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1. Introduction

Let Φ(a, b) and Ψ(c, d) be bivariate means. For what means Φ and Ψ does the following
inequality

Φ(a, b)
Φ(c, d)

≤ Ψ(a, b)
Ψ(c, d)

(1.1)

hold true? where

a, b, c, d > 0,
b

a
≥ d

c
≥ 1. (1.2)

Define that

Mp = Mp(a, b) := M1/p(ap, bp), M = A,H, L, I, (1.3)
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where A, H, L, and I stand for arithmetic mean, Heronian mean, logarithmic mean, and
exponential mean (identric mean) of two positive numbers a and b, respectively.

In 1988 Wang et al. [1] proved that for a, b, c, d > 0 with b/a ≥ d/c ≥ 1 the following
inequalities of ratio of bivariate means

G(a, b)
G(c, d)

≤ L(a, b)
L(c, d)

≤ A1/3(a, b)
A1/3(c, d)

(1.4)

hold, with equalities if and only if b/a = d/c. That same year, Chen et al. [2] presented second
inequalities of ratio of bivariate means:

A1/2(a, b)
A1/2(c, d)

≤ H(a, b)
H(c, d)

≤ A2/3(a, b)
A2/3(c, d)

, (1.5)

where the constant 1/2 and 2/3 both are best possible.
In 1994, Pearce et al. [3] proved that the function

p −→
Lp(a, b)
Lp(c, d)

(
p ∈ R

)
(1.6)

is nondecreasing, provided that a, b, c, d > 0with b/a ≥ d/c. Here Lp(a, b) := Sp+1,1(a, b) is the
generalized logarithmic mean and Sp,q(a, b) is the Stolarsky mean of a, b > 0 with parameters
p, q ∈ R defined by

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q(ap − bp)
p(aq − bq)

)1/(p−q)
, p /= q, pq /= 0,

(
ap − bp

p(lna − ln b)

)1/p

, p /= 0, q = 0,

(
aq − bq

q(lna − ln b)

)1/q

, p = 0, q /= 0,

exp
(
ap lna − bp ln b

ap − bp
− 1
p

)
, p = q /= 0,

√
ab, p = q = 0.

(1.7)

Also, Sp,q(a, a) = a. In a few years, Chen and Qi [4–7] also proved equivalent results.
In [8] the author has proven that inequality (1.1) is valid for power means of certain

order, logarithmic, identric, and the Heronian mean of order ω. Neuman et al. [9] obtained
inequalities of the form (1.1) for the Stolarsky, Gini, Schwab-Borchardt, and the lemniscatic
means.

Recently Chen [10, 11] established a more general result than Pearce and Pečarić’s: let
a, b, c, d be fixed positive numbers with a/= b, c /=d and let p, q be real numbers. Then the
function

Rp,q(a, b; c, d) :=
Sp,q(a, b)
Sp,q(c, d)

(1.8)
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is increasing with both p and q according to (1.2). Soon after, Losonczi studied four
monotonicity properties of the ratio

Rp,q(a, b, c) :=
Sp,q(a, b)
Sp,q(a, c)

(
p, q ∈ R, 0 < a < b < c

)
(1.9)

in the parameters p, q and completely solve the comparison problem

Rp,q(a, b, c) ≤ Rr,s(a, b, c)
(
p, q, r, s ∈ R, 0 < a < b < c

)
(1.10)

for this ratio [12]. This generalizes Chen’s result. Also, an open problem was proposed by the
author.

Let Mp,q(p, q ∈ R) be a two-parameter, symmetric, and homogeneous mean defined
for positive variables and let us form the ratio

Rp,q(a, b, c) :=
Mp,q(a, b)
Mp,q(a, c)

(
p, q ∈ R, 0 < a < b < c

)
. (1.11)

For what means Mp,q has this ratio simple monotonicity properties?
The more general form of two-parameter, symmetric, and homogeneous means is

the so-called two-parameter homogenous functions first introduced by Yang [13]. For
conveniences, we record it as follows.

