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1. Introduction

Let H be a complex, separable, infinite dimensional Hilbert space, and let L(H) denote the
algebra of all linear bounded operators onH. TheHilbert-Schmidt class, denoted byC2(H), is
a Hilbert space with the ||·||2-norm that arises from the inner product 〈X,Y〉 = tr(XY ∗),where
tr is the scalar-valued trace. For T ∈ L(H), define ΔT : L(H) → L(H) by ΔT (X) = TX −XT,
and let σ(T) denote the spectrum of T. Let the range of a linear operator S be denoted by
R(S). For a normal operatorN ∈ L(H), Anderson and Foiaş [1] proved that R(ΔN) is norm
closed if and only if σ(N) is a finite set. In [2], Stampfli extended this result to the class of
hyponormal operators.

Theorem A ([2]). Let T ∈ L(H) be a hyponormal operator. Then R(ΔT ) is norm closed if and only
if σ(T) is finite.

In fact, Stampfli provided a proof of the “only if” implication which extends to a
larger class of operators than the class of hyponormal operators (see Proposition 2.2). For
an operator T ∈ L(H), let σnap(T) denote its normal approximate point spectrum, that is, the set
of those λ ∈ C for which there exists an orthonormal sequence {φn}n inH such that

∥
∥(T − λ)φn

∥
∥ +
∥
∥(T − λ)∗φn

∥
∥ −→ 0. (1.1)
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Define the class G(H) as follows:

G(H) :=
{

T ∈ L(H) | σnap(T) is an infinite set
}

. (1.2)

Some classes of hyponormal related operators, such asM-hyponormal operators, that is,

m · ∥∥(T − λ)∗φ∥∥ ≤ ∥∥(T − λ)φ∥∥, (∀)φ ∈ H, (∀)λ ∈ C, for some m > 0, (1.3)

p-hyponormal operators, that is, (T ∗T)p ≥ (TT ∗)p for some p > 0, or log-hyponormal
operators, that is, invertible operators such that log(T ∗T) ≥ log(TT ∗), have spectrum that
is finite or they belong to G(H). Particularly, the hyponormal operators (i.e., 1-hyponormal)
have this property.

In [3] Stampfli proved the following lemma which will be used in Section 2.

Lemma B. Let T ∈ G(H) and let {λn}∞n=1 be a sequence of distinct points of σnap(T). Then for
any sequence {εn}∞n=1 of positive numbers converging to zero, there exists an orthonormal sequence
{φn}∞n=1 of vectors in H such that

∥
∥(T − λn)φn

∥
∥ +
∥
∥(T − λn)∗φn

∥
∥ < εn for n = 1, 2, . . . , (1.4)

〈

φn, Tφk
〉

= 0 for k = 1, . . . , n − 1. (1.5)

2. The Closedness of the Range of Δ(2)
T

The operatorΔT defined on the Hilbert-Schmidt class will be denoted in the remainder of this
note by Δ(2)

T , that is, Δ(2)
T : C2(H) → C2(H), Δ(2)

T (X) = TX − XT. LetHM(H) denote the set
ofM-hyponormal operators.

Proposition 2.1. Let T ∈ HM(H). If σ(T) is finite, then R(Δ(2)
T ) is closed.

Proof. It is well known that an operator T ∈ HM(H) with finite spectrum is normal. Indeed,
for such an operator, the restriction to an invariant subspace M belongs to HM(M). On the
other hand, if T ∈ HM(H) with σ(T) = {λ}, then T = λI, (cf. [4]). Thus, we can write
T =
∑n0

i=1 λiEi, where Ei’s are the spectral projections.
LetXn andC be inC2(H) such that ‖Δ(2)

T (Xn) − C‖2 → 0. ThereforeΔT (Xn)−C → 0 in
theL(H) norm, and according to TheoremA, there existsX0 ∈ L(H) such thatC = TX0−X0T.
For an arbitrary X ∈ L(H), let [Xij] be the block-matrix representation of X relative to the
decomposition H =

∑n0
i=1 ⊕EiH. Thus

Cij =
(

λi − λj
)

X0
ij , (2.1)

for all i, j = 1, . . . , n0. This implies that eachX0
ij = (1/(λi−λj))Cij is a Hilbert-Schmidt operator.

Moreover X0
ii can be chosen 0, and thus X0 ∈ C2(H).
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Proposition 2.2. Let T ∈ G(H). Then R(Δ(2)
T ) is not closed.

