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1. Introduction

It is well known [1] that each nonzero real number can be uniquely written as an Engel series
expansion, or ES expansion for short, and an ES expansion represents a rational number if
and only if each digit in such expansion is identical from certain point onward. In 1973,
Cohen [2] devised an algorithm to uniquely represent each nonzero real number as a sum
of Egyptian fractions, which we refer to as its Cohen-Egyptian fraction (or CEF) expansion.
Cohen also characterized the real rational numbers as those with finite CEF expansions. At a
glance, the shapes of both expansions seem quite similar. This naturally leads to the question
whether the two expansions are related. We answer this question affirmatively for elements
in two different fields. In Section 2, we treat the case of real numbers and show that for
irrational numbers both kinds of expansion are identical, while for rational numbers, their
ES expansions are infinite, periodic of period 1, but their CEF expansions always terminate.
In Section 3, we treat the case of a discrete-valued non-archimedean field. After devising
ES and CEF expansions for nonzero elements in this field, we see immediately that both
expansions are identical. In Section 4, we characterize rational elements in three different
non-archimedean fields.
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2. The Case of Real Numbers

Recall the following result, see, for example, Kapitel IV of [1], which asserts that each nonzero
real number can be uniquely represented as an infinite ES expansion and rational numbers
have periodic ES expansions of period 1.

Theorem 2.1. Each A ∈ R \ {0} is uniquely representable as an infinite series expansion, called its
Engel series (ES) expansion, of the form

A = a0 +
∞∑

n=1

1
a1a2 · · ·an

, (2.1)

where

a0 =

⎧
⎨

⎩
[A], if A/∈Z,

A − 1 if A ∈ Z,
a1 ≥ 2, an+1 ≥ an (n ≥ 1). (2.2)

Moreover, A ∈ Q if and only if an+1 = an(≥ 2) for all sufficiently large n.

Proof. Define A1 = A − a0, then 0 < A1 ≤ 1. If An /= 0 (n ≥ 1) is already defined, put

an = 1 +
[

1
An

]
, (2.3)

An+1 = anAn − 1. (2.4)

Observe that an is the least integer > 1/An and

1
an

< An ≤ 1
an − 1

. (2.5)

We now prove the folowing.

Claim. We have 0 < · · · ≤ An+1 ≤ An ≤ · · · ≤ A2 ≤ A1 ≤ 1.

Proof of the Claim. First, we show that An > 0 for all n ≥ 1 by induction. If n = 1, we have seen
that A1 > 0. Assume now that An > 0 for n ≥ 1. By (2.3), we see that an ∈ N. Since

An+1 = anAn − 1 =
(
An − 1

an

)
an (2.6)

and 1/an < An,we have An+1 > 0. If there exists k ∈ N such that Ak+1 > Ak, then

akAk − 1 = Ak+1 > Ak (2.7)

and so ak − 1 > 1/Ak, contradicting the minimal property of an and the Claim is proved.
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From the Claim and (2.3), we deduce that a1 ≥ 2 and an+1 ≥ an (n ≥ 1). Iterating (2.4),
we get

A1 =
1
a1

+
1

a1a2
+ · · · + 1

a1a2 · · ·an
+

An+1

a1a2 · · ·an
. (2.8)

To establish convergence, let

Bn =
1
a1

+
1

a1a2
+ · · · + 1

a1a2 · · ·an
(n ≥ 1). (2.9)

Since An > 0 and an ∈ N for all n ≥ 1, the sequence of real numbers (Bn) is increasing and
bounded above by A1. Thus, limn→∞Bn exists and so

1
a1a2 · · ·an

−→ 0 (n −→ ∞). (2.10)

By the Claim,

0 <
An+1

a1a2 · · ·an
≤ 1

a1a2 · · ·an
−→ 0 (n −→ ∞), (2.11)

showing that any real number has an ES expansion. To prove uniqueness, assume that we
have two infinite such expansions such that

a0 +
∞∑

n=1

1
a1a2 · · ·an

= b0 +
∞∑

n=1

1
b1b2 · · · bn , (2.12)

with the restrictions a0 ∈ Z, a1 ≥ 2, an+1 ≥ an (n ≥ 1) and the same restrictions also for the
bn’s. From the restrictions, we note that

0 < A1 :=
∞∑

n=1

1
a1a2 · · ·an

≤ 1. (2.13)