Definition 1.1. Assume that f : R+ × R+ → R+ ∪ {0} is n-order homogeneous, and continuous
and exists first partial derivatives and (a, b) ∈ R+ × R+, (p, q) ∈ R × R.

If f(x, y) > 0 for (x, y) ∈ R+ ×R+ with x /=y and f(x, x) = 0 for all x ∈ R+, then define
that

Hf

(
p, q;a, b

)
:=
(
f(ap, bp)
f(aq, bq)

)1(p−q) (
p /= q, pq /= 0

)
,

Hf

(
p, p;a, b

)
:= lim

q→ p
Hf

(
a, b; p, q

)
= Gf,p(a, b)

(
p = q /= 0

)
,

(1.12)

where

Gf,p(a, b) = G
1/p
f (ap, bp), Gf

(
x, y
)
= exp

(
xfx
(
x, y
)
lnx + yfy

(
x, y
)
lny

f
(
x, y
)

)

, (1.13)

and fx(x, y) and fy(x, y) denote first-order partial derivative for first and second variables
of f(x, y), respectively.
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If f(x, y) > 0 for all (x, y) ∈ R+ × R+, then define further

Hf

(
p, 0;a, b

)
:=
(
f(ap, bp)
f(1, 1)

)1/p (
p /= 0, q = 0

)
,

Hf

(
0, q;a, b

)
:=
(
f(aq, bq)
f(1, 1)

)1/q (
p = 0, q /= 0

)
,

Hf(0, 0;a, b) := lim
p→ 0

Hf

(
a, b; p, 0

)
= afx(1,1)/f(1,1)bfy(1,1)/f(1,1)

(
p = q = 0

)
.

(1.14)

Since f(x, y) is a homogeneous function,Hf(a, b; p, q) is also one and called a homogeneous
function with parameters p and q, and simply denoted byHf(p, q) sometimes.

The aim of this paper is to investigate the monotonicity of the ratio defined by

Rf

(
p, q
)
:=

Hf

(
p, q;a, b

)

Hf

(
p, q; c, d

)
(
p, q ∈ R, a, b, c, d > 0 with

b

a
>

d

c
≥ 1
)

(1.15)

and presents four types of monotonicity of Rf(p, q) in the parameters p and q, which give
an easier access to find two-parameter symmetric homogeneous means having ratio simple
monotonicity properties mentioned by Losonczi [12].

2. Properties and Lemmas

Before formulating our main results, let us recall the properties and lemmas of two-parameter
homogeneous functions.

Property 2.1. Hf(p, q) is symmetric with respect to p, q, that is,

Hf

(
p, q
)
= Hf

(
q, p
)
. (2.1)

Property 2.2. Iff(x, y) is symmetric with respect to x and y, then

Hf

(
−p,−q;a, b

)
=

G2n

Hf

(
p, q;a, b

) ,

Hf

(
p,−p;a, b

)
= Gn,

(2.2)

where G =
√
ab.

Property 2.3 (see [14, (1.13)]). If Gf,t is continuous on [q, p] or [p, q], then

lnHf

(
p, q
)
=

1
p − q

∫p

q

lnGf,tdt, (2.3)

where Gf,t is defined by (1.13).
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It is worth mentioning that the following function

T(t) = T(t;a, b) := ln f
(
at, bt

)
, t /= 0 (2.4)

is well behaved, whose properties as useful lemmas read as follows.

Lemma 2.4 (see [14, (1.14), (1.15), (2.10), (2.11)]). Suppose that f : R+ × R+ \ {(x, x) : x ∈
R+} → R+) is a symmetric, n-order homogenous and three-time differentiable function. Then

T(t) − T(−t) = 2nt lnG, (2.5)

T ′(t) + T ′(−t) = 2n lnG, (2.6)

T ′′(−t) = T ′′(t), (2.7)

T ′′′(−t) = −T ′′′(t), (2.8)

where G =
√
ab.

