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1. Introduction

Let (Ω,F, P) be a probability space carrying a standard d-dimensional Brownian motion
(Bt)t≥0. Fix a terminal time T > 0, let (Ft)t≥0 be the natural σ-algebra generated by (Bt)t≥0,
and assume FT = F. For every positive integer n, we use | · | to denote norm of Euclidean
space Rn. For t ∈ [0, T], let L2(Ω,Ft, P) denote the set of all Ft-measurable random variables
ξ such that E|ξ|2 < +∞. Let L2

F(0, T ;R
n) denote the set of Ft-progressively measurable Rn-

valued processes {Xt, t ∈ [0, T]} such that

‖X‖2=̂
(

E

∫T

0
|Xt|2dt

)1/2

< +∞. (1.1)

This paper is concerned with the following one-dimensional BSDE:

yt = ξ +
∫T

t

g
(

s, ys, zs
)

ds −
∫T

t

zs · dBs, t ∈ [0, T], (1.2)

where the random function g(ω, t, y, z) : Ω× [0, T]×R×Rd → R is progressively measurable
for each (y, z) in R × Rd, termed the generator of the BSDE(1), and ξ is an FT -measurable
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random variables termed the terminal condition. The triple (ξ, T, g) is called the parameters
of the BSDE(1). In this paper, for each (ξ, T, g), by solution to the BSDE(1) we mean a
pair of processes (y·, z·) in L2

F(0, T ;R
1+d) which satisfies the BSDE(1) and y is a continuous

process. Such equations, in nonlinear case, have been introduced by Pardoux and Peng [1];
they established an existence and uniqueness result of solutions of the BSDE(1) under the
Lipschitz assumption of the generator g. Since then, these equations and their generalizations
have been the subject of a great number of investigations, such as [2, 3]. Particularly, Lepeltier
and San Martin [4] obtained the following result when the generator g is only continuous
with a linear growth.

Proposition 1.1 (see [4, Theorem 1]). Assume that the generator g satisfies

(H1) linear growth: there exists K < +∞, for all ω, t, y, z, |g(ω, t, y, z)| ≤ K(1 + |y| + |z|);
(H2) for fixed ω, t, g(ω, t, ·, ·) is continuous.

Then, if ξ ∈ L2(Ω,FT , P), the BSDE(1) has a unique minimal solution (Y ·, Z·) and a unique
maximal solution (Y ·, Z·), which means that both (Y ·, Z·) and (Y ·, Z·) are the solution of (1.2), and
for any other solution (Y·, Z·) of (1.2) one has Y · ≤ Y· ≤ Y · For convenience, for each t ∈ [0, T], one

denoted Yt by E
g

t,T [ξ], and Yt by Eg

t,T [ξ].

This paper will work on the assumptions (H1) and (H2) and investigate themonotonic

limit properties on the operators Eg

t,T [·] and Eg

t,T [·].

2. Main Results

In this section, we always assume that the generator g satisfies assumptions (H1) and (H2).
The following Theorem 2.1 and Remark 2.2 are the main results of this paper.

Theorem 2.1. Assume that the generator g satisfies assumptions (H1) and (H2). Let t ∈ [0, T],
ξn ∈ L2(Ω,Ft, P), n ∈ N, and E|ξ|2 < +∞.

If ξn ↑ ξ, P − a.s., then for all s ∈ [0, t],

lim
n→∞

↑ Eg
s,t[ξ

n] = Eg
s,t

[

lim
n→∞

ξn
]

= Eg
s,t[ξ], P − a.s. (2.1)

If ξn ↓ ξ, P − a.s., then for all s ∈ [0, t],

lim
n→∞

↓ Eg
s,t[ξ

n] = Eg
s,t

[

lim
n→∞

ξn
]

= Eg
s,t[ξ], P − a.s. (2.2)

Remark 2.2. If the condition “ξn ↑ ξ” in Theorem 2.1 is replaced by “ξn ↓ ξ”, the conclusion
of the first part of Theorem 2.1 does not hold in general. Similarly, the condition “ξn ↓ ξ” in
Theorem 2.1 cannot be replaced by “ξn ↑ ξ” in general. For example, we consider the BSDE
with

g
(

u, y, z
)

= 7y6/7, ξ = 0. (2.3)
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It is easy to see that both

(

yr, zr
)

r∈[0,t] = (0, 0)r∈[0,t], (Yr, Zr)r∈[0,t] =
(

(t − r)7, 0
)

r∈[0,t] (2.4)

are solutions of BSDE

yr =
∫ t

r

7y6/7
u du −

∫ t

r

zudBu, r ∈ [0, t]. (2.5)