IfA1 = 1, then by (2.12)we also have
∑

n≥1 1/b1b2 · · · bn = 1, forcing a0 = b0. If 0 < A1 < 1, then
(2.12) shows that 0 <

∑
n≥1 1/b1b2 · · · bn < 1, forcing again a0 = b0. In either case, cancelling

out the terms a0, b0 in (2.12)we get

A1 :=
∞∑

n=1

1
a1a2 · · ·an

=
∞∑

n=1

1
b1b2 · · · bn . (2.14)

Since an+1 ≥ an, then

a1A1 − 1 =
1
a2

+
1

a2a3
+

1
a2a3a4

+ · · · ≤ 1
a1

+
1

a1a2
+

1
a1a2a3

+ · · · = A1, (2.15)
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so 0 < a1 − 1/A1 ≤ 1. But there is exactly one integer a1 satisfying these restrictions. Thus,
a1 = b1. Cancelling out the terms a1 and b1 in (2.14) and repeating the arguments we see that
ai = bi for all i.

Concerning the rationality characterization, if its ES expansion is infinite periodic of
period 1, it clearly represents a rational number. To prove its converse, let A = a/b ∈ Q \ {0}.
Since

A1 = A − a0 =
a − ba0

b
, (2.16)

we see that A1 is a rational number in the interval (0, 1] whose denominator is b. In general,
from (2.4), we deduce that each An (n ≥ 1) is a rational number in the interval (0, 1]
whose denominator is b. But the number of rational numbers in the interval (0, 1] whose
denominator is b is finite implying that there are two least suffixes h, k ∈ N such that
Ah+k = Ah. Thus, by (2.3), we have ah+k = ah. From (2.2), we know that the sequence {an} is
increasing. We must then have k = 1 and the assertion follows.

Remarks. In passing, we make the following observations.

(a) For n ≥ 1, we have

an+1 = an ⇐= An+1 = An ⇐⇒ anAn − 1 = An ⇐⇒ an = 1 +
1
An

⇐⇒ 1
An

∈ Z. (2.17)

(b) If A ∈ Q
c, then An ∈ Q

c and so 1/An /∈Q for all n ≥ 1.

(c) If A ∈ Z, then its ES expansion is

A = A − 1 +
1
2
+

1
22

+
1
23

+ · · · . (2.18)

To construct a Cohen-Egyptian fraction expansion, we proceed as in [2]making use of
the following lemma.

Lemma 2.2. For any y ∈ (0, 1), there exist a unique integer n ≥ 2 and a unique r ∈ R such that

1 = ny − r, 0 ≤ r < y. (2.19)

Proof. Let n = 	1/y
 ∈ N and r = ny − 1. Put 〈1/y〉 := n − 1/y ∈ [0, 1) and so

r = ny − 1 = y

〈
1
y

〉
∈ [0, y). (2.20)

To prove uniqueness, assume ny − r = 1 = my − s so that

1 +
1
y

> n =
1 + r

y
≥ 1

y
. (2.21)
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Since there is only one integer with this property, we deduce n = m and consequently, r = s
proving the lemma.

Theorem 2.3. Each A ∈ R \ {0} is uniquely representable as a CEF expansion of the form

A = n0 +
∞∑

k=1

1
n1n2 · · ·nk

, (2.22)

subject to the condition

n0 ∈ Z, n1 ≥ 2, nk+1 ≥ nk (k ≥ 1), (2.23)

and no term of the sequence appears infinitely often. Moreover, each CEF expansion terminates if and
only if it represents a rational number.

Proof. To construct a CEF expansion for A ∈ R \ {0}, define

r0 = A − n0 ∈ [0, 1). (2.24)

If r0 = 0, then the process stops and we writeA = n0. If r0 /= 0, by Lemma 2.2, there are unique
n1 ∈ N and r1 ∈ R such that

1 = n1r0 − r1, 0 ≤ r1 < r0, n1 ≥ 2. (2.25)

Thus,

A = n0 + r0 = n0 +
1
n1

+
r1
n1

. (2.26)

If r1 = 0, then the process stops and we write A = n0 + 1/n1. If r1 /= 0, by Lemma 2.2, there are
n2 ∈ N and r2 ∈ R such that

1 = n2r1 − r2, 0 ≤ r2 < r1, n2 ≥ n1, (2.27)

the last inequality being followed from n1 = 	1/r0
, n2 = 	1/r1
, and r1 < r0. Observe also
that

