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We consider the asymptotic behavior of a probability density function for the sum of any two
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the left and right tails can be approximated by some simple functions. Furthermore, the same
techniques are applied to determine the tail probability density function for a ratio statistic, and
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lognormally distributed random variables and demonstrate that there is a need to revisit many
existing approximation methods.
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1. Introduction

The lognormal distribution has applications in many fields such as survival analysis [1],
genetic studies [2, 3], financial modelling [4, 5], telecommunication studies [6, 7] amongst
others. It has been found that many types of data can be modeled by lognormal distributions,
which include human blood pressure, microarray data, stock options, survival rate for
different groups of human beings, and the received power’s long-term fluctuation. In these
occasions, we wish to make some inferences based on the collected data involving the
addition of a few lognormally distributed random variables (RVs). Deriving the statistical
properties of a sum of lognormally distributed RVs is therefore desirable [6, 8]. Also note
that the number of summands is so small in practice that the central limit theorem is not
applicable.

Many research works assume that all the summands are independent, either justified
by practical considerations or for the sake of simplicity. However, there are some applications



2 International Journal of Mathematics and Mathematical Sciences

(e.g., the Asian option pricing model [4]) in which correlations among the summands are
inevitable. Our study will address the correlation problem.

In some cellular mobile systems (see [9]), the signal quality is largely dictated by
signal to interference ratio (SIR). On a large scale, both useful signals and interfering signals
experience lognormal shadow fadings. That is to say, SIR can be modeled by (X1 + · · · +
Xn)/(Y1 + · · · + Ym) where all the RVs X1, . . . , Xn, Y1, . . . , Ym are lognormally distributed. SIR
only characterizes the instantaneous quality. For ordinary users and network operators, one
important factor to consider is the outage probability target to a certain SIR threshold. For
example, for the users of a data transfer service, it is required that the outage probability
P0 = Pr(SIR < γ0 such that BER(γ0) = 10−6) needs to be less than 0.01. Here BER stands for bit
error rate that usually depends on SIR and other factors. In this paper, Theorem 2.8 provides
an approximation to Pr(SIR < γ0) when n = 2, m = 2.

In addition, Theorems 2.6 and 2.7 try to characterize the left and right tails of a sum
of lognormally distributed RVs. The theorems are useful to construct a Padé approximation
to the probability density function (PDF) of a sum of lognormally distributed RVs. For
example, if that approximation is available, and if useful signals and interfering signals
are independent, the outage probability can be numerically estimated as follows: Let Z1 =
log(
∑n

i=1 Xi) and Z2 = log(
∑m

j=1 Yj), then

Pr
(
SIR < γ0

)
= Pr

(
Z1 − Z2 < log

(
γ0
))
�
∫ log(γ0)

−∞

∫

R

f
approx
Z1

(
x − y

)
f

approx
Z2

(
−y
)
dy dx. (1.1)

Since Fenton [10] addressed the problem, many methods have been developed, but
none of them have been successful in finding a closed form representation for the PDF of
a sum of multiple lognormally distributed RVs. These methods can be divided into three
categories.

(i) The first type of methods attempt to characterize the PDF by calculating the
moment generating function [11, 12] or the characteristic function [13, 14]. The
results obtained can be used in the numerical computations of a PDF or a
cumulative density function (CDF). To our knowledge, no work has succeeded in
using the results of this category to describe the shape of a PDF or CDF.

(ii) The second type of methods [15–18] use the bound technique for the CDF of an
underlying statistic.

(iii) The third type of methods focuses on finding a good approximation to either
the PDF or CDF of the underlying statistic. Most published works belong to this
category. The way to find the approximation can often be described as follows: first,
assume a specific distribution that the sum (or the ratio of sum) of the lognormally
distributed RV follows; then use a variety of methods to identify the parameters
for that specific distribution. The specific distributions in the literature include
lognormal [15, 19], reciprocal Gamma [4], log shifted Gamma [20], and user-
defined PDF [21, 22]. In some works [23], only the CDF approximation is defined.
Moment matching [10, 24, 25], moment generating function matching [19], and
the least squares fitting [26, 27] are a few popular methods used to determine the
parameters associated with the distribution.

In this paper, we will rigorously characterize the right and left tails behavior of a PDF
for a random variable Z = log(eX1 + eX2), where (X1, X2) are jointly distributed with N(μ,Σ)
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as distribution. This is our first step towards understanding the more general problem: the
characterization of the PDF of Z = log(

∑N
k=1 e

Xk) where (X1, . . . , XN) are jointly distributed as
N(μ,Σ). Note here we do not assume that the Xk are independent (except for Theorem 2.7),
nor do we assume that X1, . . . , XN have the same marginal distribution. We hope that our
study can lead to a better solution to the works presented in [28] or [29].

Janos [15] is the first one to study the right tail probability of a sum of lognormals.
More advanced and more general studies can be found in [30]. We have not found any
theoretical results regarding the left tails. In addition, the right tails results we show cannot
be deduced from the results in [5, 30–32].

Our results show that it is possible to find some elementary functions gL, gR such that

lim
z→−∞

fZ(z)
gL(z)

= 1, lim
z→+∞

fZ(z)
gR(z)

= 1. (1.2)

The explicit forms of gL and gR enable us to assess the performance of the existing
approximation methods and to determine how to improve these methods. By Theorem 2.3
(see also the subsequent remark and Corollary 2.5), we can determine that at the left
tail region, even under the independence assumption, given any function g∗ within the
families of PDFs such as lognormal, reciprocal Gamma or log shifted Gamma, either
limz→−∞g∗(z)/fZ(z) does not exist or limz→−∞g∗(z)/fZ(z) can be only zero or ∞. No
previous works have led to this discovery. Szyszkowicz [18] has pointed out that some
precedent models are wrong in the tail region, but this work was based on a hypothesis that
was only justified by the numerical results, and it still focused on finding the best lognormal
type approximation. In view of our results, such efforts are unlikely to succeed.

Our characterization of the behavior of the tail of the PDF of a sum of two lognormals is
complete in the sense that our results cover all nondegenerate covariance matrices. Our work
regarding the ratio RV is obtained under more stringent conditions. This new result shows
that the ratio RV is neither lognormal nor log Gamma. This indicates that others should be
cautious with the method in [9] despite the successful examples demonstrated therein.

