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1. Introduction

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx :=
{
f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ∥∥f∗∥∥2

}
, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing between members of E and E∗. It is well
known that if E∗ is strictly convex, then J is single-valued (see, e.g., [1, 2]). In the sequel, we
will denote the single-valued normalized duality mapping by j.

A mapping A : D(A) ⊆ E → E is called accretive if for all x, y ∈ D(A) there exists
j(x − y) ∈ J(x − y) such that

〈Ax −Ay, j
(
x − y

)〉 ≥ 0. (1.2)
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By the result of Kato [3], (1.2) is equivalent to

‖x − y‖ ≤ ‖x − y + s
(
Ax −Ay

)‖, ∀s > 0. (1.3)

If E is a Hilbert space, accretive operators are also called monotone. An operator A is called
m-accretive if it is accretive and R(I + rA), range of (I + rA), is E for all r > 0; and A is said to
satisfy the range condition if cl(D(A)) ⊆ R(I + rA), for all r > 0, where cl(D(A)) denotes the
closure of the domain ofA. It is easy to see that everym-accretive operator satisfies the range
condition. An operator A is said to be maximal accretive if it is accretive and the inclusion
G(A) ⊆ G(B) implies G(A) = G(B), where G(A) denotes the graph of A and B is an accretive
operator.

A mapping T : D(T) ⊆ E → R(T) ⊆ E is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ D(T). (1.4)

It is not difficult to deduce from (1.3) that a mappingA is accretive if and only if its resolvent
Jr := (I+rA)−1, for all r > 0, is nonexpansive and single valued on the range of (I+rA). Thus,
in particular, JA = J1 := (I +A)−1 is nonexpansive and single valued on the range of (I +A).
Furthermore, F(JA) := A−1(0) := {x ∈ D(A) : Ax = 0}. For more details see, for example,
[4, 5].

Closely related to the class of accretive operators is the class of pseudocontractive
maps. An operator T with domain D(T) in E and range R(T) in E is called pseudocontractive
ifA := I − T is accretive. The importance of these operators in application is well known (see,
e.g., [6–9] and the references contained therein).

It is well known that the class of pseudocontractive mappings properly contains the
class of nonexpansive mappings (see, e.g., [4]). Construction of fixed points of nonexpansive
mappings is an important subject in nonlinear operator theory and its applications, in
particular, in image recovery and signal processing (see, e.g., [10]).

Iterative approximation of fixed points and zeros of nonlinear operators have been
studied extensively by many authors to solve nonlinear operator equations as well as
variational inequality problems (see, e.g., [11–15]). The iterative scheme

x0 ∈ E, xn+1 = Jrnxn, n ≥ 0, (1.5)

(where Jrn is the resolvent of an m-accretive operator A) for example, has been extensively
studied over the past forty years or so for construction of zeros of accretive operators (see,
e.g., [16–20]).

Kim and Xu [21] introduced a modification of Mann iterative scheme in a reflexive
Banach space having weakly continuous duality mapping for finding a zero of anm-accretive
operator A as follows:

x0 = u ∈ E, xn+1 = αnu + (1 − αn)Jrnxn, n ≥ 0. (1.6)
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They proved that the sequence {xn}∞n=0 generated by (1.6) converges to a zero of m-accretive
operator A under the following conditions:

(i) limn→∞αn = 0,

(ii)
∑∞

n=0 αn = ∞ (equivalently,
∏∞

n=0(1 − αn) = 0),

(iii)
∑∞

n=0 |αn+1 − αn| < ∞; rn ≥ ε for some ε > 0 and for all n ≥ 0,

(iv)
∑∞

n=1 |1 − rn−1/rn| < ∞,

(v) rn ≥ ε for some ε > 0 and for all n ≥ 0 and
∑∞

n=1 |rn − rn−1| < ∞.

In 2007, Qin and Su [22] also considered the following iterative scheme in either a uniformly
smooth Banach space or a reflexive Banach space having a weakly sequentially continuous
duality mapping:

x0 = u ∈ C, yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αnu + (1 − αn)yn n ≥ 0,
(1.7)

where {αn}∞n=0 and {βn}∞n=0 are sequences in (0, 1). They proved that the sequence {xn}∞n=0
generated by (1.7) converges strongly to a zero of m-accretive operator A provided that
{αn}∞n=0 and {βn}∞n=0 satisfy conditions (i), (ii), and (iii), and {rn}∞n=0 satisfies condition (v).

Chen and Zhu [23] considered the following viscosity iterative scheme for resolvent
Jrn ofm-accretive mapping A:

x0 ∈ C, xn+1 = αnf(xn) + (1 − αn)Jrnxn, n ≥ 0, (1.8)

where f is a contraction mapping defined on C. Under the assumption that {rn}∞n=0 satisfies
condition (v), Chen and Zhu [23] proved in a reflexive Banach space having weakly
sequentially continuous duality mapping that the sequence {xn}∞n=0 generated by (1.8)
converges strongly to a zero of A, which solves a certain variational inequality.