Remark 2.5. If f(1, 1) := limx→ 1f(x, 1) > 0, then T(t) can be extended continuously by
defining T(0) := limt→ 0T(t) = ln f(1, 1), with the result that T(t) is also three times derivable
at t = 0. Particularly, T ′(0) := n lnG. Thus (2.6) can be written as

T ′(t) + T ′(−t) = 2T ′(0). (2.9)

Lemma 2.6 (see [14, Lemma 3, 4]). Suppose that f : R+ × R+ \ {(x, x) : x ∈ R+} → R+ is an
n-order homogenous and three times differentiable function. Then

T ′(t) =
atfx

(
at, bt

)
lna + btfb

(
at, bt

)
ln b

f(at, bt)
, (2.10)

T ′′(t) = −xyIln2
(
b

a

)
, I =

(
ln f
)
xy, (2.11)

T ′′′(t) = −Ct−3J, J =
(
x − y

)
(xI)x, C =

xyln3(x/y
)

x − y
> 0, (2.12)

where x = at, y = bt, Gf(x, y) is defined by (1.13).

Remark 2.7. Comparing (1.13) with (2.10), we see that T ′(t) = lnGf,t(a, b). Thus (2.3) can be
written as

lnHf

(
p, q
)
=

⎧
⎪⎨

⎪⎩

1
p − q

∫p

q

T ′(t)dt if p /= q

T ′(q
)

if p = q

=
∫1

0
T ′(tp + (1 − t)q

)
dt.

(2.13)
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Based on properties and lemmas above, the author has investigated the monotonicity
and log-convexity of two-parameter homogeneous functions and obtained a series of
valuable results in [13, 14], which yield some new and interesting inequalities for means.
Recently, two results on monotonicity and log-convexity of a four-parameter homogeneous
containing Stolarsky mean and Gini mean have been presented in [15].

In the processes of proofs on [13–15], two decision functions play an important role,
which

I = I
(
x, y
)
=

∂2 ln f
(
x, y
)

∂x∂y
=
(
ln f
(
x, y
))

xy =
(
ln f
)
xy,

J = J
(
x, y
)
=
(
x − y

)∂(xI)
∂x

=
(
x − y

)
(xI)x.

(2.14)

In next section we will encounter other two key decision functions defined by

T2
(
x, y
)
:= −xyIln2

(
x

y

)
, (2.15)

T3
(
x, y
)
:= −xy(xI)xln

3
(
x

y

)
, (2.16)

where I = (ln f)xy, x = at, y = bt. Combining (2.11), (2.12) with (2.15), (2.16) we have the
following relations:

T ′′(t) = t−2T2
(
x, y
)
, (2.17)

T ′′′(t) = t−3T3
(
x, y
)
, (2.18)

where x = at, y = bt.
Moreover, it is easy to verify that T2(x, y) and T3(x, y) both are zero-order

homogeneous functions due to homogeneity of f(x, y), and thus,

T2
(
x, y
)
= T2

(
x

y
, 1
)

= T2

(
1,

y

x

)
,

T3
(
x, y
)
= T3

(
x

y
, 1
)

= T3

(
1,

y

x

)
.

(2.19)

3. Main Results and Proofs

Next let us consider the monotonicities of ratio of two-parameter homogeneous functions
defined by (1.15). In what follows, we always assume b/a/=d/c.

Theorem 3.1 (first monotonicity property). Suppose that f : R+ × R+ → R+ is a symmetric,
homogenous, and two time-differentiable function; T2(1, u) is strictly increasing (decreasing) with
u > 1; (1.2) is satisfied. Then Rf(p, q) is strictly increasing (decreasing) in either p or q unless
b/a = d/c.
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Proof. Since Hf(p, q) is symmetric with respect to p and q, it only needs to prove the log-
convexity of Rf(p, q) in parameter p.