When the number of summands exceeds two, the situation for a PDF approximation
becomes much more complicated. We are able to show some left tail and right tail results
by imposing some conditions on the covariance matrix that covers the independent case.
The result of Theorem 2.7 could be well-known to experts working with functions from the
subexponential class. Unfortunately, we did not find any references that explicitly state the
result, so we provide a short proof in Appendix F. Further in this line, [5] has presented
the complete CDF approximation for the right tail with an arbitrary covariance matrix.
However our results cannot be deduced trivially from the CDF behavior and are interesting
in themselves. For example, for any polynomial growth continuous function h, we can say
that

lim
z→+∞

E
[
h
(
eZ
)
1Z>z

]

∫∞
z h(e

x)gR(x)dx
= 1, (1.3)

whereas such an approximation cannot be a direct consequence from the result in [5].
In the following sections, we will first present our results followed by a numerical

validation. We will then discuss some future studies that this paper does not cover. Also we
present the proofs in the appendix.
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2. Main Results

Let (X1, X2) be a jointly normally distributed random vector. Let ρ be the correlation
coefficient, and μi = E(Xi), σ2

i = Var (Xi), for i = 1, 2. Then the joint PDF of (eX1 , eX2) is
given by

f(u, v) ≡ h(u, v)

2πσ1σ2

√
1 − ρ2uv

, (2.1)

where

h(u, v)=exp

{

− 1
2
(
1 − ρ2

)

[(
log(u) − μ1

σ1

)2

−2ρ

(
log(u) − μ1

)(
log(v) − μ2

)

σ1σ2
+
(

log(v) − μ2

σ2

)2
]}

.

(2.2)

We wish to study the left and right tail probabilities of Z = log(eX1 + eX2), which has PDF as
fZ(z) ≡ ezg(ez) with

g(z) ≡
∫z

0
f
(
y, z − y

)
dy. (2.3)

We hope to understand the asymptotic behavior of g(ez) when z → ±∞. Direct calculus
yields

g(ez) =
e−z

2πσ1σ2

√
1 − ρ2

∫1

0

e−A(z,t)

(1 − t)tdt, (2.4)

where the exponent A(z, t) =

1
2
(
1 − ρ2

)

[(
log(1 − t) + z − μ1

σ1

)2

+
(

log t + z − μ2

σ2

)2

− 2ρ
log(1 − t) + z − μ1

σ1

log t + z − μ2

σ2

]

.

(2.5)

Rewrite A in three terms A(t) = A1(z) + 2zA2(t) + A3(t), where the Ai are defined as

A1(z) =
1

2
(
1 − ρ2

)

{

z2

(
1
σ2

1

−
2ρ
σ1σ2

+
1
σ2

2

)

+ 2z
[(

ρ

σ1
− 1
σ2

)
μ2

σ2
+
(
ρ

σ2
− 1
σ1

)
μ1

σ1

]}

,

A2(t) =
1

2
(
1 − ρ2

)

[(
1
σ1
−
ρ

σ2

)
log(1 − t)

σ1
+
(

1
σ2
−
ρ

σ1

)
log t
σ2

]

,

A3(t) =
1

2
(
1 − ρ2

)

[
(log(1 − t) − μ1)

2

σ2
1

−
2ρ
(
log(1 − t) − μ1

)(
log t − μ2

)

σ1σ2
+
(log t − μ2)

2

σ2
2

]

.

(2.6)
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Hence, by changing the variable t to e−u,

fZ(z) =
e−A1(z)

2πσ1σ2

√
1 − ρ2

∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du. (2.7)

We regroup the integrand in (2.7) in the form

∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫∞

0
H(u)e−zG(u)du, (2.8)

with

G(u) =
1

1 − ρ2

[(
σ2 − σ1ρ

)
log(1 − e−u)

σ2
1σ2

−
(
σ1 − σ2ρ

)
u

σ2
2σ1

]

, H(u) =
e−A3(e−u)

1 − e−u . (2.9)

Remark 2.1. Without loss of generality, in this paper, we always assume

0 < σ1 ≤ σ2,
∣
∣ρ
∣
∣ < 1. (2.10)

We also use the following notation.

Definition 2.2. We say that two functions f and h are equivalent near some point a ∈ R,
denoted by f(z) ∼a h(z), if we have limz→af(z)/h(z) = 1.

For the left tail, we have the following result.

Theorem 2.3. Let Xi ∼ N(μi, σ2
i ) be defined as above for i = 1, 2 and ρ ∈ (−1, 1) be the correlation

coefficient. Let fZ be the PDF of Z = log(eX1 + eX2), then fZ(z) ∼−∞ hL(z) as follows.

(i) If ρ < σ1/σ2, one has

hL(z) =
H(u0)e−zG(u0)−A1(z)

√
2πz
(
1 − ρ2

)
G′′(u0)σ1σ2

with u0 = log
σ2

1 + σ2
2 − 2ρσ1σ2

σ2
1 − ρσ1σ2

. (2.11)

Here the functions G,H, A1 are defined by (2.9) and (2.6).

(ii) If ρ = σ1/σ2, one has

hL(z) =
N
(
μ1, σ

2
1

)

√
log(−z)

e1/(2(σ2
2−σ

2
1 )){−(log zρ−log(log zρ)+μ2−μ1)

2−2 log zρ} with zρ = −z
(
ρ−2 − 1

)
.

(2.12)
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(iii) If ρ > σ1/σ2, one has

hL(z) =
1

√
2πσ2

1

e−(z−μ1)
2/(2σ2

1 ). (2.13)

In particular, when ρ = 0, we find that fZ ∼−∞ C1e
−C2z−C3z

2
/
√
z, which means that any

lognormal, reciprocal Gamma or log shifted Gamma cannot be used to fit the left tail, under
the independence hypothesis. The situation for the right tail of fZ is simpler. It is interesting
to remark that the result does not depend on the correlation coefficient ρ (see also [5]). Here
and later on, we employ the lexicographical order to the couple (σ, μ).

Theorem 2.4. Let Z and f be defined as above, then fZ(z) ∼∞ hR(z), where hR(z) is defined as
follows.

(i) If (σ1, μ1)/= (σ2, μ2), one has

hR(z) =N
(
μ, σ2

)
with

(
σ, μ
)
= max

{(
σ1, μ1

)
,
(
σ2, μ2

)}
. (2.14)

(ii) If (σ1, μ1) = (σ2, μ2) = (σ, μ), one has hR(z) = 2/(σ
√

2π)e−(z−μ)
2/(2σ2).

The following corollary is an immediate consequence of Theorems 2.3 and 2.4.

Corollary 2.5. Let fV be the PDF of V = eX1 + eX2 , where X1, X2 are i.i.d. RVs followingN(0, σ2)
distributions. Then, one has

lim
z→ 0

fV (z)
fVL(z)

= 1, where fVL(z) =
exp
[
−(log z − log 2)2/σ2

]

zσ
√
−π log z

;

lim
z→+∞

fV (z)
fVR(z)

= 1, where fVR(z) =

√
2 exp

[
−log2z/

(
2σ2)

]

√
πσz

.

(2.15)

The results in Corollary 2.5 confirm those results reported in [18]. Furthermore, we
can easily show that the models in [4, 21] will also fail in the tail regions.

Next we show that our left tail and right tail study can be extended for some special
cases in higher dimension by using the Laplace methods.