A = n0 +
1
n1

+
1

n1n2
+

r2
n1n2

. (2.28)

Continuing this process, we get

A = n0 +
1
n1

+
1

n1n2
+ · · · + 1

n1n2 · · ·nk
+

rk
n1n2 · · ·nk

, (2.29)
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with

1 = niri−1 − ri, 1 > ri−1 > ri ≥ 0, 2 ≤ ni ≤ ni+1 (i = 1, 2, . . .). (2.30)

If some rk = 0, then the process stops, otherwise the series convergence follows at once from

∣∣∣∣
rk

n1n2 · · ·nk

∣∣∣∣ −→ 0 (k −→ ∞). (2.31)

To prove uniqueness, let

n0 +
∞∑

k=1

1
n1n2 · · ·nk

= A = m0 +
∞∑

k=1

1
m1m2 · · ·mk

, (2.32)

with the restrictions (2.23) on both digits ni and mj . Now

∑

k≥1

1
n1n2 · · ·nk

≤
∑

k≥1

1
2k

= 1. (2.33)

It is clear that the restrictions (2.23) imply the strict inequality in (2.33). This also applies to
the right-hand sum in (2.32). Equating integer and fractional parts in (2.32), we get

n0 = m0,
∞∑

k=1

1
n1n2 · · ·nk

=
∞∑

k=1

1
m1m2 · · ·mk

=: w, say. (2.34)

Since nk+1 ≥ nk, then

n1w − 1 =
1
n2

+
1

n2n3
+

1
n2n3n4

+ · · · ≤ 1
n1

+
1

n1n2
+

1
n1n2n3

+ · · · = w, (2.35)

so 0 < n1 − 1/w ≤ 1. But there is exactly one integer n1 satisfying these restrictions. Then
n1 = m1 and

∑

k≥2

1
n2 · · ·nk

=
∑

k≥2

1
m2 · · ·mk

. (2.36)

Proceeding in the same manner, we conclude that ni = mi for all i.
Finally, we look at its rationality characterization. If A ∈ Q, then r0 ∈ Q, say r0 := p/q,

where p, q ∈ N. From (2.30), we see that each ri is a rational number whose denominator is q.
Using this fact and the second inequality condition in (2.30), we deduce that rj = 0 for some
j ≤ p, that is, the expansion terminates. On the other hand, it is clear that each terminating
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CEF expansion represents a rational number. Now suppose that A is irrational and there is a
j and integer n such that ni = n for all i ≥ j. Then

A = n0 +
j∑

k=1

1
n1n2 · · ·nk

+
1

n1n2 · · ·nj

∞∑

k=1

1
nk

. (2.37)

Since
∑

k≥1 1/n
k = 1/(n − 1), it follows that A is rational, which is impossible.

The connection and distinction between ES and CEF expansions of a real number are
described in the next theorem.

Theorem 2.4. Let A ∈ R \ {0} and the notation be as set out in Theorems 2.1 and 2.3.
(i) If A ∈ Q, then its ES expansion is infinite periodic of period 1, while its CEF expansion is

finite. More precisely, for A ∈ Q \ Z, let its ES and CEF expansions be, respectively,

A = a0 +
∞∑

n=1

1
a1a2 · · ·an

= n0 +
∞∑

k=1

1
n1n2 · · ·nk

. (2.38)

Ifm is the least positive integer such that 1/Am ∈ Z, then

a0 = n0, a1 = n1, . . . , am−1 = nm−1, am = nm + 1, am = am+i (i ≥ 1), (2.39)

and the digits ni terminate at nm.
(ii) If A ∈ R \ Q, then its ES and its CEF expansions are identical.

Proof. Both assertions follow mostly from Theorems 2.1, 2.3, and Remark (b) except for the
result related to the expansions in (2.38) which we show now.

Let A ∈ Q \ Z and let m be the least positive integer such that 1/Am ∈ Z. We treat two
seperate cases.

Case 1 (m = 1). In this case, we have 1/A1 ∈ Z and a1 = 1 + [1/A1] = 1 + 1/A1. Since
r0 = A − n0 = A − [A] = A − a0 = A1, we get n1 = 1/A1 and so a1 = n1 + 1. We have
r1 = n1r0 − 1 = 0, and so the CEF expansion terminates. On the other hand, by Remark (a)
after Theorem 2.1, we have a1 = ai (i ≥ 2).