For each n ∈ N, set ξn = 1/n, then ξn ∈ L2(Ω,Ft, P), E|ξ|2 < +∞ and ξn ↓ ξ, P − a.s. However,
one can verify that for each s ∈ [0, t],

Eg
s,t[ξ

n] =
(

t − s +
1
7
√
n

)7

. (2.6)

Consequently,

lim
n→∞

Eg
s,t[ξ

n] = Ys /=Eg
s,t[ξ] ≤ 0. (2.7)

So, the conclusion of the first part of Theorem 2.1 does not hold.

In order to prove Theorem 2.1, we need the following lemmas. Lemma 2.3 is actually
a direct corollary of Theorem 1.1 in [5].

Lemma 2.3. Assume that the generator g satisfies assumptions (H1) and (H2). Let t ∈ [0, T] and
ξ, ξ′ ∈ L2(Ω,Ft, P). If ξ ≤ ξ′, P − a.s., then

∀s ∈ [0, t], Eg
s,t[ξ] ≤ Eg

s,t

[

ξ′
]

, P − a.s.,

∀s ∈ [0, t], Eg
s,t[ξ] ≤ Eg

s,t

[

ξ′
]

, P − a.s.

(2.8)

From the procedure of the proof of Theorem 2.1 in [4], we can obtain the following
Lemma 2.4.

Lemma 2.4. If the function g satisfies (H1) and (H2), and one sets

g
m

(

t, y, z
)

:= inf
(u,v)∈Q1+d

{

g(t, u, v) +m
(∣

∣y − u
∣

∣ + |z − v|)},

gm

(

t, y, z
)

:= sup
(u,v)∈Q1+d

{

g(t, u, v) −m
(∣

∣y − u
∣

∣ + |z − v|)},
(2.9)
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then for any m > K, g
m
and gm are Lipschitz functions with constant m, that is, for any y1, y2 ∈

R, z1, z2 ∈ Rd and t ∈ [0, T],

∣

∣

∣g
m

(

t, y1, z1
) − g

m

(

t, y2, z2
)

∣

∣

∣ ≤ m
(∣

∣y1 − y2
∣

∣ + |z1 − z2|
)

,

∣

∣gm

(

t, y1, z1
) − gm

(

t, y2, z2
)∣

∣ ≤ m
(∣

∣y1 − y2
∣

∣ + |z1 − z2|
)

.

(2.10)

Moreover, let t ∈ [0, T] and ξ ∈ L2(Ω,Ft, P), and let (Ym
r , Z

m
r )r∈[0,t] and (Y

m

r , Z
m

r )r∈[0,t]
be the unique solutions of the BSDEs with parameters (ξ, t, g

m
) and (ξ, t, gm), respectively. For

convenience, from now on, we denoted Ym
s by Eg

m

s,t [ξ], and Y
m

s by Egm

s,t [ξ] for each s ∈ [0, t],
then for each s ∈ [0, t], we have

lim
m→∞

↑ Eg
m

s,t [ξ] = Eg
s,t[ξ], P − a.s.,

lim
m→∞

↓ Egm

s,t [ξ] = Eg
s,t[ξ], P − a.s.

(2.11)

Finally, the following Lemma 2.5 can be easily obtained by [6, Lemma 1].

Lemma 2.5. Let t ∈ [0, T], ξn ∈ L2(Ω,Ft, P), n ∈ N, and E|ξ|2 < +∞, and let the generators g, g
m

and gm be defined as that in Lemma 2.4.
If ξn ↑ ξ, P − a.s., then for all s ∈ [0, t] and eachm > K,

lim
n→∞

↑ Eg
m

s,t [ξ
n] = Eg

m

s,t

[

lim
n→∞

ξn
]

= Eg
m

s,t [ξ], P − a.s. (2.12)

If ξn ↓ ξ, P − a.s., then for all s ∈ [0, t] and eachm > K,

lim
n→∞

↓ Egm

s,t [ξ
n] = Egm

s,t

[

lim
n→∞

ξn
]

= Egm

s,t [ξ], P − a.s. (2.13)

Now, we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. We only prove the first part of this theorem, in the same way, one can
complete the proof of the second part.