Theorem 2.6. Let (Xi)1≤i≤n (n ≥ 3) be a joint normally distributed random variable with distribution
N(μ,Σ). Let M = Σ−1. Let fZ be the PDF of random variable Z = log(

∑
1≤i≤n e

Xi). If M = (mij)
satisfiesmk =

∑
1≤j≤n mkj > 0 for all k = 1, . . . , n, then the left tail of fZ satisfies

fZ(z)∼−∞
H1(U0)

√

2π |z|n−1|det Σ||det HF(U0)|
exp

⎡

⎣−z
n∑

k=1

mk log
mk

m
− 1

2

n∑

i,j=1

(
z − μi

)
mij

(
z − μj

)
⎤

⎦

(2.16)
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where m =
∑

1≤j≤n mj , F(u2, . . . , un) =
∑

1≤i≤nmiCi, HF = (∂2
ijF) denotes the Hessian matrix of F.

Here,

H1(u2, . . . , un) ≡
e−〈C,M(C−2μ)〉/2

1 −
∑

2≤i≤n e
ui
, U0 =

(

log
mk

m

)

2≤k≤n
∈ R

n−1, (2.17)

and C = (Ci) ∈ R
n is given by

C =

(

log

(

1 −
∑

2≤k≤n
euk

)

, u2, u3, . . . , un

)

. (2.18)

Theorem 2.7. Let (X1, . . . , Xn) be independent normally distributed RVs, that is, Xi ∼ N(μi, σ2
i ).

Let Z = log(
∑n

i=1 e
Xi). Define (σ, μ) = max{(σi, μi), 1 ≤ i ≤ n} for the lexicographical order and

mn the number of maximum points, that ismn = #{1 ≤ i ≤ n, s.t. (σi, μi) = (σ, μ)}. Then the PDF of
Z, fZ(x) satisfies

lim
x→∞

fZ(x)
N
(
μ, σ2

)
(x)

= mn where N
(
μ, σ2

)
(x) =

1√
2πσ

e−(x−μ)
2/(2σ2). (2.19)

Finally, we show a result for the quotient of sums of i.i.d lognormal variables.

Theorem 2.8. Let X1, X2, Y1, Y2 be i.i.d random variables. Each of them follows N(0, σ2)
distribution. LetW = log((eX1 + eX2)/(eY1 + eY2)) and fW(w) be the PDF ofW , then

fW(w)∼±∞
2e−(|w|+log 2)2/(3σ2)

σ
√
π |w|

. (2.20)

This result can be generalized to the case where X1, X2 follow N(0, σ2
x), Y1, Y2 follow

N(0, σ2
y), with any positive constants σx and σy. Indeed, we can prove that

fW(w)∼−∞
2

σx
√
−πw

e−(w−log 2)2/(σ2
x+2σ2

y), fW(w)∼+∞
2

σy
√
πw

e−(w+log 2)2/(σ2
y+2σ2

x). (2.21)

For the sake of brevity, we only present the proof for the special case where both variances
are equal.

3. Numerical Validation

We have validated the two-dimensional theoretical results by performing Monte-Carlo
simulations. The curve generated by Monte Carlo method is obtained through bin-based
density estimation. In all of the presented cases, we can see that our approximations match
the numerical results closely.

For the simulation parameters of the Z statistic, in order to test our results in the
extreme cases, we have chosen ρ = 0.7, 0.8, 0.9. The mean values were arbitrarily set. The
values of σ were chosen to be 9.6 and 12 so that their ratio σ1/σ2 is 0.8.
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Figure 1: Left tail fZ , ρ < σ1/σ2. g 1 is the approximation.
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Figure 2: Left tail fZ, ρ = σ1/σ2. g 2 is the approximation.

For the parameters of the ratio statistic (denoted by W), we used (σx, σy) = (12, 9.6)
for two groups of normally distributed RVs. The mean for these RVs were set to 0. Due to the
symmetry properties that W has, it is sufficient to show the verification results for the left tail
of fW.
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Figure 3: Left tail fZ, ρ > σ1/σ2. g 3 is the approximation.
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Figure 4: Right tail fZ, ρ < σ1/σ2. d 1 is the approximation.

4. Further Remarks

We have seen that our tail density approximations (for a sum of lognormal RVs) do not deal
with an arbitrary covariance matrix. In the 2D proofs, we used the classical approximation
technique for integrals, called the Laplace method (see Lemmas A.1, E.2). Then we divided
the study into a few subcases and then proceeded in different ways. Comparing Theorems
2.3, 2.6 to Theorems 2.4, 2.7, it seems that in general the left tail behavior is more involved
than the right tail case. We hope to adapt our approach to the higher-dimensional space,
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Figure 5: Right tail fZ, ρ > σ1/σ2. d 2 is the approximation.
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Figure 6: Left tail fW, (σx, σy) = (12, 9.6). r L is the approximation.

especially for the right tail behavior, which will lead to the result in [5]. It is also useful to
perform a higher order approximation for both tails so that an efficient Padé approximation
can be developed accordingly.

In view of the work in [32], it should be worthwhile to extend our lognormal work
(at least for the right tail) to a more general family such as the subexponential class. The
importance of this distribution family can be found in [5, 32, 33]. Perhaps future work for the
sum of lognormals mentioned above may shed some insight on the subexponentionl class
problem.
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Appendices

A. Preliminaries

Here we list some basic lemmas useful in the subsequent discussion. Their proofs use
standard techniques and hence are omitted.

Lemma A.1. LetH be a positive, integrable function on an interval (a, b) ⊂ R. Let G ∈ C2(a, b) be
concave such that x0 ∈ (a, b) verifies G′(x0) = 0, G′′(x0) < 0, then

lim
z→∞

√
−zG′′(x0)e−zG(x0)

√
2πH(x0)

×
∫b

a

H(x)ezG(x)dx = 1. (A.1)

This result is the so-called Laplace method in modern analysis (see [34]), which is
more often cited as saddle point approximation in other fields such as statistics or physics.
Later on, we also give a higher dimensional version (see Lemma E.2).

Lemma A.2. Let x0(z) be a nonnegative function defined on R, and limz→ z0x0(z) = ∞. Assume
that f(z, t) is a nontrivial, nonnegative function such that for any fixed z near z0 ∈ R, one has
f(z, t) ∈ L1(R) and for any ε > 0,

∫x0(z)+ε

x0(z)−ε
f(z, t)dt∼z0

∥
∥f(z, ·)

∥
∥
L1 . (A.2)

If moreover G is a bounded uniformly continuous function over R, such that lim infx→∞G(x) > 0,
then

∫

R

f(z, t)G(t)dt∼z0G(x0(z))
∥
∥f(z, ·)

∥
∥
L1 . (A.3)

In fact, we need a special case of lemma 16. When limz→∞G(x) = G0 /= 0 exists, we can simply
require that G is a continuous function and replace the term G(x0(z)) in (A.3) by G0.

Lemma A.3. Let G be a bounded measurable function defined on (a,∞) with a ∈ R ∪ {−∞}, such
that limξ→∞G(ξ) = G0 exists. Let λ be a positive constant. Then

lim
z→∞

e−z
2/(4λ)

∫∞

a

G(ξ)ezξ−λξ
2
dξ = G0

√
π

λ
. (A.4)

Using usual developments, we also have the following asymptotic expansion.