Direct partial derivative calculation for (2.13) leads to

∂ lnHf

(
p, q
)

∂p
=
∫1

0
tT ′′(tp + (1 − t)q

)
dt. (3.1)

From (1.15), we have

∂ lnRf

(
p, q
)

∂p
=
∫1

0
t
(
T ′′(tp + (1 − t)q;a, b

)
− T ′′(tp + (1 − t)q; c, d

))
dt. (3.2)

Since T2(1, u) is strictly increasing (decreasing) with u > 1 and by (2.7), (2.17), and
assumption (1.2), we have always

T ′′(t;a, b) − T ′′(t; c, d) = T ′′(|t|;a, b) − T ′′(|t|; c, d)

= t−2T2

(
a|t|, b|t|

)
− t−2T2

(
c|t|, d|t|

)

= t−2
(

T2

(

1,
(
b

a

)|t|)

− T2

(

1,
(
d

c

)|t|))

> (<)0.

(3.3)

It follows that

∂ lnRf

(
p, q
)

∂p
> (<)0. (3.4)

This proof is completed.

The next monotonicity result is a direct corollary of Theorem 3.1 actually.

Theorem 3.2 (second monotonicity property). The conditions are the same as those of
Theorem 3.1. Then for fixed m ∈ R, the function Rf(p, p + m) is strictly increasing (decreasing)
with p unless b/a = d/c.

Proof. Under the same conditions as Theorem 3.1, the function Rf(p, q) is strictly increasing
(decreasing) in either p or q. Hence for p1, p2 ∈ R with p1 < p2, we have

Rf

(
p1, p1 +m

)
< Rf

(
p2, p1 +m

)
< Rf

(
p2, p2 +m

)
, (3.5)

which indicates that the function Rf(p, p +m) is strictly increasing (decreasing) with p.
The proof ends.

To investigate the third and fourth monotonicity properties, we need a useful lemma.
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Lemma 3.3. Let f(x) be odd and continuous on (−m,m) (m > 0). Then

∫ r

s

f(x)dx =
∫ |r|

|s|
f(x)dx (3.6)

is always true for arbitrary r, s ∈ (−m,m).

Proof. By the additivity of definite integral we have

∫ r

s

f(x)dx =
∫ |s|

s

f(x)dx +
∫ |r|

|s|
f(x)dx +

∫ r

|r|
f(x)dx. (3.7)

According to the property of definite integral of odd functions, our required result is obtain
immediately.

This lemma is proved.

Theorem 3.4 (third monotonicity property). Suppose that f : R+ × R+ → R+ is a symmetric,
homogenous, and three-time differentiable function; T3(1, u) is strictly increasing (decreasing) with
u > 1; (1.2) is satisfied. Then for fixed m/= 0, the function Rf(p, 2m − p) is

(1) strictly decreasing (increasing) with p on (−∞, m) and increasing (decreasing) with p on
(m,∞) ifm > 0 unless b/a = d/c;

(2) strictly increasing (decreasing) with p on (−∞, m) and decreasing (increasing) with p on
(m,∞) ifm < 0 unless b/a = d/c.

Proof. By (2.13), lnHf(p, 2m − p) can be expressed in integral form as

lnHf

(
p, 2m − p

)
=
∫1

0
T ′(t1(t))dt, (3.8)

where t1(t) = tp + (1 − t)(2m − p). Direct partial derivative calculation leads to

∂ lnHf

(
p, 2m − p

)

∂p
=
∫1

0
(2t − 1)T ′′(t1(t))dt, (3.9)

which can be spiltted into a sum of two integrals:

∫1/2

0
(2t − 1)T ′′(t1(t))dt +

∫1

1/2
(2t − 1)T ′′(t1(t))dt. (3.10)

Substituting t = 1 − v in the first integral above yields

∫1/2

0
(2t − 1)T ′′(t1(t))dt = −

∫1

1/2
(2v − 1)T ′′(t2(v))dv, (3.11)
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where t2(t) = (1 − t)p + t(2m − p). Hence

∂ lnHf

(
p, 2m − p

)

∂p
= −
∫1

1/2
(2v − 1)T ′′(t2(v))dv +

∫1

1/2
(2t − 1)T ′′(t1(t))dt

=
∫1

1/2
(2t − 1)

(
T ′′(t1(t)) − T ′′(t2(t))

)
dt

=
∫1

1/2
(2t − 1)

(∫ t1(t)

t2(t)
T ′′′(s)ds

)

dt

=
∫1

1/2
(2t − 1)

(∫ |t1(t)|

|t2(t)|
T ′′′(s)ds

)

dt
(
by Lemma (3.3)

)
.