Recently, Jung [24] introduced the following viscosity iterative method:

x0 ∈ C, yn = βnxn +
(
1 − βn

)
Jrnxn,

xn+1 = αnf(xn) + (1 − αn)yn n ≥ 0.
(1.9)

Under certain appropriate conditions on the parameters {αn}∞n=0, {βn}∞n=0, {rn}∞n=0 and the
sequence {xn}∞n=0; Jung [24] established strong convergence of the sequence {xn}∞n=0 generated
by (1.9) to a zero of A, which is a unique solution of a certain variational inequality problem,
in either a reflexive Banach space having a weakly sequentially continuous duality mapping
or a reflexive Banach space having a uniformly Gâteaux differentiable norm such that every
weakly compact convex subset of E has the fixed point property for nonexpansive mappings.

In [5], Zegeye and Shahzad proved the following theorem.

Theorem ZS. Let E be a strictly convex reflexive real Banach space which has uniformly Gâteaux
differentiable norm and let K be a nonempty closed convex subset of E. Assume that every nonempty
closed convex and bounded subset of E has the fixed point property for nonexpansive mappings.
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Let Ai : K → E, i = 1, 2, . . . , r be a finite family of m-accretive mappings with
⋂r

i=1A
−1
i (0)/= ∅.

For given u, x1 ∈ K, let {xn}n≥1 be generated by the algorithm

xn+1 = θnu + (1 − θn)Srxn, ∀n ≥ 1, (1.10)

where Sr = a0I + a1JA1 + · · ·+ arJAr , with JAi = (I +Ai)
−1, 0 < ai < 1, i = 1, . . . , r,

∑r
i=1 ai = 1, and

{θn}n≥1 is a sequence in (0, 1) satisfying the following conditions:

(i) limn→∞θn = 0;

(ii)
∑∞

n=1 θn = ∞;

(iii)
∑∞

n=1 |θn − θn−1| < ∞ or limn→∞(|θn − θn−1|/θn) = 0.

Then, {xn}n≥1 converges strongly to a common solution of the equation Aix = 0 for i = 1, 2, . . . , r.

Motivated by the results of the authorsmentioned above, it is our purpose in this paper
to prove new path convergnce theorems and introduce a new iteration process for a countably
infinite family of m-accretive mappings and prove strong convergence of the sequence to a
common zero of these operators in uniformly convex real Banach spaces. As a result, we
obtain strong convergence theorems for a countably infinite family of pseudocontractive
mappings. Our theorems extend and improve some important results which are announced
recently by various authors.

2. Preliminaries

Let E be a real normed linear space. Let S := {x ∈ E : ‖x‖ = 1}. E is said to have a Gâteaux
differentiable norm (and E is called smooth) if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm if for each
y ∈ S the limit is attained uniformly for x ∈ S. Furthermore, E is said to be uniformly smooth
if the limit exists uniformly for (x, y) ∈ S × S.

Let E be a real normed linear space. The modulus of convexity of E is the function
δE : [0, 2] → [0, 1] defined by

δE(ε) = inf

{
1 −

∥∥x + y
∥∥

2
: ‖x‖ =

∥∥y∥∥ = 1, ε =
∥∥x − y

∥∥
}
. (2.2)

The space E is said to be uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. E is said
to be strictly convex if for all x, y ∈ E such that ‖x‖ = ‖y‖ = 1 and for all λ ∈ (0, 1) we have
‖λx + (1 − λ)y‖ < 1. It is well known that every uniformly convex Banach space is strictly
convex.

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if
whenever {xn} is a sequence in D(T) such that xn ⇀ x ∈ D(T) and Txn → p, then Tx = p.
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A mapping T : D(T) ⊆ E → E is said to be demicompact at h if for any bounded
sequence {xn} in D(T) such that (xn − Txn) → h as n → ∞, there exists a subsequence say
{xnj} of {xn} and x∗ ∈ D(T) such that {xnj} converges strongly to x∗ and x∗ − Tx∗ = h.

We need the following lemmas in the sequel.

Lemma 2.1. Let E be a real normed space, then

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2〈y, j(x + y

)〉, (2.3)

for all x, y ∈ E and for all j(x + y) ∈ J(x + y).

Lemma 2.2 (Lemma 3 of Bruck [25]). Let K be a nonempty closed convex subset of a strictly
convex real Banach space E. Let {Ti}∞i=1 be a sequence of nonexpansive mappings fromK to E such that⋂∞

i=1F(Ti)/= ∅. Let {λi}∞i=1 be a sequence of positive numbers such that
∑∞

i=1 λi = 1, then a mapping G
onK defined byGx :=

∑∞
i=1 λiTix for all x ∈ K is well defined, nonexpansive, and F(G) =

⋂∞
i=1F(Ti).

Lemma 2.3 (Xu [26]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1 − αn)an + αnσn, n ≥ 1, (2.4)

where {αn}∞n=1 ⊂ [0, 1] and {σn}∞n=1 is a sequence in R satisfying (i)
∑

αn = ∞; (ii) lim supσn ≤ 0.
Then, an → 0 as n → ∞.

Lemma 2.4 (Suzuki [27]). Let {xn} and {yn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that xn+1 =
(1 − βn)yn + βnxn for all integers n ≥ 1 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then,
limn→∞‖yn − xn‖ = 0.