Proof. We will use same notation and circle of ideas as in [2]. Let {λn}n≥1 be sequence of
distinct points of σnap(T) so that λn → λ0. Let

ηn = max
{∣
∣λj+1 − λj

∣
∣
−1/2 | j = 1, . . . , n

}

, (2.2)

and choose a nonincreasing sequence {εn}n≥1 so that 0 < εn ≤ |λn+1 − λn|2, n ≥ 1, and
∑

n≥1 ε
2
nη

2
n < ∞. According to Lemma B, there exists an orthonormal sequence {φn}n≥1 that

satisfies (1.4) and(1.5). Let H1 = ∨{φn | n ≥ 1}, H2 = H⊥
1 , and let δn such that

Tφn = μnφn + δn, δn ⊥ φn, n ≥ 1. (2.3)

It results that

∣
∣μn − λn

∣
∣ < εn, ‖δn‖ < 2εn, n ≥ 1. (2.4)

Define V : H → H by Vφn = |λj+1 − λj |−1/2 φn+1, n ≥ 1, and Vg = 0, g ∈ H2. LetMn = ∨{φj |
j = 1, . . . , n} and let Pn be the orthogonal projection ontoMn, and define Vn = VPn. A tedious
calculation shows that

ΔT (Vn)φj =

⎧

⎨

⎩

vj
(

μj+1 − μj
)

φj+1 + vjδj+1 − Vnδj ,
−Vnδj ,

j ≤ n,
j > n,

(2.5)

where vj = |λj+1 − λj |−1/2. Denoting ΔT (Vn) −ΔT (Vm) by Δn,m
T , then for n < m,

Δn,m
T φj =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0,

−vj
(

μj+1 − μj
)

φj+1 + vjδj+1 + (Vm − Vn)δj ,
(Vm − Vn)δj ,

j ≤ n,
n < j ≤ m,
j > m.

(2.6)

Furthermore, from (2.3) it results that

δj ⊥ φj, φj+1, φj+2, . . . (2.7)

and from (2.4)

∥
∥Vnδj

∥
∥ ≤ 2ηjεj , ∀j, n ≥ 1. (2.8)

We will show next that ‖Δn,m
T ‖2 → 0 when m,n → ∞, thus there exists C ∈ C2(H)

such that ‖ΔT (Vn) − C‖2 → 0, that is, C ∈ R(Δ(2)
T ).
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First, we will show that ‖Δn,m
T |H1

‖22 → 0, whenm,n → ∞. Indeed,

∥
∥Δn,m

T |H1

∥
∥
2
2 =

∞∑

j=1

∥
∥Δn,m

T φj
∥
∥
2 (2.6)

=

=
m∑

j=n+1

∥
∥−vj

(

μj+1 − μj
)

φj+1 + vjδj+1 + (Vm − Vn)δj
∥
∥
2

+
∞∑

j=m+1

∥
∥(Vm − Vn)δj

∥
∥
2
.

(2.9)

The first sum of the right-hand side of the above can be majorized by

2 ·
m∑

j=n+1

∥
∥−vj

(

μj+1 − μj
)

φj+1 + vjδj+1
∥
∥
2 + 2 ·

m∑

j=n+1

∥
∥(Vm − Vn)δj

∥
∥
2
. (2.10)

Since φj+1 ⊥ δj+1, we have

∥
∥Δn,m

T |H1

∥
∥
2
2 ≤ 2

⎡

⎣

m∑

j=n+1

(

v2
j

∣
∣μj+1 − μj

∣
∣
2 + v2

j

∥
∥δj+1

∥
∥
2
)

+
∞∑

j=n+1

∥
∥(Vm − Vn)δj

∥
∥
2

⎤

⎦. (2.11)

According to (2.8),

∥
∥(Vm − Vn)δj

∥
∥
2 ≤ 16η2j ε

2
j , (2.12)

and according to (2.4),

v2
j

∥
∥δj+1

∥
∥
2 ≤ 4η2j ε

2
j+1 ≤ 4η2j ε

2
j ,

∣
∣μj+1 − μj

∣
∣
2 ≤ (2εj +

∣
∣λj+1 − λj

∣
∣
)2 ≤ 8ε2j + 2

∣
∣λj+1 − λj

∣
∣
2
,

(2.13)

which implies

v2
j

∣
∣μj+1 − μj

∣
∣
2 ≤ 8η2j ε

2
j + 2

∣
∣λj+1 − λj

∣
∣. (2.14)

