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1. Introduction

LetAp (p ∈ N = {1, 2, 3, . . .}) be the class of functions f(z) of the form

f(z) = zp +
∞∑

m=1

ap+mz
p+m (1.1)

which are analytic in the open unit disk Δ := {z : |z| < 1}.
Let P be the class of functions p(z) of the form

p(z) = 1 +
∞∑

n=1

pnz
n (1.2)

which are analytic in Δ. If p(z) ∈ P satisfies Rp(z) > 0 (z ∈ Δ), then we say that p(z) is a
Carathéodory function.

With a view to recalling the principle of subordination between analytic functions, let
the functions f and g be analytic in Δ. Then we say that the function f is subordinate to g if
there exists a Schwarz function w(z), analytic in Δ with

w(0) = 0, |w(z)| < 1 (z ∈ Δ), (1.3)
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such that

f(z) = g(w(z)) (z ∈ Δ). (1.4)

We denote this subordination by

f ≺ g, f(z) ≺ g(z) (z ∈ Δ). (1.5)

In particular, if the function g is univalent in Δ, the above subordination is equivalent to

f(0) = g(0) or f(Δ) ⊂ g(Δ). (1.6)

For −1 ≤ b < a ≤ 1 and 0 < γ ≤ 1, a function f ∈ Ap is said to be in the class S∗p(γ, a, b)
if it satisfies

zf ′(z)
f(z)

≺ p
(

1 + az
1 + bz

)γ

. (1.7)

Also, we write S∗p(γ, 1,−1) = SS∗p(γ), the class of strongly starlike p-valent functions of order γ
in Δ. S∗p(1, a, b) = S

∗
p(a, b), the class of Janowski starlike p-valent function, S∗p(1,−1) = S∗p, the

class of p-valent starlike function, and S∗p(1 − 2γ, 1) = S∗p(γ) (0 ≤ γ < 1), the class of p-valent
starlike function of order γ .

For Carathéodory functions, Miller [1] obtained certain sufficient conditions applying
the differential inequalities. Recently, Nunokawa et al. [2] have given some improvement
of result by Miller [1]. Recently Ravichandran and Jayamala [3] studied some subordination
results for Carathéodory functions. In this paper by extending the result of Ravichandran and
Jayamala [3], we find sufficient conditions for the subordination p(z) ≺ q(z) to hold for given
q(z) and criteria for p-valent starlikeness. Our results include results obtained by Nunokawa
et al. [2]. We also give some criteria for p-valently starlikeness and strong starlikeness.

To prove our result we need the following lemma due to Miller and Mocanu [4].

Lemma 1.1 (see [4, Theorem 3.4h, page 132]). Let q(z) be analytic and univalent in the unit disk
Δ and θ(ω) and let φ(ω) be analytic in a domainD containing q(Δ) with φ(w)/= 0 whenw ∈ q(Δ).
Set

Q(z) = zq′(z)φ
(
q(z)

)
, h(z) = θ

(
q(z)

)
+Q(z). (1.8)

Suppose that

(i) Q(z) is starlike univalent in Δ,

(ii) R{zh′(z)/Q(z)} = R{θ′(q(z))/φ(q(z)) + zQ′(z)/Q(z)} > 0 for z ∈ Δ.

If p(z) is analytic in Δ with, p(0) = q(0), p(Δ) ⊆ D, and

θ
(
p(z)

)
+ zp′(z)φ

(
p(z)

)
≺ θ

(
q(z)

)
+ zq′(z)φ

(
q(z)

)
, (1.9)

then p(z) ≺ q(z) and q(z) is the best dominant.
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2. Application of Differential Subordination

By making use of Lemma 1.1, we first prove the following theorem.

Theorem 2.1. Let 0/=α ∈ C and λ be a positive real number. Let q(z) be convex univalent in Δ and
R((1 − α) \ α +m(q(z))m−1) > 0, m ∈ N \ {1}. If p ∈ P satisfies

(1 − α)p(z) + α
(
p(z)

)m + αλzp′(z) ≺ h(z), (2.1)

where

h(z) = (1 − α)q(z) + α
(
q(z)

)m + αλzq′(z), (2.2)

then

p(z) ≺ q(z), (2.3)

and q(z) is the best dominant of (2.1).

Proof. Let

θ(w) = (1 − α)w + αwm, φ(w) = αλ. (2.4)

Then clearly θ(w) and φ(w) are analytic in C and φ(w)/= 0. Also let

Q(z) = zq′(z)φ
(
q(z)

)
= αλzq′(z),

h(z) = θ
(
q(z)

)
+Q(z)

= (1 − α)q(z) + α
(
q(z)

)m + αλzq′(z).

