic numbers whenever τp is an
algebraic integer in an imaginary quadratic extension of the field of rational numbers. We
leave these generalizations to the reader.

2. Combinatorial Considerations

Here we give a lemma which expresses the probability Pp(A(r, t)) in terms of the infinite
products in (1.5).

Lemma 2.1. If 0 < p < 1 and τp := − log(p) · (i/2π), then

Pp(A(r, t)) = P
(
r, t; qτp

)
·

∞∏

n=1

(
1 − qnτp

)
· (2.1)

Proof. By the Borel-Cantelli lemma, with probability 1 at most finitely many of the Cn’s will
fail to occur. Now, for each pair of integers 0 ≤ r ≤ t/2, let S(r, t) be the countable set of
binary strings a1a2a3a4 · · · ∈ {0, 1}N in which an = 1 if n/≡ ± r mod t, and an = 0 for at
most finitely many n satisfying n ≡ ±r mod t (with the appropriate modifications on the
arithmetic progressions modulo t for r = 0, and for t even with r = t/2). Then the event
A(r, t) can be written as the countable disjoint union

A(r, t) =
⋃

a1a2a3···∈Sr,t

⋂

n:an=1

Cn ∩
⋂

n:an=0

Cc
n. (2.2)
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Using this, we find that

Pp(A(r, t)) =
∑

a1a2a3···∈Sr,t

Pp

(
⋂

n:an=1

Cn ∩
⋂

n:an=0

Cc
n

)

=
∑

a1a2a3···∈Sr,t

∏

n:an=1

(
1 − qnτp

) ∏

n:an=0

qnτp

=
∞∏

i=1

(
1 − qnτp

) ∑

a1a2a3···∈Sr,t

∏

n:an=0

qnτp
1 − qnτp

=
∞∏

n=1

(
1 − qnτp

)
·

∑

a1a2a3···∈Sr,t

∏

n:an=0

(
qnτp + q2nτp + q3nτp + · · ·

)

=
∞∏

n=1

(
1 − qnτp

)
· P
(
r, t; qτp

)
.

(2.3)

3. Proof of Theorem 1.2

We first note that qτp = e2πiτp = p, and by (1.6) we have

∞∏

n=1

(
1 − qnτp

)
= q−1/24τp η

(
τp
)
. (3.1)

Now we prove each of the three relevant cases in turn. First, suppose that r = 0. By
Lemma 2.1 we need to show

q−1/24τp η
(
τp
) ∞∏

n=1

(
1 − qtnτp

)−1
= q

(t−1)/24
τp

η
(
τp
)

η
(
tτp
) . (3.2)

This follows from the identity

∞∏

n=1

(
1 − qtnτp

)−1
=

∞∏

n=1

(
1 − qntτp

)−1
= q1/24tτp

η
(
tτp
)−1

. (3.3)

Next, suppose that t is even and r = t/2. By Lemma 2.1 we need to show

q−1/24τp η
(
τp
) ∞∏

n=0

(
1 − q

tn+(t/2)
τp

)−1
=

q
−(t+2)/48
τp

1 − qt/2τp

η
(
τp
)
η
(
tτp
)

η
(
(t/2)τp

) . (3.4)
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Observe that

∞∏

n=1

(
1 − q

tn+(t/2)
τp

)−1
=

∞∏

n=1

(
1 − q2n+1(t/2)τp

)−1

=
∞∏

n=1

(
1 − q2n(t/2)τp

)(
1 − qn(t/2)τp

)−1

=
∞∏

n=1

(
1 − qntτp

)(
1 − qn(t/2)τp

)−1
.

(3.5)

Then (3.4) follows from the identities

∞∏

n=1

(
1 − qntτp

)
= q−1/24tτp

η
(
tτp
)
,

∞∏

n=1

(
1 − qn(t/2)τp

)−1
= q1/24(t/2)τp

η

(
t

2
τp

)−1
. (3.6)

Finally, suppose that 0 < r < t/2. By Lemma 2.1 we need to show

q−1/24τp η
(
τp
) ∞∏

n=0

(
1 − qtn+rτp

)−1(
1 − qtn+t−rτp

)−1
= −

q
−(2t+1)/24
τp e−πi(r/t)

1 − qrτp

η
(
τp
)

g0,−r/t
(
tτp
) . (3.7)

Observe that

∞∏

n=0

(
1 − qtn+rτp

)(
1 − qtn+t−rτp

)
=
(
1 − qrτp

)(
1 − qt−rτp

) ∞∏

n=1

(
1 − qtn+rτp

)(
1 − qtn+t−rτp

)

=
(
1 − qrτp

)(
1 − qt−rτp

) ∞∏

n=1

(
1 − qrτpq

tn
τp

)(
1 − q−1rτpq

t(n+1)
τp

)

=

(
1 − qrτp

)(
1 − q−1rτpqtτp

)

(
1 − q−1rτpqtτp

)
∞∏

n=1

(
1 − qrτpq

n
tτp

)(
1 − q−1rτpq

n
tτp

)

=
(
1 − qrτp

) ∞∏

n=1

(
1 − qrτpq

n
tτp

)(
1 − q−1rτpq

n
tτp

)

(3.8)

It follows from the definition of the Siegel function gu,v(τ) that

∞∏

n=1

(
1 − qrτpq

n
tτp

)(
1 − q−1rτpq

n
tτp

)
= −q1/12tτp

eπi(r/t)g0,−r/t
(
tτp
)
, (3.9)
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from which we obtain

∞∏

n=0

(
1 − qtn+rτp

)−1(
1 − qtn+t−rτp

)−1
= −q−t/12τp e−πi(r/t)

(
1 − qrτp

)−1
g0,−r/t

(
tτp
)−1

. (3.10)

Substitute the preceding identity into the left-hand side of (3.7) to obtain the result.