Case 2 (m > 1). Thus, 1/A1 /∈Z andA1 = r0. By Lemma 2.2, we have a1 = n1. For 1 ≤ i ≤ m−2,
assume that Ai = ri−1 and ai = ni. Then

Ai+1 = aiAi − 1 = niri−1 − 1 = ri. (2.40)

Since 1/Ai+1 /∈Z, again by Lemma 2.2, ai+1 = ni+1. This shows that a1 = n1, . . . , am−1 = nm−1.
Since 1/Am ∈ Z, we have am = 1 + [1/Am] = 1 + 1/Am and thus

Am = am−1Am−1 − 1 = nm−1rm−2 − 1 = rm−1. (2.41)
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From the construction of CEF, we know that nm = 	1/rm−1
. Thus, nm = 1/Am showing that
am = nm + 1. Furthermore, rm = nmrm−1 − 1 = 0, implying that the CEF terminates at nm, and
by Remark (a) after Theorem 2.1, am = am+i (i ≥ 1).

3. The Non-Archimedean Case

We recapitulate some facts about discrete-valued non-archimedean fields taken from [3,
Chapter 4]. Let K be a field complete with respect to a discrete non-archimedean valuation
| · | and O := {A ∈ K; |A| ≤ 1} its ring of integers. The set P := {A ∈ K; |A| < 1} is an ideal in O
which is both a maximal ideal and a principal ideal generated by a prime element π ∈ K. The
quotient ringO/P is a field, called the residue class field. LetA ⊂ O be a set of representatives
of O/P. Every A ∈ K \ {0} is uniquely of the shape

A =
∞∑

n=N

bnπ
n (bn ∈ A, bN /= 0) (3.1)

for some N ∈ Z, and define the order v(A) of A by |A| = 2−v(A) = 2−N , with v(0) := +∞. The
head part 〈A〉 of A is defined as the finite series

〈A〉 =
0∑

n=v(A)

bnπ
n if v(A) ≤ 0, and 0 otherwise. (3.2)

Denote the set of all head parts by

S := {〈A〉;A ∈ K}. (3.3)

The Knopfmachers’ series expansion algorithm for series expansions in K [4] proceeds as
follows. For A ∈ K, let

a0 := 〈A〉 ∈ S. (3.4)

Define

A1 := A − a0. (3.5)

If An /= 0 (n ≥ 1) is already defined, put

an =
〈

1
An

〉
, An+1 =

(
An − 1

an

)
sn
rn

(3.6)

if an /= 0, where rn and sn ∈ K \ {0} which may depend on a1, . . . , an. Then for n ≥ 1

A = a0 +A1 = · · · = a0 +
1
a1

+
r1
s1

1
a2

+ · · · + r1 · · · rn−1
s1 · · · sn−1

1
an

+
r1 · · · rn
s1 · · · snAn+1. (3.7)

The process ends in a finite expansion if some An+1 = 0. If some an = 0, then An+1 is not
defined. To take care of this difficulty, we impose the condition

v(sn) − v(rn) ≥ 2v(an) − 1. (3.8)



International Journal of Mathematics and Mathematical Sciences 9

Thus

A = a0 +
1
a1

+
∞∑

n=1

r1 · · · rn
s1 · · · sn · 1

an+1
. (3.9)

When rn = 1, sn = an, the algorithm yields a well-defined (with respect to the valuation)
and unique series expansion, termed non-archimedean Engel series expansion. Summing up, we
have the following.

Theorem 3.1. EveryA ∈ K\{0} has a finite or an infinite convergent non-archimedean ES expansion
of the form

A = a0 +
∞∑

n=1

1
a1a2 · · ·an

, (3.10)

where the digits an are subject to the restrictions

a0 = 〈A〉 ∈ S, an ∈ S, v(an) ≤ −n, v(an+1) ≤ v(an) − 1 (n ≥ 1). (3.11)

Now we turn to the construction of a non-archimedean Cohen-Egyptian fraction
expansion, in the same spirit as that of the real numbers, that is, by way of Lemma 2.2. To
this end, we start with the following lemma.