(2.5)

Since q(z) is convex univalent, zq′(z) is starlike univalent. ThereforeQ(z) is starlike univalent
in Δ, and

R

(
zh′(z)
Q(z)

)
=

1
λ

R

{
1 − α
α

+m
(
q(z)

)m−1 + λ
(

1 +
zq′′(z)
q′(z)

)}
> 0 (2.6)

for z ∈ Δ.
From (2.1)–(2.6) we see that

θ
(
p(z)

)
+ zp′(z)φ

(
p(z)

)
≺ θ

(
q(z)

)
+ zq′(z)φ

(
q(z)

)
= h(z). (2.7)

Therefore, by applying Lemma 1.1, we conclude that p(z) ≺ q(z) and q(z) is the best
dominant of (2.1). The proof of the theorem is complete.

By taking α as real and q(z) = ((1 + az)/(1 + bz))γ in Theorem 2.1, we get the following
corollary.
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Corollary 2.2. Let −1 ≤ b < a ≤ 1, m ∈ N \ {1}, 0 < γ ≤ 1/(m − 1), λ be real number such that
λ > 0 and 0 < α ≤ 1. If p ∈ P satisfies

(1 − α)p(z) + α
(
p(z)

)m + αλzp′(z) ≺ h(z), (2.8)

where

h(z) = (1 − α)
(

1 + az
1 + bz

)γ

+ α
(

1 + az
1 + bz

)mγ

+
αλγ(a − b)z

(1 + az)1−γ(1 + bz)1+γ
, (2.9)

then

p(z) ≺
(

1 + az
1 + bz

)γ

, (2.10)

and ((1 + az)/(1 + bz))γ is the best dominant of (2.8).

Corollary 2.3. Let −1 ≤ b < a ≤ 1, λ > 0. If f ∈ Ap satisfies f(z)/= 0 in 0 < |z| < 1 and

zf ′(z)
pf(z)

[
1 − α +

α

p

(
1 − λp

)zf ′(z)
f(z)

+ αλ
(

1 +
zf ′′(z)
f ′(z)

)]
≺ h(z), (2.11)

where

h(z) = (1 − α)
(

1 + az
1 + bz

)γ

+ α
(

1 + az
1 + bz

)2γ

+
αλγ(a − b)z

(1 + az)1−γ(1 + bz)1+γ
, (2.12)

then

zf ′(z)
pf(z)

≺
(

1 + az
1 + bz

)γ

. (2.13)

Proof. Let p(z) = zf ′(z)/pf(z), then p ∈ P and (2.11) can be written as

(1 − α)p(z) + αp2(z) + αλzp′(z)

≺ (1 − α)
(

1 + az
1 + bz

)γ

+ α
(

1 + az
1 + bz

)2γ

+
αλγ(a − b)z

(1 + az)1−γ(1 + bz)1+γ
.

(2.14)

Taking m = 2 in Corollary 2.2 and using (2.14), we have

zf ′(z)
pf(z)

≺
(

1 + az
1 + bz

)γ

. (2.15)
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By taking p = λ = γ = a = 1 and b = −1 in Corollary 2.3, we get the following result of
Padmanabhan [5].

Corollary 2.4. Let f ∈ A and

zf ′(z)
f(z)

+ α
z2f ′′(z)
f ′(z)

≺
2α

(
z2 + 2z

)
+ 1 − z2

(1 − z)2 (0 < α ≤ 1), (2.16)

then

R

(
zf ′(z)
f(z)

)
> 0. (2.17)

Theorem 2.5. Let α, β, ξ, η ∈ C and η /= 0. Let q(z) be convex univalent in Δ and satisfy

R

[
1
η

(
β + 2ξq(z)

)]
> 0. (2.18)

If p ∈ P satisfies

α + βp(z) + ξp2(z) + ηzp′(z) ≺ α + βq(z) + ξq2(z) + ηzq′(z) = h(z), (2.19)

then

p(z) ≺ q(z), (2.20)

and q(z) is the best dominant of (2.19)

Proof. By setting θ(w) := α + βw + ξw2 and φ(w) := η it can be easily observed that θ(w) and
φ(w) are analytic in C and that φ(w)/= 0 (w ∈ C \ {0}).