4. Proof of Theorem 1.3

Recall that the partition generating function is defined by

G(x) :=
∞∏

n=1

(1 − xn)−1, 0 < x < 1. (4.1)

We now prove each of the relevant cases in turn. First, suppose that r = 0. Then P(0, t; qτp) =
G(qtτp), and by Lemma 2.1,

− logPp(A(0, t)) = logG
(
qτp

)
− logG

(
qtτp

)
. (4.2)

Make the change of variables x = e−w. Then a straightforward modification of the analysis in
[8, pages 19–21] shows that, for each integer α ≥ 1,

logG
(
e−αw

)
=

π2

6αw
+
1
2
log
(
1 − e−αw

)
+ Cα +O(w) as w −→ 0 (4.3)

for some constant Cα. It follows from (4.3) that

logG
(
qτp

)
− logG

(
qtτp

)
∼ π2

6
(
1 − p

)
(
1 − 1

t

)
as p −→ 1. (4.4)

Next, suppose that t is even and r = t/2. Then

P
(
t

2
, t; qτp

)
=

1

1 − qt/2τp

∞∏

n=1

(
1 − qn(t/2)τp

)−1(
1 − qntτp

)
=

G
(
qt/2τp

)
G
(
qtτp

)−1

1 − qt/2τp

, (4.5)

and by Lemma 2.1 and (4.3),

− logPp

(
A

(
t

2
, t

))
= log

(
1 − qt/2τp

)
+ logG

(
qτp

)
− logG

(
qt/2τp

)
+ logG

(
qtτp

)

∼ π2

6
(
1 − p

)
(
1 − 2

t
+
1
t

)
as p −→ 1.

(4.6)
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Finally, suppose that 0 < r < t/2. Then by Lemma 2.1,

logPp(A(r, t)) = logG
(
qτp

)
− log

( ∞∏

n=0

(
1 − qtn+rτp

)−1
)

− log

( ∞∏

n=0

(
1 − qtn+t−rτp

)−1
)

. (4.7)

One can show in a manner similar to (4.3) that for each integer β ≥ 1,

log

( ∞∏

n=0

(
1 − e−(αn+β)w

)−1
)

= − log
(
1 − e−βw

)
+

∞∑

k=1

e−βwk

αwk2

+
1
2
log
(
1 − e−(α+β)w

)
+ Cα,β +O(w) as w −→ 0

(4.8)

for some constant Cα,β. It follows from (4.3) and (4.8) that

logG
(
qτp

)
− log

( ∞∏

n=0

(
1 − qtn+rτp

)−1
)

− log

( ∞∏

n=0

(
1 − qtn+t−rτp

)−1
)

∼ π2

6
(
1 − p

)
(
1 − 2

t

)
as p −→ 1.

(4.9)

5. Proof of Theorem 1.6 and Corollary 1.7

Here we prove Theorem 1.6 and Corollary 1.7. These results will follow from well-known
identities of Rogers-Ramanujan, Selberg, and Gordon-Göllnitz (e.g., see [9]). We require the
celebrated Rogers-Ramanujan continued fraction

R
(
q
)
= q1/5

(
1
1+

q

1 +

q2

1 +

q3

1 +···

)

, (5.1)

and the Ramanujan-Selberg-Gordon-Göllnitz continued fraction

H
(
q
)
= q1/2

(
1

1 + q +

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 +···

)

. (5.2)

It turns out that these q-continued fractions satisfy the following identities (e.g., see [10]):

R
(
q
)
= q1/5

∞∏

n=1

(
1 − q5n−1

)(
1 − q5n−4

)

(
1 − q5n−2

)(
1 − q5n−3

) = q1/5
P(2, 5; q)

P(1, 5; q) ,

H
(
q
)
= q1/2

∞∏

n=1

(
1 − q8n−1

)(
1 − q8n−7

)

(
1 − q8n−3

)(
1 − q8n−5

) = q1/2
P(3, 8; q)

P(1, 8; q) .
(5.3)

Theorem 1.6 now follows easily from Theorem 1.2.
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To prove Corollary 1.7, notice that if p = 1/e2π (resp., p = 1/eπ), then τp = i (resp.,
τp = i/2). In particular, we have that qτp = e−2π (resp., qτp = e−π). Corollary 1.7 now follows
from the famous evaluations (e.g., see [11] and [12, page xxvii] which is Ramanujan’s first
letter to Hardy)

R
(
e−2π

)
= −φ +

√
1
2

(
5 +

√
5
)
,

H
(
e−π
)
=
√
4 + 2

√
2 −
√
3 + 2

√
2.

(5.4)
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