Lemma A.4. Fix λ ∈ R, if u(z) satisfies z = (eu(z) − 1)(u(z) + λ), then as z → ∞, u(z) is uniquely
determined and

u(z) = log z − log log z +
log log z − λ

log z
+ o

(
log log z

log2z

)

. (A.5)
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B. The Left Tail Behavior

In this section, we will prove Theorem 2.3. We discuss the cases ρ < σ1/σ2, ρ = σ1/σ2 and
ρ > σ1/σ2, respectively. Recall that 0 < σ1 ≤ σ2 and |ρ| < 1.

B.1.

Case 1. ρ < σ1/σ2. Using the formulas (2.7) and (2.8), we need only to understand the
behavior of

T(z) =
∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫∞

0
H(u)e−zG(u)du (B.1)

as z → −∞. Here G and H are defined by (2.9). Since

G′(u) =
1

1 − ρ2

(
σ2ρ − σ1

σ1σ
2
2

+
σ1ρ − σ2

σ2σ
2
1

e−u

e−u − 1

)

, G′′(u) =

(
σ1ρ − σ2

)
e−u

σ2σ
2
1

(
1 − ρ2

)
(e−u − 1)2

. (B.2)

Thus, G′(u) = 0 has a unique solution

u0 = log
σ2

1 + σ2
2 − 2ρσ1σ2

σ2
1 − ρσ1σ2

. (B.3)

We also have G′′(u) < 0 in R and H > 0, integrable over R+. Hence, Lemma A.1 allows us to
conclude

fZ(z)∼−∞
H(u0)e−zG(u0)−A1(z)

√
2πz
(
1 − ρ2

)
G′′(u0)σ1σ2

. (B.4)

B.2.

Case 2. ρ = σ1/σ2. Here we can simplify A1 and A2 as

A1(z) =
z2 − 2μ1z

2σ2
1

, A2(t) =
log(1 − t)

2σ2
1

. (B.5)

Rewrite

T(z) =
∫∞

0
eL(z,u)G2(u)du (B.6)
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with

L(z, u) = −
z log(1 − e−u)

σ2
1

−
(
u + μ2

)2 − 2μ1u

2
(
1 − ρ2

)
σ2

2

+
μ1μ2

(
1 − ρ2

)
σ2

2

, (B.7)

G2(u) =
1

1 − e−u exp

[

− 1
2
(
1 − ρ2

)

(
[log(1 − e−u) − μ1]

2

σ2
1

+
2ρ
(
u + μ2

)
log(1 − e−u)

σ1σ2

)]

. (B.8)

Clearly

lim
u→ 0+

G2(u) = 0, lim
u→∞

G2(u) = e−μ
2
1/(2(1−ρ

2)σ2
1 ) = G0 > 0. (B.9)

Thus, G2 is uniformly bounded and uniformly continuous over R+. Furthermore, we have

∂uL(z, u) = −
z

σ2
1

1
eu − 1

−
u + μ2 − μ1
(
1 − ρ2

)
σ2

2

,

∂2
uL(z, u) =

z

σ2
1

eu

(eu − 1)2
− 1
σ2

2

(
1 − ρ2

) ,

∂3
uL(z, u) = −

z

σ2
1

eu(eu + 1)

(eu − 1)3
.

(B.10)

If z < 0, ∂2
uL(z, u) < 0, ∂3

uL(z, u) > 0 for any u ∈ R+. Let uz be the unique solution of ∂uL(z, u) =
0. Obviously, uz satisfies the equation (euz − 1)(uz + μ2 − μ1) = −(ρ−2 − 1)z. According to
Lemma A.4, we obtain limz→−∞uz = limz→−∞ − ze−uz =∞ and

∂2
uL(z, uz)∼−∞ −

log(−z)
σ2

2 − σ
2
1

,

eL(z,uz)∼−∞e
1/(2(σ2

2−σ
2
1 )){−[log zρ−log(log zρ)+μ2−μ1]

2−2 log zρ+μ2
1}

(B.11)

where zρ = −(ρ−2 − 1)z.
The situation here is more delicate than in Lemma A.1, but we can follow the same

idea. For any ε ∈ (0, 1) fixed, there exists R > 0 such that |G2(x)/G0 − 1| ≤ ε, ∂2
uL(z, x) < 0 for

any x > R. Choosing now z near −∞ such that uz > R + 1 and

1 ≤ ∂
2
uL(z, uz − ε)
∂2
uL(z, uz)

≤ 1 + Cε. (B.12)
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We will decompose the integral into three parts: First we consider the integral of
eL(z,u)G2(u) over [uz − ε, uz + ε]. Using Taylor expansion and the monotonicity of ∂2

uL, we
get

∫uz+ε

uz−ε
eL(z,u)G2(u)du ≥ (1 − ε)G0

∫uz+ε

uz−ε
eL(z,uz)+∂

2
uL(z,uz−ε)(u−uz)

2/2du. (B.13)

By (B.12), for ε > 0 small enough,

lim inf
z→−∞

e−L(z,uz)
√
−∂2

uL(z, uz)

G0
√

2π

∫uz+ε

uz−ε
eL(z,u)G2(u)du ≥

1 − ε√
1 + Cε

. (B.14)

Using L(z, uz + ε), we also have (for small ε > 0)

lim sup
z→−∞

e−L(z,uz)
√
−∂2

uL(z, uz)

G0
√

2π

∫uz+ε

uz−ε
eL(z,u)G2(u)du ≤

1 + ε√
1 − Cε

. (B.15)

Consider now the integral of eL(z,u)G2(u) on [uz+ε,∞). Since L(z, u) is strictly concave
in u,

1
‖G2‖∞

∫∞

uz+ε
eL(z,u)G2(u)du ≤

∫∞

uz+ε
eL(z,uz+ε)+∂uL(z,uz+ε)(u−uz−ε)du =

eL(z,uz+ε)

∂uL(z, uz + ε)
. (B.16)

Moreover, ∂uL(z, uz + ε) ≥ ε∂2
uL(z, uz), L(z, uz + ε) < L(z, uz), so we get

lim
z→−∞

e−L(z,uz)
√

−∂2
uL(z, uz)

∫∞

uz+ε
eL(z,u)G2(u)du = 0. (B.17)

Similarly,

lim
z→−∞

e−L(z,uz)
√

−∂2
uL(z, uz)

∫uz−ε

0
eL(z,u)G2(u)du = 0. (B.18)

Combining all these estimates, we deduce

1 + ε√
1 − Cε

≥ lim sup
z→−∞

e−L(z,uz)
√
−∂2

uL(z, uz)

G0
√

2π

∫∞

0
eL(z,u)G2(u)du

≥ lim inf
z→−∞

e−L(z,uz)
√
−∂2

uL(z, uz)

G0
√

2π

∫∞

0
eL(z,u)G2(u)du ≥

1 − ε√
1 + Cε

.

(B.19)
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As ε > 0 can be arbitrarily small, by (2.7),

fZ(z)∼−∞
G0e

L(z,uz)−A1(z)

√
−2π
(
1 − ρ2

)
∂2
uL(z, uz)σ1σ2

. (B.20)

Applying (B.5), (B.9) and (B.11), we complete the proof.