Lemma 3.2. For any y ∈ K \{0} such that v(y) ≥ 1, there exist a unique n ∈ S such that v(n) ≤ −1
and a unique r ∈ K such that

1 = ny − r, v(r) ≥ v
(
y
)
+ 1

(
i.e., 0 ≤ |r| < ∣∣y∣∣). (3.12)

Proof. Let n = 〈1/y〉. Then v(n) = v(1/y) = −v(y) ≤ −1. Putting r = ny − 1, we show now
that v(r) ≥ v(y) + 1. Since n = 〈1/y〉, we have

1
y

= n +
∑

k≥1
ckπ

k, (3.13)

where ck ∈ A, and so

ny − 1 = −y
∑

k≥1
ckπ

k. (3.14)

Thus

v(r) = v
(
ny − 1

)
= v
(−y) + v

(
∑

k≥1
ckπ

k

)
≥ v
(
y
)
+ 1 > v

(
y
)
. (3.15)
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To prove the uniqueness, assume that there exist n1 ∈ S such that v(n1) ≤ −1 and r1 ∈ K such
that

1 = n1y − r1, 0 ≤ |r1| <
∣∣y
∣∣. (3.16)

From ny−r = 1 = n1y−r1, we get (n−n1)y = r−r1. If n/=n1, since n, n1 ∈ Swe have |n−n1| ≥ 1.
Using |y| > |r − r1|, we deduce that

|r − r1| <
∣∣y
∣∣ ≤ |n − n1|

∣∣y
∣∣ = |r − r1|, (3.17)

which is a contradiction. Thus, n = n1 and so r = r1.

For a non-archimedean CEF expansion, we now prove the following.

Theorem 3.3. Each y ∈ K \ {0} has a non-archimedean CEF expansion of the form

y = n0 +
∞∑

k=1

1
n1n2 · · ·nk

, (3.18)

where

nk ∈ S, v(nk) ≤ −k, v(nk+1) ≤ v(nk) − 1 (k ≥ 1). (3.19)

This series representation is unique subject to the digit condition (3.19).

Proof. Define n0 = 〈y〉 and r0 = y − n0. Then v(r0) ≥ 1. If r0 = 0, the process stops and we
write y = n0. If r0 /= 0, by Lemma 3.2, there are n1 ∈ S and r1 ∈ K such that

n1 =
〈

1
r0

〉
, r1 = n1r0 − 1, (3.20)

where v(n1) ≤ −1 and v(r1) ≥ v(r0) + 1. So

y = n0 + r0 = n0 +
1
n1

+
r1
n1

. (3.21)

If r1 = 0, the process stops and we write y = n0+1/n1. If r1 /= 0, by Lemma 3.2, there are n2 ∈ S
and r2 ∈ K such that

n2 =
〈

1
r1

〉
, r2 = n2r1 − 1, (3.22)

where v(n2) ≤ −1 and v(r2) ≥ v(r1) + 1. So

y = n0 +
1
n1

+
1

n1n2
+

r2
n1n2

. (3.23)
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Continuing the process, in general,

nk =
〈

1
rk−1

〉
, rk = nkrk−1 − 1,

y = n0 +
1
n1

+
1

n1n2
+ · · · + 1

n1n2 · · ·nk
+

rk
n1n2 · · ·nk

,

(3.24)

where

nk ∈ S, v(nk) ≤ −1, v(rk) ≥ v(rk−1) + 1 (k ≥ 1). (3.25)

Thus,

v(nk+1) = −v(rk) ≤ −v(rk−1) − 1 = v(nk) − 1 (k ≥ 1). (3.26)

We observe that the process terminates if rk = 0. Next, we show that v(nk) ≤ −k (k ≥ 1). By
construction, we have v(n1) ≤ −1. Assume that v(nk) ≤ −k, then

v(nk+1) ≤ v(nk) − 1 ≤ −k − 1. (3.27)

Regarding convergence, consider

v

(
rk

n1n2 · · ·nk

)
= −v(n1) − v(n2) − · · · − v(nk) + v(rk)

= −v(n1) − v(n2) − · · · − v(nk) − v(nk+1)

≥ 1 + 2 + · · · + k + (k + 1) −→ ∞ (k −→ ∞).