Since ξn ∈ L2(Ω,Ft, P) and limn→∞ ↑ ξn = ξ, P − a.s., one knows that ξ ∈ Ft. Thus, by
E|ξ|2 < +∞, we have ξ ∈ L2(Ω,Ft, P), then by Proposition 1.1, for each s ∈ [0, t], both Eg

s,t[ξ
n]

and Eg
s,t[ξ] are well defined. Moreover, according to Lemma 2.3, Eg

s,t[ξ
n] is nondecreasing with

respect to n and bounded by Eg
s,t[ξ] from above, so in the sense of “almost surely,” the limit

of the sequence Eg
s,t[ξ

n] must exist. Thus, in order to complete the proof of Theorem 2.1, we

need only to prove that this limit is just Eg
s,t[ξ].
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Let functions g
m
and gm be defined for each m > K as that in Lemma 2.4, then from

Lemmas 2.3 and 2.4 one deduce that for each n ∈ N, m > K and s ∈ [0, t],

0 ≥ Eg
s,t[ξ

n] − Eg
s,t[ξ] = Eg

s,t[ξ
n] − Eg

m

s,t [ξ
n] + Eg

m

s,t [ξ
n] − Eg

m

s,t [ξ] + Eg
m

s,t [ξ] − Eg
s,t[ξ]

≥ Eg
m

s,t [ξ
n] − Eg

m

s,t [ξ] + Eg
m

s,t [ξ] − Eg
s,t[ξ], P − a.s.

(2.14)

Letting n → ∞ in (2.14), from Lemma 2.5 we get that for each m > K,

0 ≥ lim
n→∞

Eg
s,t[ξ

n] − Eg
s,t[ξ] ≥ Eg

m

s,t [ξ] − Eg
s,t[ξ], P − a.s. (2.15)

Furthermore, letting m → ∞ in (2.15), from Lemma 2.4 we can easily deduce that for each
s ∈ [0, t],

lim
n→∞

Eg
s,t[ξ

n] = Eg
s,t[ξ], P − a.s. (2.16)

The proof of Theorem 2.1 is completed.

According to Theorem 2.1, we can obtain the following theorem.

Theorem 2.6. Assume that the generator g satisfies assumptions (H1) and (H2). Let t ∈ [0, T] and
ξn ∈ L2(Ω,Ft, P), n ∈ N, Let E

∣

∣η
∣

∣

2
< +∞ and E|ζ|2 < +∞.

If ξn ≥ ζ, P − a.s. (n ∈ N) with E
∣

∣

∣

∣

lim
n→∞

ξn
∣

∣

∣

∣

2

< +∞, then for all s ∈ [0, t],

Eg
s,t

[

lim
n→∞

ξn
]

≤ lim
n→∞

Eg
s,t[ξ

n], P − a.s. (2.17)

If ξn ≤ η, P − a.s. (n ∈ N) with E
∣

∣

∣

∣

lim
n→∞

ξn
∣

∣

∣

∣

2

< +∞, then for all s ∈ [0, t],

Eg
s,t

[

lim
n→∞

ξn
]

≥ lim
n→∞

Eg
s,t[ξ

n], P − a.s. (2.18)

Proof. We only prove the first part of this theorem, the proof of the second part is similar.
Let us fix s ∈ [0, t]. Since ξn ∈ L2(Ω,Ft, P), then limn→∞ξ

n ∈ Ft, and by the assumption
of this theorem one knows that

lim
n→∞

ξn ∈ L2(Ω,Ft, P), (2.19)

thus by Proposition 1.1, Eg
s,t[limn→∞ξ

n] is well defined.
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We set Yn = inf
k≥n

ξk, then Yn ∈ Ft, and ζ ≤ Yn ↑ limn→∞ξ
n, P − a.s. So for each n ∈ N,

E|Yn|2 ≤ max

{

E|ζ|2, E
∣

∣

∣

∣

lim
n→∞

ξn
∣

∣

∣

∣

2
}

< +∞. (2.20)

Thus,

Yn ∈ L2(Ω,Ft, P), (2.21)

then Eg
s,t[Yn] is also well defined. Since Yn ≤ ξn, P −a.s., by Lemma 2.3 we know that Eg

s,t[Yn] ≤
Eg
s,t[ξ

n], P − a.s., then applying Theorem 2.1 to the random variable sequence {Yn}, we get

Eg
s,t

[

lim
n→∞

ξn
]

= Eg
s,t

[

lim
n→∞

Yn

]

= lim
n→∞

Eg
s,t[Yn] ≤ lim

n→∞
Eg
s,t[ξ

n], P − a.s. (2.22)

The proof is completed.
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