B.3.

Case 3. ρ > σ1/σ2. Rewrite

A2
(
e−u
)
= ξ(u) = B1 log

(
1 − e−u

)
+ B2u (B.21)

with two positive constants

B1 =
σ2 − σ1ρ

2
(
1 − ρ2

)
σ2

1σ2
, B2 =

σ2ρ − σ1

2
(
1 − ρ2

)
σ2

2σ1
. (B.22)

Thus,

∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫∞

0
eL2(z,u)G2(u)du (B.23)

with G2 given by (B.8) and

L2(z, u) = −2z
[
B1 log

(
1 − e−u

)
+ B2u

]
−

(u + μ2)
2

2
(
1 − ρ2

)
σ2

2

+
ρμ1
(
u + μ2

)

(
1 − ρ2

)
σ1σ2

= −2z
[
B1 log

(
1 − e−u

)
+ B2u

]
− 1

2
(
1 − ρ2

)

[(
u + μ2

σ2
−
ρμ1

σ1

)2

−
μ2

1ρ
2

σ2
1

]

.

(B.24)

Notice that ξ is C∞ diffeomorphism from (0,∞) into R, with ξ′(u) = B1(eu − 1)−1 + B2 > 0 in
(0,∞). Let η be the inverse function of ξ, namely u = η(ξ). We have the following properties:

lim
ξ→+∞

η(ξ) =∞, lim
ξ→+∞

η′(ξ) =
1
B2
, lim

ξ→+∞

ξ − B2η(ξ)
−B1e−η(ξ)

= 1. (B.25)

The change of variable u = η(ξ) yields

∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫

R

G2
(
η(ξ)
)
η′(ξ)eL2(z,η(ξ))dξ. (B.26)
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For z < 0, as η′(ξ)‖G2‖∞ ∈ L1(R−), L2(z, η(ξ)) ≤ C in R− and limz→−∞L2(z, η(ξ)) = −∞ for
ξ < 0, we obtain

lim
z→−∞

∫

R−

G2
(
η(ξ)
)
η′(ξ)eL2(z,η(ξ))dξ = 0. (B.27)

Furthermore,

∫

R+

G2
(
η(ξ)
)
η′(ξ)eL2(z,η(ξ))dξ=

∫

R+

H2
(
ξ, η(ξ)

)
e−2zξ−1/(2(1−ρ2))(ξ/(B2σ2)+μ2/σ2−ρμ1/σ1)2

dξ, (B.28)

where

H2
(
ξ, η(ξ)

)
= G2

(
η(ξ)
)
η′(ξ)eμ

2
1ρ

2/(2(1−ρ2)σ2
1 )

× e[(ξ/(B2σ2)+μ2/σ2−ρμ1/σ1)
2−(η(ξ)/σ2+μ2/σ2−ρμ1/σ1)

2]/(2(1−ρ2))
(B.29)

is a bounded function in R+ by properties of η and G2. Otherwise, using (B.9) and (B.25)

lim
ξ→∞

H2
(
ξ, η(ξ)

)
=
G0

B2
eμ

2
1ρ

2/(2(1−ρ2)σ2
1 ) =

e−μ
2
1/(2σ

2
1 )

B2
> 0. (B.30)

Applying Lemma A.3, we get

∫

R+

G2
(
η(ξ)
)
η′(ξ)eL2(z,η(ξ))dξ ∼−∞σ2

√
2π
(
1−ρ2

)
e−μ

2
1/(2σ

2
1 )e2B2

2σ
2
2 (1−ρ2)z2+2B2(μ2−ρμ1σ2/σ1)z.

(B.31)

Finally, combining (B.27), (B.31), (B.22) and (2.7)

fZ(z)∼−∞
1

σ1
√

2π
e−μ

2
1/(2σ

2
1 )e−A1(z)+2B2

2σ
2
2 (1−ρ2)z2+2B2(μ2−ρμ1σ2/σ1)z =

1

σ1
√

2π
e−(z−μ1)

2/(2σ2
1 ), (B.32)

which is just the claimed result.

C. The Right Tail Behavior

Here we prove Theorem 2.4. We begin with the formulae (2.7), (2.6) and divide the study into
two cases: ρ < σ1/σ2 and ρ ≥ σ1/σ2. Since the arguments are often similar to the previous
consideration and the situation is simpler, we will proceed with less details.

C.1.

Case 1. ρ < σ1/σ2. We haveA2(e−u) = ξ(u) = B1 log(1−e−u)+B2uwith Bi given by (B.22). Since
B1 > 0 and B2 < 0, it’s clear that −ξ′′(u) = B1e

u(eu − 1)−2 > 0 in (0,∞) and u0 = log(1 − B1/B2)
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is the unique solution of ξ′(u) = 0. Hence ξ is decreasing on (0, u0), increasing on (u0,∞)
and limu→ 0+ξ(u) = limu→∞ξ(u) = −∞. Thus for any t ∈ (−∞, ξ(u0)), there exist exactly two
solutions η1(ξ) < η2(ξ) for ξ(u) = t. Before proceeding, we list some properties of ηi

lim
ξ→−∞

η1(ξ) = lim
ξ→−∞

ξη1(ξ) = 0, lim
ξ→−∞

η′1(ξ)

1 − e−η1(ξ)
=

1
B1
, (C.1)

lim
ξ→−∞

η2(ξ) =∞, lim
ξ→−∞

η′2(ξ) =
1
B2
, lim

ξ→−∞

ξ − B2η2(ξ)
−B1e−η2(ξ)

= 1. (C.2)

Note that

I(z) =
∫∞

u0

e−2zA2(e−u)−A3(e−u)

1 − e−u du = −
∫ ξ(u0)

−∞
G2
(
η2(ξ)

)
η′2(ξ)e

L2(z,η2(ξ))dξ

= −
∫ ξ(u0)

−∞
H2
(
ξ, η2(ξ)

)
e−2zξ−1/(2(1−ρ2))(ξ/(B2σ2)+μ2/σ2−ρμ1/σ1)2

dξ,

(C.3)

where G2, L2 and H2 are defined by (B.8), (B.24), (B.29) respectively. Then we can repeat
the above proof for the left tail (the third case), substituting the function η by η2, using the
properties in (C.2), we conclude that

I(z)∼∞σ2

√
2π
(
1 − ρ2

)
eA1(z)−(z−μ1)2

/(2σ2
1 ). (C.4)

For the integral over (0, u0), we have

2
(

1 − ρ2
)
A3

(
e−η1(ξ)

)

=

[
log(1 − e−η1(ξ)) − μ1

]2

σ2
1

−
2ρ
[
log
(
1 − e−η1(ξ)

)
− μ1
](
−η1(ξ) − μ2

)

σ1σ2
+
(−η1(ξ) − μ2)

2

σ2
2

=
[
ξ − B2η1(ξ) − B1μ1

B1σ1

]2

+
2ρ
(
η1(ξ) + μ2

)

B1σ1σ2

[
ξ − B2η1(ξ) − B1μ1

]
+
(η1(ξ) + μ2)

2

σ2
2

=
(

ξ

B1σ1
−
μ1

σ1
+
ρμ2

σ2

)2

+G1
(
ξ, η1(ξ)

)
+
μ2

2

(
1 − ρ2)

σ2
2

,

(C.5)

with

G1
(
ξ, η1(ξ)

)
= −2

(
ξ − B1μ1

)
B2η1(ξ)

B2
1σ

2
1

+
B2

2η
2
1(ξ)

B2
1σ

2
1

+
2ρη1(ξ)
B1σ1σ2

[
ξ − B2η1(ξ) − B1μ1 − B2μ2

]
+
η2

1(ξ) + 2η1(ξ)μ2

σ2
2

.