Therefore

∥
∥Δn,m

T |H1

∥
∥
2
2 ≤ c1 ·

∞∑

j=n+1

η2j ε
2
j + c2 ·

m∑

j=n+1

∣
∣λj+1 − λj

∣
∣, (2.15)

where c1 and c2 are some constants. After a careful review of the proof, one can see that the
sequence {λn} can be assumed to converge fast enough (otherwise choose a subsequence of
it), more precisely

∑m
j=n+1 |λj+1 − λj | → 0 when n,m → ∞.
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We show next that ‖Δn,m
T |H2

‖22 → 0, whenm,n → ∞. Indeed, we can write

T ∗φn = μnφn + γn with
〈

γn, φn
〉

= 0,
∥
∥γn
∥
∥ ≤ 2εn, n ≥ 1. (2.16)

Obviously, we can write T ∗φn = θnφn + γn with 〈γn, φn〉 = 0, which implies

θn =
〈

θnφn + γn, φn
〉

=
〈

T ∗φn, φn
〉

=
〈

φn, Tφn
〉

=
〈

φn, μnφn + δn
〉

= μn,

∥
∥γn
∥
∥ =
∥
∥
(

T ∗ − μn
)

φn
∥
∥ ≤ ∥∥(T − λn)∗φn

∥
∥ +
∣
∣
∣λn − μn

∣
∣
∣

(1.4),(2.4)
≤ 2εn.

(2.17)

For an orthonormal basis {ψi}i≥1 of H2,we will show that

∞∑

i=1

∥
∥Δn,m

T ψi
∥
∥
2 −→ 0 when n,m −→ ∞. (2.18)

For each i,write Tψi =
∑∞

k=1 a
(i)
k φk +wi with wi ∈ H2. Thus

VmTψi =
m∑

k=1

a
(i)
k Vmφk + Vmwi =

m∑

k=1

a
(i)
k vkφk+1. (2.19)

Since Vmψi = 0, we have ΔT (Vm)ψi = −VmTψi, and consequently, for n < m,

Δn,m
T ψi =

m∑

k=n+1

a
(i)
k
vkφk+1. (2.20)

Since the sequence {φk} is orthonormal, we have

∥
∥Δn,m

T ψi
∥
∥
2 =

m∑

k=n+1

∣
∣
∣a

(i)
k

∣
∣
∣

2 · v2
k. (2.21)

Therefore

∞∑

i=1

∥
∥Δn,m

T ψi
∥
∥
2 =

∞∑

i=1

m∑

k=n+1

∣
∣
∣a

(i)
k

∣
∣
∣

2 · v2
k =

m∑

k=n+1

v2
k

( ∞∑

i=1

∣
∣
∣a

(i)
k

∣
∣
∣

2
)

. (2.22)
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For a fixed k,

∞∑

i=1

∣
∣
∣a

(i)
k

∣
∣
∣

2
=

∞∑

i=1

∣
∣
〈

Tψi, φk
〉∣
∣
2 =

∞∑

i=1

∣
∣
〈

ψi, T
∗φk
〉∣
∣
2

(2.16)
=

∞∑

i=1

∣
∣
〈

ψi, μkφk + γk
〉∣
∣
2 =

∞∑

i=1

∣
∣
〈

ψi, γk
〉∣
∣
2 ≤ ∥∥γk

∥
∥
2

(2.16)
≤ 4ε2k.

(2.23)

Consequently,
∑∞

i=1 ‖Δn,m
T ψi‖2 ≤ 4

∑m
k=n+1 v

2
k · ε2k → 0 for n,m → ∞.

The operator C is not in R(Δ(2)
T ) since, according to the proof of Theorem A in [2],

C/∈R(ΔT ).

Theorem 2.3. Let T ∈ HM(H). Then R(Δ(2)
T ) is closed if and only if σ(T) is finite.

Proof. If T ∈ HM(H) and σ(T) are finite, then according to Proposition 2.1, R(Δ(2)
T ) is

closed. Conversely, if T ∈ HM(H) has an infinite spectrum, then there are infinitely many
distinct points {λn}n that are either isolated points of the spectrum, in which case they
are eigenvalues, or accumulation points of the spectrum, in which case they are in σap(T).
Since T ∈ HM(H), we have σp(T), σap(T) ⊆ σnap(T). Thus T ∈ G(H) and according to
Proposition 2.2, R(Δ(2)

T ) is not closed.
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