Also, by letting

Q(z) = zq′(z)φ
(
q(z)

)
= ηzq′(z),

h(z) = θ
(
q(z)

)
+Q(z)

= α + βq(z) + ξq2(z) + ηzq′(z),

(2.21)

we find that Q(z) is starlike univalent in Δ and that

R

(
zh′(z)
Q(z)

)
= R

[
1
η

(
β + 2ξq(z)

)
+
(

1 +
zq′′(z)
q′(z)

)]
> 0. (2.22)

The differential subordination

α + βp(z) + ξp2(z) + ηzp′(z) ≺ α + βq(z) + ξq2(z) + ηzq′(z) (2.23)
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becomes

θ
(
p(z)

)
+ zp′(z)φ

(
p(z)

)
≺ θ

(
q(z)

)
+ zq′(z)φ

(
q(z)

)
. (2.24)

Now, the result follows as an application of Lemma 1.1.

Theorem 2.6. Let α, β, ξ, η, and δ be complex numbers, δ /= 0. Let 0/= q(z) be univalent in Δ and
satisfy the following conditions for z ∈ Δ:

(1) let Q(z) = δzq′(z)/q(z) be starlike,

(2) R{(β/δ)q(z) + (2ξ/δ)q2(z) − (η/δq(z)) + zQ′(z)/Q(z)} > 0.

If p ∈ P satisfies

α + βp(z) + ξ(p(z))2 +
η

p(z)
+ δ

zp′(z)
p(z)

≺ α + βq(z) + ξ(q(z))2 +
η

q(z)
+ δ

zq′(z)
q(z)

, (2.25)

then

p(z) ≺ q(z), (2.26)

and q(z) is the best dominant.

Proof. The proof of this theorem is much akin to the proof of Theorem 2.5 and hence can be
omitted.

Remark 2.7. By taking α = β = 0, ξ = (λ/μ)μ > 0,λ > −μ/2,η = 1, and q(z) = (1 + z)/(1 − z)
in Theorem 2.5 we get the result of Nunokawa et al. [2] which was proved by a different
method.

Remark 2.8. For the choices of α = β = 0 in Theorem 2.5, we get the result of [3, Theorem 1,
page 192] and for α = ξ = η = 0 in Theorem 2.6 we get the result of [3, Theorem 2, page 194].

Corollary 2.9. Let −1 ≤ b < a ≤ 1, 0 < γ ≤ 1 and λ > 0. If f ∈ Ap satisfies f(z)f ′(z)/= 0 in
0 < |z| < 1, then

(1 − λ)
zf ′(z)
f(z)

+ λ
(

1 +
zf ′′(z)
f ′(z)

)
≺ p

(
1 + az
1 + bz

)γ

+
λγ(a − b)z

(1 + az)(1 + bz)
(2.27)

implies

f ∈ S∗p
(
γ, a, b

)
. (2.28)

Also,

1 +
zf ′′(z)
f ′(z)

−
zf ′(z)
f(z)

≺
γ(a − b)z

(1 + az)(1 + bz)
(2.29)
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implies

f ∈ S∗p
(
γ, a, b

)
. (2.30)

Proof. By taking α = ξ = η = 0, β = p/λ, δ = 1, p(z) = zf ′(z)/pf(z), and q(z) =
((1 + az)/(1 + bz))γ in Theorem 2.6, we get the first part.

Proof of the second part follows, by setting α = β = ξ = η = 0, δ = 1, p(z) =
zf ′(z)/pf(z), and q(z) = ((1 + az)/(1 + bz))γ .

For α = ξ = 0, β = 1, p(z) = zf ′(z)/f(z), and q(z) = (1 + az)/(1 − z),−1 < a ≤ 1 in
Theorem 2.5, we have the following result.

Corollary 2.10. If f ∈ A satisfies f(z)/= 0, z ∈ Δ and

zf ′(z)
f(z)

[(
1 − η

zf ′(z)
f(z)

)
+ η

(
1 +

zf ′′(z)
f ′(z)

)]
≺ h(z), (2.31)

where

h(z) =
1 + az
1 − z + η

(1 + a)z

(1 − z)2
, (2.32)

then

zf ′(z)
f(z)

≺ 1 + az
1 − z . (2.33)

One notes that if h(z) = u + iv, then h(Δ) is the exterior of the parabola given by

v2 = − (1 + a)
η

[
u −

2 − 2a − η(1 + a)
4

]
(2.34)

with its vertex as ((2 − 2a − η(1 + a)/4), 0) (see [5, 6]).