(C.6)
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On the other hand,

J(z) =
∫u0

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫ ξ(u0)

−∞
H1
(
ξ, η1(ξ)

)
e−2zξ−1/(2(1−ρ2))(ξ/(B1σ1)−μ1/σ1+ρμ2/σ2)2

dξ,

(C.7)

where

H1
(
ξ, η1(ξ)

)
=

η′1(ξ)

1 − e−η1(ξ)
exp

[
−G1
(
ξ, η1(ξ)

)

2
(
1 − ρ2

) −
μ2

2

2σ2
2

]

. (C.8)

Using the properties (C.1),

lim
ξ→−∞

H1
(
ξ, η1(ξ)

)
=
e−μ

2
2/(2σ

2
2 )

B1
. (C.9)

Using Lemma A.3, we get the behavior of J as z → ∞, and a simplification leads to

J(z)∼∞σ1

√
2π
(
1 − ρ2

)
eA1(z)−(z−μ2)

2/(2σ2
2 ). (C.10)

Since 2πσ1σ2

√
1 − ρ2fZ(z) = e−A1(z)[I(z) + J(z)], the dominant term of fZ(z) is clearly

given by J(z) if σ1 < σ2, However when σ1 = σ2, we need to compare μ1 and μ2. Finally,

fZ(z)∼∞

⎧
⎨

⎩

N
(
μ, σ2) with

(
σ, μ
)
=max

{(
σi, μi

)}
, if

(
σ1, μ1

)
/=
(
σ2, μ2

)
;

2N
(
μ, σ2), if

(
σ1, μ1

)
=
(
σ2, μ2

)
=
(
σ, μ
)
.

(C.11)

C.2.

Case 2. ρ ≥ σ1/σ2. We always have B1 > 0, but now B2 ≥ 0. Thus, ξ′(u) > 0 and ξ′′(u) < 0 for
u > 0, so ξ is a diffeomorphism from (0,∞) to R. Denote η(ξ) as the inverse function of ξ. η(ξ)
satisfies (C.1) and

lim
ξ→∞

η(ξ) =∞, lim
ξ→∞

η′(ξ) =
1
B2

if B2 > 0, lim
ξ→∞

η′(ξ)
eη(ξ) − 1

=
1
B1

if B2 = 0. (C.12)

Let H1 and G1 be defined in (C.8), (C.6) respectively. Replace η1 by η. It is not difficult to
prove that we always have limξ→∞G1(ξ, η(ξ)) =∞ and

∫∞

0

e−2zA2(e−u)−A3(e−u)

1 − e−u du =
∫

R

H1
(
ξ, η(ξ)

)
e−2zξ−1/(2(1−ρ2))(ξ/(B1σ1)−μ1/σ1+ρμ2/σ2)2

dξ. (C.13)

Moreover, when z tends to∞, the behavior of fZ(z) is dominated by the integral over R−. By
(C.1) and (C.12), H1(ξ, η(ξ)) is uniformly bounded in R. Using Lemma A.3 again, as for J(z)
in Case 1, we come to the conclusion fZ(z)∼∞N(μ2, σ

2
2).
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D. Quotient of Sum of Lognormal

Here is the proof for Theorem 2.8. Let Z1 = log(eX1 + eX2), Z2 = log(eY1 + eY2), as before,

fZ1(t) = fZ2(t) =
1

2πσ2

∫1

0

1
(1 − u)u exp

[

−
(t + log u)2 + (t + log(1 − u))2

2σ2

]

du. (D.1)

Denoting Ω1 = [0, 1] × [0, 1] × R, we get

fZ(z) =
∫

R

fZ1(t)fZ2(t − z)dt.

=
1

4π2σ4

∫∫∫

Ω1

e−1/(2σ2)[(logu+t)2+(log(1−u)+t)2+(logv+t−z)2+(log(1−v)+t−z)2]

u(1 − u)v(1 − v) dudv dt.

(D.2)

Direct calculus yields

(logu + t)2 + (log(1 − u) + t)2 + (logv + t − z)2 + (log(1 − v) + t − z)2

=
(

2t − z +
log[uv(1 − u)(1 − v)]

2

)2

+ z2 + z log
[
u(1 − u)
v(1 − v)

]

+ R(u, v),
(D.3)

with

R(u, v) = log2u + log2(1 − u) + log2v + log2(1 − v) −
log2[uv(1 − u)(1 − v)]

4
. (D.4)

Thus,

4π2σ4fZ(z) =
∫1

0

∫1

0

∫

R

e
−1/(2σ2)

{
(2t−z+log[uv(1−u)(1−v)]/2)2

+z2+z log[u(1−u)/(v(1−v))]+R(u,v)
}

u(1 − u)v(1 − v) dudv dt

=
∫1

0

∫1

0

∫

R

e−1/(2σ2){4t2+z2+z log[u(1−u)/(v(1−v))]+R(u,v)}
u(1 − u)v(1 − v) dudv dt

=
σ
√
πe−z

2/(2σ2)

√
2

∫1

0

∫1

0

e−1/(2σ2){z log[u(1−u)/(v(1−v))]+R(u,v)}
u(1 − u)v(1 − v) dudv

= 2
√

2πσe−z
2/(2σ2)

∫1/2

0

∫1/2

0

e−1/(2σ2){z log[u(1−u)/(v(1−v))]+R(u,v)}
u(1 − u)v(1 − v) dudv.