(3.28)

It remains to prove the uniqueness. Suppose that x ∈ K \ {0} has two such expansions

x = n0 +
∑

j

1
n1n2 · · ·nj

= m0 +
∑

i

1
m1m2 · · ·mi

. (3.29)

Since v(
∑

j 1/n1n2 · · ·nj) = v(1/n1) ≥ 1 and n0 ∈ S, we have n0 = 〈y〉. Similarly, m0 = 〈y〉
yielding by uniqueness n0 = m0 and

∑
j≥1 1/n1n2 · · ·nj =

∑
i≥1 1/m1m2 · · ·mi. Putting

ω :=
∑

j≥1

1
n1n2 · · ·nj

=
∑

i≥1

1
m1m2 · · ·mi

, (3.30)
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we have n1ω = 1 +
∑

j≥2 1/n2 · · ·nj and so

1 = n1ω −
∑

j≥2

1
n2 · · ·nj

, v

⎛

⎝
∑

j≥2

1
n2 · · ·nj

⎞

⎠ = v

(
1
n2

)
= −v(n2) ≥ −v(n1) + 1 = v(ω) + 1.

(3.31)

By Lemma 3.2, since n1 is the unique element in S with such property, we deduce n1 = m1.
Continuing in the same manner, we conclude that the two expansions are identical.

It is clear that the construction of non-archimedean ES and CEF expansions is
identical which implies at once that the two representations are exactly the same in the non-
archimedean case.

4. Rationality Characterization in the Non-Archimedean Case

In the case of real numbers, we have seen that both ES and CEF expansions can be used
to characterize rational numbers with quite different outcomes. In the non-archimedean
situation, though ES and CEF expansions are identical, their use to characterize rational
elements depend significantly on the underlying nature of each specific field. We end this
paper by providing information on the rationality characterization in three different non-
archimedean fields, namely, the field of p-adic numbers and the two function fields, one
completed with respect to the degree valuation and the other with respect to a prime-adic
valuation.

The following characterization of rational numbers by p-adic ES expansions is due to
Grabner and Knopfmacher [5].

Theorem 4.1. Let x ∈ pZp \ {0}. Then x is rational, x = α/β, if and only if either the p-adic ES
expansion of x is finite, or there exist anm and an s ≥ m, such that

am+j =
ps+j+1 − γ

ps+j
(
j = 0, 1, 2, . . .

)
, (4.1)

where γ | β.

Now for function fields, we need more terminology. Let F denote a field and π(x) an
irreducible polynomial of degree d over F. There are two types of valuation in the field of
rational functions F(x), namely, the π(x)-adic valuation | · |π , and the degree valuation | · |1/x
defined as follows. From the unique representation in F(x),

f(x)
g(x)

= π(x)m
r(x)
s(x)

, f(x), g(x), r(x), s(x) ∈ F[x] \ {0}; π(x) � r(x)s(x), m ∈ Z, (4.2)

set

|0|π = 0,
∣∣∣∣
f(x)
g(x)

∣∣∣∣
π

= 2−md; |0|1/x = 0,
∣∣∣∣
f(x)
g(x)

∣∣∣∣
1/x

= 2deg f(x)−deg g(x). (4.3)
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Let F((π)) and F((1/x)) be the completions of F(x), with respect to the π(x)-adic and the
degree valuations, respectively. The extension of the valuations to F((π)) and F((1/x)) is
also denoted by | · |π and | · |1/x.

For a characterization of rational elements, we prove the following.

Theorem 4.2. The CEF of y ∈ F((π)) or in F((1/x)) terminates if and only if y ∈ F(x).

Proof. Although the assertions in both fields F((π)) and F((1/x)) are the same, their
respective proofs are different. In fact, when the field F has finite characteristic, both results
have already been shown in [6] and the proof given here is basically the same.

We use the notation of the last section with added subscripts π or 1/x to distinguish
their corresponding meanings.

If the CEF of y in either field is finite, then y is clearly rational. It remains to prove the
converse and we begin with the field F((π)). Assume that y ∈ F(x) \ {0}. By construction,
each rk ∈ F(x) and so can be uniquely represented in the form

rk = π(x)v(rk)
pk(x)
qk(x)

, (4.4)

where pk(x), qk(x) (/= 0) ∈ F[x] with gcd (pk(x), qk(x)) = 1, π(x) � pk(x)qk(x). Since nk =
〈1/rk−1〉 ∈ Sπ and v(nk) ≤ −k, it is of the form

nk = sv(nk)(x)π(x)
v(nk) + sv(nk)+1(x)π(x)

v(nk)+1 + · · · + s−1(x)π(x)−1 + s0(x)