Lemma 2.5 (Cioranescu [28]). Let A be a continuous accretive operator defined on a real Banach
space E with D(A) = E. Then, A ism-accretive.

Lemma 2.6 (C. E. Chidume and C. O. Chidume [29]). LetK be a nonempty closed convex subset
of a real Banach space E. For arbitrary r > 0, let Br(0) := {x ∈ E : ‖x‖ ≤ 1}. Then, there exists a
continuous strictly increasing function g : [0,∞) → [0,∞), g(0) = 0 such that for every x, y ∈
Br(0) and for p ∈ (1,∞), the following inequality holds:

4.2pg
(
1
2
‖x + y‖

)
≤ (

p.2p − 4
)‖x‖p + p.2p

〈
y, jp(x)

〉
+ 4

∥∥y∥∥p
. (2.5)

3. Path Convergence Theorems

We begin with the following lemma.

Lemma 3.1. Let K be a nonempty closed convex subset of a reflexive strictly convex Banach space E.
Let T : K → K be a nonexpansive mapping. Let {xn}∞n=1, a bounded sequence inK, be an approximate
fixed point sequence of T , that is limn→∞‖xn − Txn‖ = 0. Let ϕ(x) = μn‖xn − x‖2, for all x ∈ K and
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let Γ = {x ∈ K ∩ B : ϕ(x) = minz∈Kϕ(z)}, where B is any bounded closed convex nonempty subset
of E such that xn ∈ B for all n ∈ N. Then T has a fixed point in Γ, provided that F(T)/= ∅.

Proof. Since E is a reflexive Banach space, then Γ is a bounded closed convex nonempty subset
of E. Since limn→∞‖xn − Txn‖ = 0, we have that for all x ∈ Γ,

ϕ(Tx) = μn‖xn − Tx‖2 ≤ μn(‖xn − Txn‖ + ‖Txn − Tx‖)2

≤ μn‖xn − x‖2 = ϕ(x).
(3.1)

Hence, Tx ∈ Γ, for all x ∈ Γ, that is, Γ is invariant under T . Let x∗ ∈ F(T). Then since every
closed convex nonempty subset of a reflexive strictly convex Banach space is a Chebyshev set
(see, e.g., [30, Corollary 5.1.19]), there exists a unique u∗ ∈ Γ such that

‖x∗ − u∗‖ = inf
z∈Γ

‖x∗ − z‖, (3.2)

but x∗ = Tx∗ and Tu∗ ∈ Γ. Thus,

‖x∗ − Tu∗‖ = ‖Tx∗ − Tu∗‖ ≤ ‖x∗ − u∗‖. (3.3)

So, Tu∗ = u∗. Hence, F(T) ∩ Γ/= ∅. This completes the proof.

Proposition 3.2. Let K be a nonempty closed convex subset of a real Banach space E. Let Ai : K →
E, i = 1, 2, . . ., be a countably infinite family of m-accretive mappings and define JAi := (I + Ai)

−1,
i = 1, 2, . . . . Let {αn}∞n=1, {σi,n}∞n=1, i = 1, 2, . . . be sequences in (0, 1) such that

∑∞
i=1 σi,n = (1 − αn).

Fix δ ∈ [γ1, γ2], for some γ1, γ2 ∈ (0, 1). For arbitrary fixed u ∈ K, define a map Tn : K → K by

Tnx = αnu +
∞∑
i=1

σi,n((1 − δ)x + δJAix), ∀x ∈ K. (3.4)

Then, Tn is a strict contraction on K.

Proof. Let x, y ∈ K, then

‖Tnx − Tny‖ =

∥∥∥∥∥
∞∑
i=1

σi,n

(
(1 − δ)

(
x − y

)
+ δ

(
JAix − JAiy

))
∥∥∥∥∥

≤
∞∑
i=1

σi,n

(
(1 − δ)‖x − y‖ + δ‖JAix − JAiy‖

)

≤ (1 − αn)‖x − y‖.

(3.5)

Thus, for each n ∈ N, there is a unique zn ∈ K satisfying

zn = αnu +
∞∑
i=1

σi,n((1 − δ)zn + δJAizn). (3.6)
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Lemma 3.3. Let K be a nonempty closed convex subset of a real Banach space E. For each i ≥ 1, let
Ai : K → E be a countably infinite family ofm-accretive mappings. For n ∈ N, let {zn} be a sequence
satisfying (3.6) and assume

⋂∞
i=1A

−1
i (0)/= ∅. Then, {zn} is bounded.

Proof. Let x∗ ∈ ⋂∞
i=1A

−1
i (0) =

⋂∞
i=1F(JAi). Then, using (3.6), we obtain

‖zn − x∗‖2 =
〈
αn(u − x∗) +

∞∑
i=1

σi,n((1 − δ)zn + δJAizn − x∗), j(zn − x∗)

〉

≤ αn

〈
u − x∗, j(zn − x∗)

〉
+

∞∑
i=1

σi,n‖zn − x∗‖2

= αn

〈
u − x∗, j(zn − x∗)

〉
+ (1 − αn)‖zn − x∗‖2,

(3.7)

which implies that ‖zn − x∗‖ ≤ ‖u − x∗‖. Thus, {zn} is bounded.