(D.5)
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The last equality is obtained by the symmetry of our integrand between u, v and 1 − u, 1 − v.
Since ζ(u) = log[u(1 − u)] is increasing in (0, 1/2], clearly for any z < 0,

I1(z) =
∫1/2

0

∫1/2

u

e−1/(2σ2){z log[u(1−u)/(v(1−v))]+R(u,v)}
u(1 − u)(v(1 − v)) dudv

≤
∫1/2

0

∫1/2

u

e−R(u,v)/(2σ
2)

u(1 − u)(v(1 − v))dudv=a0<∞

(D.6)

Denote by γ : (−∞,− log 4] → (0, 1/2] the inverse function of ζ, then

γ(s) =
1 −
√

1 − 4es

2
, γ ′(s) =

es√
1 − 4es

. (D.7)

Moreover, by change of variables u = γ(s), v = γ(t),

J1(z) =
∫1/2

0

∫u

0

e−1/(2σ2){z log[u(1−u)/(v(1−v))]+R(u,v)}
u(1 − u)v(1 − v) dudv

=
∫ s0

−∞

∫s

−∞

e−1/(2σ2)[z(s−t)+(3s2+3t2−2st)/4−2 log(γ(s)) log(1−γ(s))−2 log(γ(t)) log(1−γ(t))]
√

1 − 4es
√

1 − 4et
ds dt,

(D.8)

where s0 = − log 4. Making a new change of variables x = −s + s0, y = s − t, we then get

J1(z) =
∫∞

0
e−1/(2σ2)(zy+y2/2)

∫∞

0
e−(x−s0+y/2)2

/(2σ2)H(x)H
(
x + y

)
dx dy, (D.9)

with

H(x) =
1√

1 − e−x
exp

[
1
σ2

log

(
1 −
√

1 − e−x
2

)

log

(
1 +
√

1 − e−x
2

)]

. (D.10)

Obviously,

lim
x→ 0+

H(x)
√
xe−(log 2)2/σ2

= lim
x→∞

H(x) = 1. (D.11)

Consider

P
(
y
)
=
∫∞

0
e−(x+y/2−s0)2

/(2σ2)H(x)H
(
x + y

)
dx, (D.12)

we claim that

lim
y→∞

√
y

√
2πσ

e((y−2s0)
2−8(log 2)2)/(8σ2)P

(
y
)
= 1. (D.13)
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Indeed, for any y > 0

√
ye((y−2s0)

2−8(log 2)2)/(8σ2)P
(
y
)

=
√
ye−(log 2)2/σ2

∫∞

0
e−(x

2+(y−2s0)x)/(2σ2)H(x)H
(
x + y

)
dx

=
√
ye−(log 2)2/σ2

√
y − 2s0

∫∞

0

e−1/(2σ2)[u+u2/(y−2s0)
2]

√
u

H

(
u

y − 2s0
+ y
)

×
√

u

y − 2s0
H

(
u

y − 2s0

)

du.

(D.14)

We use x = u/(y − 2s0) for the last equality. Using dominated convergence and (D.11), the
claim (D.13) is obtained immediately. Defining Q(y) = √ye(y−2s0)

2/(8σ2)P(y), we finally get

J1(z) =
∫∞

0

e−1/(2σ2)[zy+y2/2+(y/2−s0)
2]

√
y

Q
(
y
)
dy = e−s

2
0/(2σ

2)
∫∞

0

e−1/(2σ2)(zy−s0y+3y2/4)

√
y

Q
(
y
)
dy.

(D.15)

As z → −∞, we need to understand the behavior ofW(b) when b tends to∞. More precisely,
for λ > 0,

W(b) =
∫∞

0

eby−λy
2

√
y

Q
(
y
)
dy = 2

√
b

∫∞

0
eb

2(x2−λx4)Q
(
bx2
)
dx. (D.16)

Here,G(x) = x2−λx4 is not concave in [0,∞). But notice thatG has a unique global maximum
point at x0 = 1/

√
2λ in [0,∞) and G′′(x0) = −4. So the spirit of the Laplace method works.

This implies

W(b)∼∞

√
2π
b
eb

2/(4λ) × lim
y→∞

Q
(
y
)
. (D.17)

Hence by (D.13),

J1(z)∼−∞
2
√

2πσ2

√
−z

e(z−s0)
2/(6σ2)−(log 2)2/σ2

. (D.18)

Finally, using

fZ(z) =
e−z

2/(2σ2)

√
2π3σ3

[I1(z) + J1(z)], (D.19)
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we conclude that fZ(z)∼−∞r(z) where

r(z) =
2e−z

2/(2σ2)+(|z|+s0)
2/(6σ2)−(log 2)2/σ2

σ
√
π |z|

=
2e−(|z|+log 2)2/(3σ2)

σ
√
π |z|

. (D.20)

The proof is complete, since fZ is an even function.

E. A Higher Dimension Left Tail Result

We will prove Theorem 2.6 in this section. Let (X1, X2, . . . , Xn)n≥3 be a joint normal variable
with distribution N(μ,Σ), where μ is the mean vector (μ1, . . . , μn), and Σ is a non-singular
covariance matrix. Let Z = log(

∑
1≤i≤n e

Xi). We wish to study the left tail of fZ(z), and the
PDF of z. Let f be the PDF of (X1, X2, . . . , Xn), that is,

f(x1, . . . , xn) =
1

√
(2π)n|detΣ|

exp

[

−
(
x − μ

)
Σ−1(x − μ)t

2

]

. (E.1)

Let M = (mij) = Σ−1. By change of variables, it is clear that

fZ(z) =
1

√
(2π)n|detΣ|

∫

Ω0

1
1 −
∑

2≤i≤n e
ui

exp

(

−
∑

1≤i,j≤n mijAiAj

2

)

du2 . . . dun, (E.2)

where Ω0 = {(ui)2≤i≤n ∈ R
n−1,
∑

2≤i≤n e
ui < 1}, and A ∈ R

n is a vector defined by Ai = z+Ci−μi
with C the vector given by (2.18). Consequently,

∑

1≤i,j≤n
mijAiAj =

∑

1≤i,j≤n
mijCi

(
Cj − 2μj

)
+ 2zF(u) +

∑

1≤i,j≤n
mij

(
z − μi

)(
z − μj

)
, (E.3)

with F in Theorem 2.6. Therefore, if F(u) has only one saddle point, we can expect to apply
the Laplace method to the higher dimensional case. One necessary and sufficient condition
to ensure that is summarized in the following lemma.

Lemma E.1. The function F(u2, . . . , un) =
∑

1≤i≤n miCi has a unique critical point within the setΩ0,
if and only if for any1 ≤ k ≤ n, mk > 0. Moreover, the Hessian of F, HF = (∂2

ijF)2≤i,j≤n is negative
definite over Ω0 whenm1 > 0.

Indeed, it is easy to see that

∂F

∂uk
= mk −

m1e
uk

1 − S1
, ∀2 ≤ k ≤ n, (E.4)
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where S1 =
∑

2≤i≤n e
ui . Since mi /≡ 0, the solution to the system ∇F = 0 would satisfy euk =

mkm
−1 for all 2 ≤ k ≤ n. Thus a solution exists in Ω0 if and only if all mi’s are positive. As

∂2F

∂uk∂uj
= − m1

1 − S1

[

eukδkj +
eukeuj

1 − S1

]

, (E.5)

with δkj the Kronecker symbol, for any v = (vi) ∈ R
n−1,

〈v,HFv〉=−
m1

1−S1

⎛

⎝
∑

2≤k≤n
eukv2

k+
∑

2≤k,j≤n

eukeuj vkvj

1 − S1

⎞

⎠=− m1

1 − S1

[
∑

2≤k≤n
eukv2

k +

(∑
2≤k≤n e

ukvk
)2

1 − S1

]

.