=: mk(x)π(x)v(nk),
(4.5)

where sv(nk)(x), . . . , s0(x) are polynomials over F, not all 0, of degree < d and mk(x) ∈ F[x].
Thus,

|nk|1/x ≤ max
{∣∣∣sv(nk)(x)π(x)

v(nk)
∣∣∣
1/x

,
∣∣∣sv(nk)+1(x)π(x)

v(nk)+1
∣∣∣
1/x

, . . . ,

∣∣∣s−1(x)π(x)−1
∣∣∣
1/x

, |s0(x)|1/x
}

≤ 2d−1,

(4.6)

yielding

|mk(x)|1/x ≤ 2d−dv(nk)−1. (4.7)

By construction, we have

rk = nkrk−1 − 1. (4.8)



14 International Journal of Mathematics and Mathematical Sciences

Substituting (4.4) and (4.5) into (4.8) and using v(rk−1) = −v(nk) lead to

π(x)−v(nk+1)pk(x)qk−1(x) = qk(x)
(
mk(x)pk−1(x) − qk−1(x)

)
. (4.9)

Since gcd (π(x)−v(nk+1)pk(x), qk(x)) = 1, it follows that qk(x) | qk−1(x), and so successively, we
have

∣∣qk(x)
∣∣
1/x ≤ ∣∣qk−1(x)

∣∣
1/x ≤ · · · ≤ ∣∣q1(x)

∣∣
1/x, (4.10)

which together with (4.9) yield

∣∣pk(x)
∣∣
1/x ≤ |π(x)|v(nk+1)

1/x max
{∣∣mk(x)pk−1(x)

∣∣
1/x,
∣∣q1(x)

∣∣
1/x

}
. (4.11)

Using (3.19) and (4.7), we consequently have

∣∣pk(x)
∣∣
1/x ≤ 2d(v(nk)−1) max

{
2d−dv(nk)−1∣∣pk−1(x)

∣∣
1/x,
∣∣q1(x)

∣∣
1/x

}

≤ max

{
1
2
∣∣pk−1(x)

∣∣
1/x,

∣∣q1(x)
∣∣
1/x

2d(k+1)

}
.

(4.12)

This shows that |pk(x)|1/x ≤ (1/2)|pk−1(x)|1/x for all large k which implies that from some k
onwards, pk(x) = 0, and so rk = 0, that is, the expansion terminates.

Finally for the field F((1/x)), assume that y = p(x)/q(x) ∈ F(x) \ {0}. Without loss of
generality, assume deg p(x) ≥ deg q(x). By the Euclidean algorithm, we have

y =
p(x)
q(x)

= N0(x) +
R0(x)
q(x)

:= n0 + r0, (4.13)

where

n0 := N0(x) =
〈
y
〉
1/x, R0(x) ∈ F[x], 0 ≤ degR0 < deg q, r0 =

R0(x)
q(x)

. (4.14)

From the Euclidean algorithm,

q(x)
R0(x)

= N1(x) +
R1(x)
R0(x)

, N1(x), R1(x) ∈ F[x], 0 ≤ degR1 < degR0 < deg q, (4.15)

which is, in the terminology of Lemma 3.2,

1 = r0N1 +
R1

q
= r0n1 − r1. (4.16)
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Again, from the Euclidean algorithm,

−q(x)
R1(x)

= N2(x) +
R2(x)
R1(x)

, N2(x), R2(x) ∈ F[x], 0 ≤ degR2 < degR1 < degR0 < deg q,

(4.17)

which is, in the terminology of Lemma 3.2,

1 = r1N2 − R2

q
= r1n2 − r2. (4.18)

Proceeding in the same manner, in general we have

rj = (−1)j Rj

q
, 0 ≤ degRj < degRj−1 < · · · < degR1 < deg q. (4.19)

There must then exist k ∈ N such that degRk = 0, that is, Rk ∈ F \ {0}. Thus, the CEF of y is

y = n0 +
1
n1

+ · · · + 1
n1 · · ·nk

+
rk

n1 · · ·nk
= n0 +

1
n1

+ · · · + 1
n1 · · ·nk

+
1

n1 · · ·nknk+1
, (4.20)

where nk+1 = (−1)kR−1
k q ∈ F[x], which is a terminating CEF.
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