Lemma 3.4. Let K be a nonempty closed convex subset of a uniformly convex real Banach space
E. For each i ≥ 1, let Ai : K → E be a countably infinite family of m-accretive mappings such
that

⋂∞
i=1A

−1
i (0)/= ∅. Let {αn} be a sequence in (0, 1) such that limn→∞(αn/σi,n) = 0, for all i ≥ 1,∑∞

i=1 σi,n = (1 − αn). Let {zn} be a sequence satisfying (3.6). Then, limn→∞‖zn − JAizn‖ = 0, for all
i ≥ 1. Furthermore, if {λi}∞i=1 is a sequence in (0, 1) such that

∑∞
i=1 λi = 1; limn→∞

∑∞
i=1 |σi,n −λi| = 0

and define G := (1 − δ)I + δT , where T :=
∑∞

i=1 λiJAi , then limn→∞‖zn −Gzn‖ = 0.

Proof. We start by showing that limn→∞‖zn − JAizn‖ = 0, for all i ≥ 1. For this, let Si :=
(1 − δ)I + δJAi , where I is the identity operator onK. Since {zn}∞n=1 is bounded, then for each
i ≥ 1 and x∗ ∈ ⋂∞

i=1A
−1
i (0), we have the following using (2.5):

4.2pg
(
1
2
‖Sizn − zn‖

)
= 4.2pg

(
1
2
‖Sizn − x∗ + x∗ − zn‖

)

≤ (
p.2p − 4

)‖x∗ − zn‖p + p.2p
〈
Sizn − x∗, jp(x∗ − zn)

〉
+ 4‖Sizn − x∗‖p

≤ (
p.2p − 4

)‖x∗ − zn‖p + p.2p
〈
Sizn − zn + zn − x∗, jp(x∗ − zn)

〉

+ 4‖Sizn − x∗‖p

=
(
p.2p − 4

)‖x∗ − zn‖p + p.2p
〈
Sizn − zn, jp(x∗ − zn)

〉

− p.2p〈x∗ − zn, jp(x∗ − zn)〉 + 4‖Sizn − x∗‖p

≤ p.2p
〈
zn − Sizn, jp(zn − x∗)

〉
.

(3.8)

Hence,

4
p
g

(
1
2
‖Sizn − zn‖

)
≤ 〈

zn − Sizn, jp(zn − x∗)
〉
, (3.9)
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and so,

4
p

∞∑
i=1

σi,ng

(
1
2
‖Sizn − zn‖

)
≤ 4

p

∞∑
i=1

σi,n

〈
zn − Sizn, jp(zn − x∗)

〉
. (3.10)

Using (3.6), we have

〈
zn − x∗, jp(zn − x∗)

〉
= αn

〈
u − x∗, jp(zn − x∗)

〉

+
∞∑
i=1

σi,n

〈
Sizn − zn + zn − x∗, jp(zn − x∗)

〉

= αn〈u − x∗, jp(zn − x∗)〉 +
∞∑
i=1

σi,n

〈
Sizn − zn, jp(zn − x∗)

〉

+ (1 − αn)
〈
zn − x∗, jp(zn − x∗)

〉
,

(3.11)

which implies

∞∑
i=1

σi,n

〈
zn − Sizn, jp(zn − x∗)

〉
= αn

〈
u − zn, jp(zn − x∗)

〉
. (3.12)

Using this and (3.10), we get

4
p

∞∑
i=1

σi,ng

(
1
2
‖Sizn − zn‖

)
≤ αn

〈
u − zn, jp(zn − x∗)

〉
. (3.13)

Since {zn} is bounded, we have that

∞∑
i=1

σi,ng

(
1
2
‖Sizn − zn‖

)
≤ αnM, (3.14)

for some constant M > 0. This yields

g

(
1
2
‖Sizn − zn‖

)
≤ αn

σi,n
M. (3.15)

Thus, since g is continuous, strictly increasing, g(0) = 0, and limn→∞(αn/σi,n) = 0, for all
i ≥ 1, we have

2g
(
1
2
lim
n→∞

‖Sizn − zn‖
)

= 0. (3.16)
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So, limn→∞‖Sizn − zn‖ = 0, for all i ≥ 1, but

‖Sizn − zn‖ = ‖(1 − δ)zn + δJAizn − zn‖
= ‖δ(JAizn − zn)‖
= δ‖JAizn − zn‖.

(3.17)

Thus,

lim
n→∞

‖JAizn − zn‖ = 0, ∀i ≥ 1. (3.18)

Next, we show that limn→∞‖zn −Gzn‖ = 0. Observe that

zn −Gzn = αnu +
∞∑
i=1

(σi,n − λi)[(1 − δ)zn + δJAizn]. (3.19)

So,

‖zn −Gzn‖ ≤ αn‖u‖ +M
∞∑
i=1

|σi,n − λi| (3.20)

for some M > 0. Hence,

lim
n→∞

‖zn −Gzn‖ = 0. (3.21)

This completes the proof.