(3.12)

From (1.15), we have

∂ lnRf

(
p, 2m − p

)

∂p
=

∂ lnHf

(
p, 2m − p;a, b

)

∂p
−
∂ lnHf

(
p, 2m − p; c, d

)

∂p

=
∫1

1/2
(2t − 1)

(∫ |t1(t)|

|t2(t)|

(
T ′′′(s;a, b) − T ′′′(s; c, d)

)
ds

)

dt.

(3.13)

Since T3(1, u) is strictly increasing (decreasing) with u > 1, by (2.18) and (1.2), we have
always

T ′′′(t;a, b) − T ′′′(t; c, d) = t−3
(
T3
(
at, bt

)
− T3

(
ct, dt))

= t−3
(

T3

(

1,
(
b

a

)t
)

− T3

(

1,
(
d

c

)t
))

> (<)0 for t > 0.
(3.14)

It follows from 2t − 1 ≥ 0 (t ∈ 1/2, 1] that ∂ lnRf(p, 2m − p)/∂p is positive (negative) if
|t1(t)| > |t2(t)|, zero if |t2(t)| = |t2(t)|, and negative (positive) if |t1(t)| < |t2(t)|. However,

|t1(t)|2 − |t2(t)|2 = 8m
(
t − 1

2

)
(
p −m

)
, (3.15)

and hence

∂ lnRf

(
p, 2m − p

)

∂p

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> (<)0 if m > 0, p > m or m < 0, p < m,

= 0 if m = 0,

< (>)0 if m > 0, p < m or m < 0, p > m.

(3.16)

This completes the proof.
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Theorem 3.5 (fourthmonotonicity property). The conditions are the same as those of Theorem 3.1.
Then for fixed r, s ∈ R, the function Rf(pr, ps) is strictly increasing (decreasing) with p if r + s > 0
and decreasing (increasing) if r + s < 0.

Proof. By (2.13), lnHf(pr, ps) can be expressed in integral form as

lnHf

(
pr, ps

)
=

⎧
⎪⎨

⎪⎩

1
r − s

∫ r

s

T ′(pt
)
dt if r /= s,

T ′(pr
)

if r = s.

(3.17)

A partial derivative calculation yields

∂ lnHf

(
pr, ps

)

∂p
=

⎧
⎪⎨

⎪⎩

1
r − s

∫ r

s

tT ′′(pt
)
dt if r /= s,

rT ′′(pr
)

if r = s.

(3.18)

(1) In the case of r /= s (2.7) implies that tT ′′(pt) = tT ′′(|pt|) is odd and makes use of
Lemma 3.3 and (3.18) can be written as

∂ lnHf

(
pr, ps

)

∂p
=

1
r − s

∫ |r|

|s|
tT ′′(∣∣pt

∣∣)dt =
r + s

|r| − |s|

∫ |r|

|s|
tT ′′(∣∣pt

∣∣)dt, (3.19)

and then

∂ lnRf

(
pr, ps

)

∂p
=

r + s

|r| − |s|

∫ |r|

|s|
t
(
T ′′(∣∣pt

∣∣;a, b
)
− T ′′(∣∣pt

∣∣; c, d
))
dt. (3.20)

Since T2(1, u) strictly increasing (decreasing) with u > 1 and by assumption (1.2), so (3.3) is
true, which indicates that T ′′(|t|;a, b) − T ′′(|t|; c, d) > (<)0. It follows that

∂ lnRf

(
pr, ps

)

∂p

⎧
⎨

⎩

> (<)0 if r + s > 0,

< (>)0 if r + s < 0.
(3.21)

This shows that Rf(pr, ps) is strictly increasing (decreasing)with p if r +s > 0 and decreasing
(increasing) if r + s < 0.