By taking η = a = 1 in Corollary 2.10, we obtain the following.

Corollary 2.11. If f ∈ A satisfies f(z)/= 0, z ∈ Δ, and

zf ′(z)
f(z)

[
2 −

zf ′(z)
f(z)

+
zf ′′(z)
f ′(z)

]
≺ 1 + 2z − z2

(1 − z)2
, (2.35)

then

zf ′(z)
f(z)

≺ 1 + z
1 − z . (2.36)

Region h(Δ) has been shown shaded in Figure 1.
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Figure 1: η = a = 1.

Letting α = β = 0, ξ = η = 1, p(z) = zf ′(z)/f(z), and q(z) = (1 + (1 − 2γ)z)/(1 − z) in
Theorem 2.5, we get the following.

Corollary 2.12. If f ∈ A satisfies f(z)/= 0, 0 < |z| < 1, and

zf ′(z)
f(z)

(
1 +

zf ′′(z)
f ′(z)

)
≺ h(z), (2.37)

where

h(z) =

(
1 − 2γ

)2
z2 + 2

(
2 − 3γ

)
z + 1

(1 − z)2
(2.38)

for some γ (0 ≤ γ < 1), then

R

(
zf ′(z)
f(z)

)
> γ. (2.39)

For the univalent function h(z) given by (2.38), One now finds the image h(Δ) of the
unit disk Δ.
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Let h = u + iv, where u and v are real. One has

u = −
(
2 − 3γ

)
+
(
1 + 2γ2 − 2γ

)
cos θ

(1 − cos θ)
,

v =
2γ

(
1 − γ

)
sin θ

1 − cos θ
.

(2.40)

Elimination of θ yields

v2 = −
8γ2(1 − γ

)

3 − 2γ

[
u −

2γ2 + γ − 1
2

]
. (2.41)

Therefore, one concludes that

h(Δ) =

{
w = u + iv; v2 > −

8γ2(1 − γ
)

3 − 2γ

[
u −

2γ2 + γ − 1
2

]}
, (2.42)

which properly contains the half plane Rw > (2γ2 + γ − 1)/2.

Corollary 2.13. Let −1 ≤ b < a ≤ 1 and R β ≥ 0. If f ∈ Ap satisfies f ′(z)/= 0 in 0 < |z| < 1 and

(
1 − β

) f(z)
zf ′(z)

+
f(z)f ′′(z)
(
f ′(z)

)2
≺ h(z), (2.43)

where

h(z) =
b
(
pb − βa

)
z2 +

((
2p + 1 − β

)
b −

(
1 + β

)
a
)
z + p − β

p(1 + bz)2
, (2.44)

then

f ∈ S∗p(b, a). (2.45)

Proof. If we let p(z) = pf(z)/zf ′(z), then p ∈ P and (2.43) can be expressed as

βp(z) + zp′(z) ≺ β
(

1 + az
1 + bz

)
+

(a − b)z
(1 + bz)2

. (2.46)

Hence, by taking α = ξ = 0,η = 1, q(z) = (1 + az)/(1 + bz) and R β ≥ 0 in Theorem 2.5, we
have p(z) ≺ (1 + az)/(1 + bz). So, f(z) ∈ S∗p(b, a).

Setting p = 1 and b = −1 in Corollary 2.13, we get the following corollay.
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Corollary 2.14. Let −1 < a ≤ 1 and R β ≥ 0. If f ∈ A satisfies f ′(z)/= 0 in 0 < |z| < 1 and

(
1 − β

) f(z)
zf(z)

+
f(z)f ′′(z)
(
f ′(z)

)2
≺ h(z), (2.47)

where

h(z) =

(
1 + βa

)
z2 +

((
β − 3

)
−
(
1 + β

)
a
)
z + 1 − β

(1 − z)2
, (2.48)

then

f(z)
zf ′(z)

≺ 1 + az
1 − z . (2.49)

Remark 2.15. For the function h(z) given by (2.48), we have

h(Δ) =
{
w = u + iv; v2 > a0[u − b0]

}
, (2.50)

which properly contains the half plane Rw > b0, where

a0 = (1 + a)β2,

b0 =
5 + a + 2β(a − 1)

4
.

(2.51)

By putting p = a = β = 1 and b = −1 in Corollary 2.13, we get the following result of
Tuneski [7].