(E.6)

It is easy to conclude as long as m1 > 0 and S1 < 1. The following lemma is our key argument.

Lemma E.2. Let Ω ⊂ R
n be a convex domain. Let H,G be two continuous functions defined on Ω.

We further assume H is a positive integrable function over Ω; G is C2, strictly concave and G has a
unique critical point x0 in Ω. Then

lim
z→∞

∫

Ω
H(x)ezG(x)dx ×

√
zn|detHG(x0)|

H(x0)ezG(x0)(2π)n/2
= 1 (E.7)

whereHG denotes the Hessian matrix of G.

This lemma is an extension to higher dimension of Lemma A.1 and the proof is very
similar, so we leave the details to interested readers. Returning to our proof, since all mi’s are
positive, we can verify that

(i) Ω0 is convex, since
∑

2≤i≤n e
ui is a convex function.

(ii) The function F has only one critical point U0 = log(mk/m) ∈ Ω0 and F(U0) =
∑

1≤k≤n mk log (mk/m).

(iii) HF(u2, . . . , un) is negative definite for any point (u2, . . . , un) ∈ Ω0.

(iv) The functionH is clearly positive in Ω0. The integrability ofH over Ω0 is ensured by
the fact that the matrix M is positive definite. Because |C|2 = log2(1−S1)+

∑
2≤i≤n u

2
i ,

H is bounded over Ω0. Finally, as

fZ(z) =
1

√
(2π)n|detΣ|

e−(
∑

1≤i,j≤n(z−μi)mij (z−μj ))/2 ×
∫

Ω0

H(u)e−zF(u)du2 . . . dun, (E.8)

a straightforward application of Lemma E.2 results in Theorem 2.6.
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F. A Higher Dimension Right Tail Result

We will prove Theorem 2.7 by induction on the number n. It is trivially true for n = 1, since
Z = X1. Suppose that the result holds for Z = log(

∑n
i=1 e

Xi). Consider now

Z1 = log

(
n+1∑

i=1

eXi

)

= log
(
eZ + eXn+1

)
, (F.1)

where (X1, . . . , Xn+1) is a normally distributed random vector whose covariance matrix
is diagonal. Without loss of generality, we can assume that the sequence (σi, μi)1≤i≤n+1 is
nonincreasing. There exist three possible cases:

(i) σn+1 < σ = σ1;

(ii) σn+1 = σ butμn+1 < μ = μ1;

(iii) (σn+1, μn+1) = (σ, μ).

By translation, we can assume that μ = 0.
Let us denote the PDF of (eZ + eXn+1) by g, then fZ1(z) = ezg(ez) is the PDF of Z1.

Consider the asymptotic behavior of g(z) as z → ∞. First,

g(z) =
∫z

0

fZ
(
logu

)

u
× 1√

2πσn+1(z − u)
e−(log(z−u)−μn+1)

2/(2σ2
n+1)du. (F.2)

For any A > 0 fixed (to be chosen later), as the function

h(t) =
1√

2πσn+1t
e−(log t−μn+1)

2/(2σ2
n+1) (F.3)

is decreasing near +∞, there exists z1 > A such that h(z−u) ≤ h(z−A) on [0, A] for all z ≥ z1.
Hence for such z,

IA(z) =
∫A

0

fZ
(
logu

)

u
h(z − u)du ≤ h(z −A) ×

∫A

0

fZ
(
logu

)

u
du

= h(z −A) ×
∫ logA

−∞
fZ(v)dv

≤ h(z −A).

(F.4)
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Noting that

[
log(z −A) − μn+1

]2

2σ2
n+1

=

[
log z + log(1 −A/z) − μn+1

]2

2σ2
n+1

∼∞
(log z)2

2σ2
n+1

, (F.5)

for the case (i), we immediately see

IA(z) ≤ h(z −A) = o
(

1
z
e−(log z)2

/(2σ2)
)

as z −→ ∞. (F.6)

For the case (ii), since μn+1 < μ = 0, there exists z2 > z1 such that for all z ≥ z2,

log z + log
(

1 − A
z

)

− μn+1 ≥ log z −
μn+1

2
. (F.7)

With such z, we have

h(z −A) × ze(log z)2/(2σ2) ≤ 1√
2πσn+1

× z

z −Ae
(4μn+1 log z−μ2

n+1)/(8σ
2). (F.8)

Recall that μn+1 < 0. So the estimate (F.6) still holds. Consider now JA = g(z) − IA. For any
ε > 0, by hypothesis of induction, we can fix A > 0 large enough such that

∣
∣
∣
∣

fZ(z)
mnN(0, σ2)(z)

− 1
∣
∣
∣
∣ ≤ ε in

[
logA,∞

)
. (F.9)

Consequently |JA/KA − 1| ≤ ε for z ≥ A where

KA(z) =
∫z

A

mnN
(
0, σ2)(logu

)

u
× h(z − u)du. (F.10)

Using exactly the same proof as for Theorem 2.4 (the case ρ < σ1/σ2), we get that

KA(z)∼∞
mnN

(
0, σ2)(log z

)

z
. (F.11)



26 International Journal of Mathematics and Mathematical Sciences

Finally,

mn(1 + ε) ≥ lim sup
z→∞

JA(z) ×
√

2πσze(log z)2/(2σ2)

≥ lim inf
z→∞

JA(z) ×
√

2πσze(log z)2/(2σ2) ≥ mn(1 − ε)
(F.12)

(F.6) implies that IA = o(JA) when z tends to∞. As g(z) = IA + JA, we conclude

mn(1 + ε) ≥ lim sup
z→∞

g(z) ×
√

2πσze(log z)2/(2σ2)

≥ lim inf
z→∞

g(z) ×
√

2πσze(log z)2/(2σ2) ≥ mn(1 − ε)
(F.13)

As ε is arbitrary, the proof is completed for the cases (i) and (ii) because mn+1 = mn.
We now consider the case (iii). First we observe that (iii) simply means that (Xi)1≤i≤n+1

are i.i.d. following N(0, σ2) so that mn = n and mn+1 = n + 1. The estimate (F.12) is always
true for any A > 0 satisfying (F.9). However, we need to estimate IA differently. For any ε > 0,
we fix A such that (F.9) holds and

∫A

0

fZ
(
logu

)

u
=
∫ logA

−∞
fZ(v)dv ∈ (1 − ε, 1). (F.14)

Because in case (iii),

IA ×
√

2πσze(log z)2/(2σ2) −
∫A

0

fZ
(
logu

)

u
du =

∫A

0

fZ
(
logu

)

u
R(u)du, (F.15)

with

R(u) =
z

z − ue
−1/(2σ2)[2 log z log(1−u/z)+log2(1−u/z)] − 1, (F.16)

which converges uniformly to 0 in [0, A], we obtain

1 ≥ lim sup
z→∞

IA(z) ×
√

2πσze(log z)2/(2σ2) ≥ lim inf
z→∞

IA(z) ×
√

2πσze(log z)2/(2σ2) ≥ 1 − ε. (F.17)

Combining with (F.12), it is easy to conclude.
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