(2) In the case of r = s. Similarly, by (3.18), (2.7), (1.2), and (3.3) we have

∂ lnRf

(
pr, ps

)

∂p
= r
(
T ′′(∣∣pr

∣∣;a, b
)
− T ′′(∣∣pr

∣∣; c, d
))
⎧
⎨

⎩

> (<)0 if r > 0,

< (>)0 if r < 0.
(3.22)

Combining two cases above, the proof is accomplished.



International Journal of Mathematics and Mathematical Sciences 11

4. Applications

As applications of main results in this paper, next let us prove the monotonicity of ratio
of Stolarsky means. We will see that the methods provided by this paper are simple and
effective.

It is easy to verify that the two-parameter logarithmic mean is just Stolarsky mean,
that is,HL(p, q;a, b) = Sp,q(a, b). Consequently, the monotonicities of ratio of Stolarskymeans
depend on the monotonicities of T2(1, u) and T3(1, u) defined by (2.15) and (2.16).

Some simple calculations yield

I = (lnL)xy =
1

(
x − y

)2 − 1

xy
(
lnx − lny

)2 ,

T2
(
x, y
)
= −xyIln2

(
x

y

)
= −xy

ln2(x/y
)

(
x − y

)2 + 1,

dT2(1, u)
du

= −2(u − 1)−3ln2u

(
u − 1
lnu

− u + 1
2

)
,

(xI)x = −
x + y
(
x − y

)3 +
2

xy
(
lnx − lny

)3 ,

T3
(
x, y
)
= −xy(xI)xln

3
(
x

y

)
= −2 +

xy
(
x + y

)

(
x − y

)3 ln3
(
x

y

)
,

dT3(1, u)
du

= 6u(u − 1)4ln3u

(
u2 − 1
lnu2

−
((
u2 + 1

)
/2
)
+ 2

√
u2

3

)

.

(4.1)

Making use of the well-known inequalities L(x, y) < (x + y)/2 (x, y > 0) and L(x, y) < ((x +
y)/2 + 2√xy)/3(x, y > 0 ) [16], we see that dT2(1, u)/du > 0 if u > 1 and dT3(1, u)/du < 0 if
u > 1.

Applying our main results, we can obtain all theorems involving monotonicity of ratio
of Stolarsky means in Section 2 of [12]. Here we have no longer list.

Lastly, as concrete applications of the monotonicity of ratio of Stolarsky means, we
now show a refined chain of inequalities of ratio of means involving logarithmic mean,
exponential mean (identric mean), arithmetic mean, geometric mean, and Heronian mean,
which is a generalization of inequalities in [14, (5.5)] and contains (1.4).

For convenience of statement in the following theorem, corresponding to (1.3) let us
define further that

M̃p := M1/p(cp, dp), M = A,H, L, I, (4.2)

where A,H,L, and I stand for arithmetic mean, Heronian mean, logarithmic mean, and
exponential mean (identric mean) of two positive numbers c and d, respectively.
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Theorem 4.1. Suppose that a, b, c, d satisfy assumption (1.2). Then the following inequalities

A1/3G2/3

Ã1/3G̃2/3
≤

√
GH
√
G̃H̃

≤
G2/5A1/5

1/3A
2/5
2/3

G̃2/5Ã1/5
1/3Ã

2/5
2/3

≤ L

L̃

≤
A1/3

1/5A
2/3
2/5

Ã1/3
1/5Ã

2/3
2/5

≤ H1/2

H̃1/2

≤ A1/3

Ã1/3

≤
H2

2/5A
−1
1/5

H̃2
2/5Ã

−1
1/5

≤ I1/2

Ĩ1/2

(4.3)

hold, with equalities if and only if b/a = d/c.

Proof. By the third monotonicity property, we see that Rp,1−p(a, b; c, d) is strictly decreasing
in p on (1/2,∞). Put p = 2, 3/2, 4/3, 1, 4/5, 3/4, 2/3, 3/5, 1/2 in Rp,1−p(a, b; c, d) and by some
calculations, the chain of inequalities (4.3) is derived immediately, with equalities if and only
if b/a = d/c because the monotonicity of Rp,1−p(a, b; c, d) is strict.

The proof is finished.
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