Theorem 3.5. Let K be a nonempty closed convex subset of a uniformly convex real Banach space E
with uniformly Gâteaux differentiable norm. Let Ai : K → E, i = 1, 2, . . ., be a countably infinite
family of m-accretive mappings such that

⋂∞
i=1A

−1
i (0)/= ∅. Let {zn} be a sequence satisfying (3.6).

Let {λi}∞i=1 be a sequence in (0, 1) such that
∑∞

i=1 λi = 1 and limn→∞
∑∞

i=1 |σi,n − λi| = 0. Let G :=
(1 − δ)I + δT , where T :=

∑∞
i=1 λiJAi . Then, {zn} converges strongly to an element in

⋂∞
i=1A

−1
i (0).

Proof. Observe that by Lemma 2.2, T :=
∑∞

i=1 λiJAi is well defined, nonexpansive, and F(T) =⋂∞
i=1F(JAi) =

⋂∞
i=1A

−1
i (0). Furthermore, it is easy to see thatG is nonexpansive and that F(G) =

F(T) =
⋂∞

i=1A
−1
i (0). Now, since {zn} is bounded and limn→∞‖Gzn − zn‖ = 0, we have by

Lemma 3.1 that there exists a unique z∗ in the setΩ∗ := {x ∈ K∩B∗ : μn‖zn−x‖2 = miny∈K‖zn−
y‖} such that Gz∗ = z∗, where B∗ is a bounded closed convex nonempty subset of E such that
u, zn ∈ B∗ for all n ∈ N. Thus, z∗ ∈ F(G) =

⋂∞
i=1A

−1
i (0). Let t ∈ (0, 1), then by convexity of

K ∩ B∗, we have that (1 − t)z∗ + tu ∈ K ∩ B∗. Thus, μn‖zn − z∗‖2 ≤ μn‖zn − ((1 − t)z∗ + tu)‖2 =
μn‖zn − z∗ − t(u − z∗)‖2. Moreover, we have, by Lemma 2.1 that

‖zn − z∗ − t(u − z∗)‖2 ≤ ‖zn − z∗‖2 − 2t
〈
u − z∗, j(zn − z∗ − t(u − z∗))

〉
. (3.22)
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This implies that μn〈u − z∗, j(zn − z∗ − t(u − z∗))〉 ≤ 0. Furthermore, since E has uniformly
Gâteaux differentiable norm, we obtain that

lim
t→ 0

(〈
u − z∗, j(zn − z∗)

〉 − 〈
u − z∗, j(zn − z∗ − t(u − z∗))

〉)
= 0. (3.23)

Thus, given ε > 0, there exists δε > 0 such that for all t ∈ (0, δε) and for all n ∈ N,

〈
u − z∗, j(zn − z∗)

〉
< ε +

〈
u − z∗, j(zn − z∗ − t(u − z∗))

〉
. (3.24)

Taking Banach limit on both sides of this inequality, we obtain

μn

〈
u − z∗, j(zn − z∗)

〉 ≤ ε; (3.25)

and since ε > 0 is arbitrary, we have that

μn

〈
u − z∗, j(zn − z∗)

〉 ≤ 0. (3.26)

Now, using (3.6), we have that

‖zn − z∗‖2 =
〈
αn(u − z∗) +

∞∑
i=1

σi,n(((1 − δ)zn + δJAizn) − z∗), j(zn − z∗)

〉

≤ αn

〈
u − z∗, j(zn − z∗)

〉
+ (1 − αn)‖zn − z∗‖2.

(3.27)

So,

‖zn − z∗‖2 ≤ 〈
u − z∗, j(zn − z∗)

〉
. (3.28)

Again, taking Banach limit, we obtain

μn‖zn − z∗‖2 ≤ μn

〈
u − z∗, j(zn − z∗)

〉 ≤ 0, (3.29)

so that μn‖zn − z∗‖2 = 0. Hence, there exists a subsequence {znl}∞l=1 of {zn}∞n=1 such that
liml→∞znl = z∗. We now show that {zn}∞n=1 actually converges to z∗. Suppose there is another
subsequence {znk}∞k=1 of {zn}∞n=1 such that limk→∞znk = u∗. Then, since limn→∞‖JAizn−zn‖ = 0
and JAi is continuous for all i ∈ N, we have that u∗ ∈ ⋂∞

i=1A
−1
i (0).
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Claim 1 (u∗ = z∗). Suppose for contradiction that u∗ /= z∗, then ‖u∗ − z∗‖ > 0, but using (3.6),
we have that

‖znl − u∗‖2 =
〈
αnl(u − u∗) +

∞∑
l=1

σi,nl(((1 − δ)znl + δJAiznl) − u∗), j(znl − u∗)

〉

= αnl

〈
u − z∗, j(znl − u∗)

〉
+ αnl

〈
z∗ − znl , j(znl − u∗)

〉

+ αnl‖znl − u∗‖2 +
∞∑
i=1

σi,nl

〈
(1 − δ)znl + δJAiznl − u∗, j(znl − u∗)

〉

≤ αnl

〈
u − z∗, j(znl − u∗)

〉
+ αnl

〈
z∗ − znl , j(znl − u∗)

〉

+ αnl‖znl − u∗‖2 + (1 − δ)(1 − αnl)‖znl − u∗‖2 + δ(1 − αnl)‖znl − u∗‖2

= αnl

〈
u − z∗, j(znl − u∗)

〉
+ αnl

〈
z∗ − znl , j(znl − u∗)

〉
+ ‖znl − u∗‖2.