Corollary 2.16. If f(z) ∈ A and

f(z)f ′′(z)
(
f ′(z)

)2
≺ 2z(z − 2)

(1 − z)2
, (2.52)

then

R

(
f(z)
zf ′(z)

)
> 0. (2.53)

Remark 2.17. By putting 0 = b < a ≤ 1, p = 1, and β = 0 in Corollary 2.13, we get the result
obtained by Singh [8], which refines the result of Silverman [9].
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Corollary 2.18. Let 0/=η and q(z) be convex univalent in Δ with q(0) = 1 and satisfy (2.18).
Let f ∈ Ap and

ψ(z) := α +
β

p

(
f(z)
zp

)μ

+
ξ

p2

(
f(z)
zp

)2μ

+ ημ
(
f(z)
zp

)μ[zf ′(z)
pf(z)

− 1
]
. (2.54)

If

ψ(z) ≺ α + βq(z) + ξq2(z) + ηzq′(z), (2.55)

then

1
p

(
f(z)
zp

)μ

≺ q(z), (2.56)

and q(z) is the best dominant.

Proof. By taking p(z) = (1/p)(f(z)/zp)μ in Theorem 2.5, we have the above corollary.

Corollary 2.19. Let 0/=λ ∈ C and q(z) be convex univalent in Δ with q(0) = 1 and satisfy

R
(μ
λ

)
> 0. (2.57)

(i) If f ∈ A satisfies

(1 − λ)
(
f(z)
z

)μ

+ λf ′(z)
(
f(z)
z

)μ−1

≺ q(z) + λ

μ
zq′(z), (2.58)

then

(
f(z)
z

)μ

≺ q(z). (2.59)

(ii) If f ∈ A satisfies

f ′(z)
(
f(z)
z

)μ−1

−
(
f(z)
z

)μ

≺ 1
μ
zq′(z), (2.60)

then

(
f(z)
z

)μ

≺ q(z), (2.61)

and q(z) is the best dominant.
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Proof. Proof of the first part follows from Corollary 2.18, by taking β = p = 1,α = ξ = 0, and
η = λ/μ.

The proof of the second part follows from Corollary 2.18, by taking α = β = ξ = 0, p = 1,
and η = 1/μ.

By taking λ = μ = nwhere n is a positive integer and q(z) = A+(1−A)[−1−(2/z) log(1−
z)] in the first part of Corollary 2.19, we get the following result of Ponnusamy [10].

Corollary 2.20. Let f ∈ A, then for a positive integer n, one has that

R

{
(1 − n)

(
f(z)
z

)n

+ nf ′(z)
(
f(z)
z

)n−1
}
> β (2.62)

implies

(
f(z)
z

)n

≺ A + (1 −A)
(
−1 − 2

z
log(1 − z)

)
, (2.63)

and A + (1 −A)[−1 − (2/z) log(1 − z)] is the best dominant.

Remark 2.21. By taking μ = 1 and q(z) = 1 + (A/(1 + δ))z in Corollary 2.19 and μ = λ = 1 and
q(z) = A/B + (1 −A/B)(log(1 + Bz)/Bz) we get the result of Ponnusamy and Juneja [11].

By taking β = ξ = η = 0,α = p = 1, δ = 1/μ, p(z) = (1/p)(f(z)/zp)μ, and q(z) = eμAz in
Theorem 2.5, we get the following result obtained by Owa and Obradović [12].

Corollary 2.22. Let f ∈ A and

zf ′(z)
f(z)

≺ 1 +Az, (2.64)

then

(
f(z)
z

)μ

≺ eμAz, (2.65)

and eμAz is the best dominant.

We remark here that q(z) = eμAz is univalent if and only if |μA| < π .

Remark 2.23. For a special case when p(z) = (1/p)(f(z)/zp)μ, q(z) = 1/(1 − z)2b where b ∈
C \ {0} and β = ξ = η = 0,α = μ = p = 1, and δ = 1/b in Theorem 2.6, we have the result
obtained by Srivastava and Lashin [13].

Corollary 2.24. If f ∈ A satisfies

(1 + λ)
(

z

f(z)

)μ

− λf ′(z)
(

z

f(z)

)μ+1

≺ q(z) + λ

μ
zq′(z), (2.66)



International Journal of Mathematics and Mathematical Sciences 13

then

(
z

f(z)

)μ

≺ q(z), (2.67)

and q is the best dominant.

Proof. By taking p(z) = (1/p)(zp/f(z))μ and α = ξ = 0, β = p = 1 and η = λ/μ in Theorem 2.5,
we get the previous corollary.
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