(3.30)

Thus,

〈
u − z∗, j(u∗ − znl)

〉 ≤ ‖znl − u∗‖‖znl − z∗‖. (3.31)

Using the fact that {zn}∞n=1 is bounded and that E has a uniformly Gâteaux differentiable
norm, we obtain from (3.31) that

〈
u − z∗, j(u∗ − z∗)

〉 ≤ 0. (3.32)

Similarly, we also obtain that 〈u − u∗, j(z∗ − u∗)〉 ≤ 0 or rather

〈
u∗ − u, j(u∗ − z∗)

〉 ≤ 0. (3.33)

Adding (3.32) and (3.33), we have that ‖z∗ − u∗‖ ≤ 0, a contradiction. Thus, z∗ = u∗. Hence,
{zn}∞n=1 converges strongly to z∗ ∈ ⋂∞

i=1A
−1
i (0). This completes the proof.

Theorem 3.6. Let K be a nonempty closed convex subset of a uniformly convex real Banach space E
with uniformly Gâteaux differentiable norm. Let Ai : K → E, i = 1, 2, . . ., be a countably infinite
family of m-accretive mappings such that

⋂∞
i=1A

−1
i (0)/= ∅. Let {zn} be a sequence satisfying (3.6).

If at least one of the mappings JAi is demicompact, then {zn} converges strongly to an element of⋂∞
i=1A

−1
i (0).

Proof. For fixed s ∈ N, let JAs be demicompact. Since limn→∞‖zn − JAszn‖ = 0, there exists a
subsequence say {znk} of {zn} that converges strongly to some point z∗ ∈ K. By continuity
of JAi and the fact that limk→∞‖znk − JAiznk‖ = 0, i = 1, 2, . . ., we have that z∗ ∈ ⋂∞

i=1A
−1
i (0).

Assuming that there is another subsequence {znj}∞j=1 of {zn} that converges strongly to a point
say, q∗, then following the argument of the last part of proof of Theorem 3.5, we obtain that
{zn}∞n=1 converges strongly to z∗ ∈ ⋂∞

i=1A
−1
i (0). This completes the proof.

Theorem 3.7. Let K be a nonempty closed convex subset of a uniformly convex real Banach space
E with uniformly Gâteaux differentiable norm and also admits weakly sequential continuous duality
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mapping. Let Ai : K → E, i = 1, 2, . . ., be a countably infinite family of m-accretive mappings such
that

⋂∞
i=1A

−1
i (0)/= ∅. Let {zn} be a sequence satisfying (3.6). Then, {zn} converges strongly to an

element of
⋂∞

i=1A
−1
i (0).

Proof. Since {zn} is bounded, there exists a subsequence say {znk} of {zn} that converges
weakly to some point z∗ ∈ K. Using the demiclosedness property of (I − JAi) at 0 for each
i ≥ 1 (since JAi is nonexpansive for each i ∈ N, see, e.g., [31]) and the fact that limk→∞‖znk −
JAiznk‖ = 0, we get that z∗ ∈ ⋂∞

i=1A
−1
i (0). We also observe from (3.6) that

‖znk − z∗‖2 =
〈
αnku +

∞∑
i=1

σi,nk((1 − δ)znk + δJAiznk) − z∗, j(znk − z∗)

〉

≤ αnk

〈
u − z∗, j(znk − z∗)

〉
+

∞∑
i=1

σi,nk‖znk − z∗‖2

= αnk

〈
u − z∗, j(znk − z∗)

〉
+ (1 − αnk)‖znk − z∗‖2.

(3.34)

This implies that ‖znk − z∗‖2 ≤ 〈u − z∗, j(znk − z∗)〉. Using the fact that j is weakly sequential
continuous, then we have from the last inequality that {znk} converges strongly to z∗. Then
following the argument of the last part of proof of Theorem 3.5, we obtain that {zn}∞n=1
converges strongly to z∗ ∈ ⋂∞

i=1A
−1
i (0). This completes the proof.

4. Convergence Theorems for Countably Infinite Family of
m-Accretive Mappings

For the rest of this paper, {αn}∞n=1 and {σi,n}∞n=1 are in (0, 1) satisfying the following additional
conditions:

(i) limn→∞αn = 0,

(ii)
∑∞

n=1 αn = ∞,

(iii) limn→∞
∑∞

i=1 |σi,n+1 − σi,n| = 0.

Theorem 4.1. Let K be a nonempty closed convex subset of a uniformly convex real Banach space E
with uniformly Gâteaux differentiable norm. Let Ai : K → E, i = 1, 2, . . ., be a countably infinite
family of m-accretive mappings such that

⋂∞
i=1A

−1
i (0)/= ∅. For fixed δ ∈ [γ1, γ2], for some γ1, γ2 ∈

(0, 1), u ∈ K, let {xn}∞n=1 be generated by

x1 ∈ K, xn+1 = αnu +
∞∑
i=1

σi,n((1 − δ)xn + δJAixn), n ≥ 1, (4.1)

then limn→∞
∑∞

i=1 σi,n((1 − δ)xn + δJAixn − xn) = 0. Furthermore, if {αn}n≥1 is such that

lim
n→∞

∑∞
i=1 σi,n((1 − δ)xn + δJAixn − xn)

αn
= 0, (4.2)

then {xn}∞n=1 converges strongly to a common zero of {Ai}∞i=1.
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Proof. Using mathematical induction, it is easy to see that for x∗ ∈ ⋂∞
i=1A

−1
i (0) fixed

‖xn − x∗‖ ≤ max{‖u − x∗‖, ‖x1 − x∗‖}, ∀n ≥ 1. (4.3)

Hence, {xn}∞n=1 is bounded and so {JAixn}∞n=1 is also bounded.
Now, define the sequences {βn}∞n=1 and {yn}∞n=1 by βn := (1 − δ)αn + δ and yn := (xn+1 −

xn + βnxn)/βn. Then,

yn =
αnu + δ

∑
i≥1 σi,n((1 − δ)xn + δJAixn)

βn
. (4.4)

Observe that {yn}∞n=1 is bounded and that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
∣∣∣∣

αn+1

1 − βn+1
− αn

1 − βn

∣∣∣∣‖u‖

+
∣∣∣∣
δ(1 − αn+1)

βn+1
− 1

∣∣∣∣‖xn+1 − xn‖

+
δM

βn+1βn

∞∑
i=1

|σi,n+1 − σi,n| + δM

βn+1βn

∣∣βn+1 − βn
∣∣,

(4.5)

for some M > 0. Thus,

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖
) ≤ 0. (4.6)

Hence, by Lemma 2.4, we have limn→∞‖yn − xn‖ = 0. Consequently, we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖yn − xn‖ = 0. (4.7)

From (4.1), we have that

xn+1 − xn = αn(u − xn) +
∞∑
i=1

σi,n(((1 − δ)xn + δJAixn) − xn), (4.8)

which implies that ‖∑∞
i=1 σi,n((1 − δ)xn + δJAixn − xn)‖ ≤ ‖xn+1 − xn‖ + αn‖u − xn‖ and thus

lim
n→∞

∥∥∥∥∥
∞∑
i=1

σi,n(((1 − δ)xn + δJAixn) − xn)

∥∥∥∥∥ = 0. (4.9)
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Let {zn}∞n=1 be a sequence satisfying (3.6). Then, by Theorem 3.5, zn → z∗ ∈ ⋂∞
i=1A

−1
i (0).

Using Lemma 2.1, we have that

‖zn − xn‖2 ≤
∥∥∥∥∥

∞∑
i=1

σi,n(((1 − δ)zn + δJAizn)− ((1 − δ)xn + δJAixn)+ ((1 − δ)xn + δJAixn)− xn)

∥∥∥∥∥
2

+ 2αn

〈
u − xn, j(zn − xn)

〉

≤
(
(1 − αn)‖zn − xn‖ +

∥∥∥∥∥
∞∑
i=1

σi,n(((1 − δ)xn + δJAixn) − xn)

∥∥∥∥∥

)2

+ 2αn〈u − zn, j(zn − xn)〉.
(4.10)

This implies that

〈
u − zn, j(xn − zn)

〉

≤ αn

2
‖zn − xn‖2 +

(1 − αn)‖zn − xn‖ · ‖
∑∞

i=1 σi,n(((1 − δ)xn + δJAixn) − xn)‖
αn

+
‖∑∞

i=1 σi,n(((1 − δ)xn + δJAixn) − xn)‖2
2αn

(4.11)

and hence,

lim sup
n→∞

〈u − zn, j(xn − zn)〉 ≤ 0. (4.12)

Moreover, we have that

〈
u − zn, j(xn − zn)

〉
=
〈
u − z∗, j(xn − z∗)

〉
+
〈
u − z∗, j(xn − zn) − j(xn − z∗)

〉

+
〈
z∗ − zn, j(xn − zn)

〉
.

(4.13)

Using the boundedness of {xn}∞n=1, we have

〈z∗ − zn, j(xn − zn)〉 −→ 0, as n −→ ∞. (4.14)

Also, since j is norm-to-weak∗ uniformly continuous on bounded subsets of E, we have that

〈
u − z∗, j(xn − zn) − j(xn − z∗)

〉 −→ 0, as n −→ ∞. (4.15)
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From (4.12) and (4.13), we obtain that

lim sup
n→∞

〈
u − z∗, j(xn − z∗)

〉 ≤ 0. (4.16)

Finally, using Lemma 2.1 on (4.1), we get

‖xn+1 − z∗‖2 ≤
∥∥∥∥∥

∞∑
i=1

σi,n+1(((1 − δ)xn + δJAixn) − z∗)

∥∥∥∥∥
2

+ 2αn

〈
u − z∗, j(xn+1 − z∗)

〉

≤ (1 − αn)‖xn − z∗‖2 + 2αn

〈
u − z, j(xn+1 − z∗)

〉
.

(4.17)

Using (4.16) and Lemma 2.3 in (4.17), we get that {xn}∞n=1 converges strongly to common zero
of the family {Ai}∞i=1 of m-accretive operators.

Remark 4.2. If K is replaced with E in Theorems 3.5, 3.6, 3.7, and 4.1, then by Lemma 2.5, the
assumption that Ai is m-accretive for each i ≥ 1 could be replaced with Ai is continuous for
each i ≥ 1.

Hence, we have the following theorem.

Theorem 4.3. Let E be a uniformly convex real Banach space with uniformly Gâteaux differentiable
norm. Let Ai : E → E, i = 1, 2, . . ., be a countably infinite family of continuous accretive operators
such that

⋂∞
i=1A

−1
i (0)/= ∅. For arbitrary but fixed δ ∈ (0, 1), u ∈ K, let {xn}∞n=1 be generated by

x1 ∈ K,

xn+1 = αnu +
∞∑
i=1

σi,n((1 − δ)xn + δJAixn), n ≥ 1, (4.18)

then, {xn}∞n=1 converges strongly to a common zero of {Ai}∞i=1.

Proof. By Lemma 2.5, we have that Ai is m-accretive for each i ≥ 1. Then, the rest of the proof
follows from Theorem 4.1.

We also have the following theorems.

Theorem 4.4. Let K, E, Ai and {xn}n≥1 be as an Theorem 4.1. Suppose that at least one of JAi is
demicompact, then {xn}n≥1 converges strongly to a common zero of Ai, i = 1, 2, . . . .

Proof. The proof follows as in the proof of Theorem 4.1 but using Theorem 3.6.

Theorem 4.5. Let K, E, Ai and {xn}n≥1 be as an Theorem 4.1. Suppose that, in addition, E admits
weakly sequential continuous duality mapping, then {xn}n≥1 converges strongly to a common zero of
Ai, i = 1, 2, . . . .

Proof. The proof follows as in the proof of Theorem 4.1 but using Theorem 3.7.
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5. Convergence Theorems for Countably Infinite Family of
Pseudocontractive Mappings

Theorem 5.1. Let K be a nonempty closed convex subset of a uniformly convex real Banach space
E with uniformly Gâteaux differentiable norm. Let Ti : K → E, i = 1, 2, . . ., be a countably
infinite family of pseudocontractive mappings such that for each i ≥ 1, (I − Ti) is m-accretive and⋂∞

i=1F(Ti)/= ∅. Let JTi = (2I − Ti)
−1, i ≥ 1. For fixed δ ∈ [γ1, γ2], for some γ1, γ2 ∈ (0, 1) and u ∈ K,

let {xn}∞n=1 be generated by x1 ∈ K:

xn+1 = αnu +
∞∑
i=1

σi,n((1 − δ)xn + δJTixn), n ≥ 1, (5.1)

then {xn}∞n=1 converges strongly to a common fixed point of {Ti}∞i=1.

Proof. Put Ai := (I − Ti), i ≥ 1. It is then obvious that A−1
i (0) = F(Ti), for all i ∈ N and hence⋂∞

i=1A
−1
i (0) =

⋂∞
i=1F(Ti). Furthermore, Ai is m-accretive for each i ≥ 1. Thus, we obtain the

conclusion from Theorem 4.1 with JAi in the definition of zn replaced with JTi .

Theorem 5.2. Let E be a uniformly convex real Banach space with uniformly Gâteaux differentiable
norm. For each i ≥ 1, let Ti : E → E be a countably infinite family of continuous pseudocontractive
mappings such that for each i ≥ 1 and

⋂∞
i=1F(Ti)/= ∅. Let JTi = (2I − Ti)

−1, i ≥ 1. For arbitrary but
fixed δ ∈ [γ1, γ2], for some γ1, γ2 ∈ (0, 1) and u ∈ K, let {xn}∞n=1 be generated by x1 ∈ K:

xn+1 = αnu +
∞∑
i=1

σi,n((1 − δ)xn + δJTixn), n ≥ 1, (5.2)

then {xn}∞n=1 converges strongly to a common fixed point of {Ti}∞i=1.

Remark 5.3. Theorems similar to Theorems 4.4 and 4.5 could also be obtained for countably
infinite family of pseudocontractive mappings.

Remark 5.4. Prototypes for our iteration parameters are

αn =
1

n + 1
, σi,n =

n

2i(n + 1)
, λi =

1
2i
. (5.3)

Remark 5.5. The addition of bounded error terms in any of our recursion formulas leads to no
further generalization.

Remark 5.6. If f : K → K is a contraction map and we replace u by f(xn) in the recursion
formulas of our theorems, we obtain what some authors now call viscosity iteration process.
We observe that all our theorems in this paper carry over trivially to the so-called viscosity
process. One simply replaces u by f(xn), repeats the argument of this paper, using the fact
that f is a contraction map.
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