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We show that by linking two factorization techniques often employed to solve Schroedinger’s
equation one can give any one-dimensional hamiltonian the same form in terms of quantities
typical of these approaches. These are the supersymmetric technique (SUSY) and the one of De
La Peña’s. It is shown that the linkage between them exhibits interesting peculiarities, that are
illustrated in the case of a very important family of quantum potentials, namely, reflection-less
ones.
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1. Introduction

Due to its great importance from the conceptual, practical, and educational viewpoints, the
one-dimensional Schroedinger equation (ODSE) has been the subject of continuous attention
by researchers since the advent of quantum mechanics in the 1920s. ODSE-interest has
been further stimulated because of its relevance in connection with interesting problems
in other areas of theoretical physics. One can mention the analysis of exact multisoliton
solutions to certain Hamiltonians dynamical systems governed by equations such as the
Korteweg-de Vries and sine-Gordon ones [1–5]. The factorization approach [6] is an elegant
method to tackle Schroedinger’s equation that has been in use for more than half a century
(see the excellent review of [7] and references therein). In the last 30 years two important
factorization approaches have become popular. One of them is the supersymmetric one
(SUSY) [1–5], fully equivalent to the Infeld-Hull-methodology, which adds the notion of
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shape-invariance. The other is due to De La Peña’s one [8]. The SUSY approach, in particular,
has lead to remarkable progress towards the completion of the program of clasifying all the
exactly solvable one-dimensional potentials. The SUSY procedure has also been useful for
developing powerful new approximation techniques for solving the Schroedinger equation.
We wish to affect here a SUSY-de la Peña comparison and ascertain to what an extent they
are equivalent and are able to shed light on each other. The task allows us to give a special
universal form to any one-dimensional Hamiltonian. Reference to a specific example helps
in such an endeavor, and we will use the one-dimensional well that includes a cosh−1(x)-
squared term, a particularly interesting case of reflection-less potential [9], since it does not
reflect waves at any energy.

The paper is organized as follows. We begin our considerations by briefly reviewing
the supersymmetric formalism (SUSY) [1–5] in Section 2. Section 3 is a recapitulation of De
La Peña’s treatment. Our original materials are contained in Section 4, where we link De La
Peña’s methodology to SUSY. Finally, some conclusions are drawn in Section 5.

2. The Supersymmetrical Formalism

The quantum mechanical supersymmetric formalism (SUSY) [1–5] revolves around specific
relations between (i) eigenenergies, (ii) eigenfunctions, and (iii) phase shifts with regards to
the Hamiltonians

H1,2 = −
[

�
2

2m

][
d2

dx2

]
+ V 1,2, (2.1)

associated with two supersymmetric partner potentials V 1 and V 2. The ground state energy
ofH1 is assumed to be zero. The Hamiltonian operatorsH1,2 are factored asH1 = Q†Q, and
H2 = QQ†. The operators Q = (�/

√
2m)(d/dx) +W and Q† = −(�/√2m)(d/dx) +W, are

given in terms of the so-called quantum superpotential W(x), that, in turn, is related to the
two functions V 1,2 as specified below. The superpotentialW can be obtained from the ground
state wave function ψ0 ofH1 in the fashion

W(x) = −
(

�√
2m

)[
1

ψ
(1)
0

][
dψ

(1)
0

dx

]
. (2.2)

The partner HamiltoniansH1 andH2 possess exactly the same energy spectra, except for the
fact that H2 has one bound state less than H1 [1–5]. The eigen-energies and eigenstates of
the partner HamiltoniansH1,2 are related in the following manner: E(1)

0 = 0, E(2)
n = E(1)

n+1 (n =
0, 1, . . .),

(
E
(1)
n+1

)−1/2
Qψ

(1)
n+1 = ψ

(2)
n ,

(
E
(2)
n

)−1/2
Q†ψ(2)

n = ψ(1)
n+1 (n = 0, 1, . . .). (2.3)
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The above factorization formalism generalizes that of the harmonic oscillator (HO)
Hamiltonian, that introduces the creation-annihilation operators a and a† so as to express
it as a product of them. From here on we set � = m = 1, which redefinesW :

W(x) = −
(

1√
2

)[
1

ψ
(1)
0

][
dψ

(1)
0

dx

]
. (2.4)

The two Hamiltonians’ spectra can be derived one from the other, which is handy when one
of them is exactly solvable. Then, Q± reads

Q± =
1√
2

[
∓ d

dx
+
√
2W(x)

]
, (2.5)

and one has

V 1 =
(
− 1√

2
W ′ +W2

)
, V 2 =

(
1√
2
W ′ +W2

)
, (2.6)

that is,

V 1 + V 2 = 2W2, V 2 − V 1 =
√
2W ′. (2.7)

Also, integration of (2.4) yields

ψ1
0 =N exp

(
−
∫
dxW(x)

)
. (2.8)

N above is a normalization constant. Equation (2.8) can be inverted if a suitable functionW is
given, which, in turn, would led us to a specific Hamiltonian using the prescription described
in the preceding subsection.

2.1. SUSY and Reflection-Less Potentials

Reflection-less potentials are those associated with a zero reflection coefficient. Resonant
tunnelling phenomena are of great interest. We recapitulate here some well-known results
[10–17]. The penetrability coefficient of the pertinent barrier during the resonant tunnelling
becomes large to a maximum extent. The attention devoted to reflection-less potentials is due
to the fact that they exhibit a penetrability coefficient of almost unity in a whole region of
the energy spectrum, whereas resonant tunnelling exists only at selected energy levels. The
number of papers devoted to study of properties of the reflection-less quantum systems has
been lately increasing. Here we mention just two excellent reviews [18, 19] in which one
finds both (i) methods for a detailed analysis of the properties of one- and multichannel
reflection-less quantum systems, and also (ii) several simple approaches for their qualitative
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understanding. All these methods have found application in scattering theory (direct and
inverse). As an interesting illustration consider potentials of the form

V 1 =
1
2

(
n2 − n(n + 1)

cosh2x

)
; V 2 =

1
2

(
n2 − n(n − 1)

cosh2x

)
, (2.9)

which are supersymmetric partners. In the case n = 1 (related to the sine-Gordon theory
[20, 21])we have

V 2 =
1
2
(
free particle

)
; V 1 =

1
2

(
1 − 2

cosh2x

)
. (2.10)

We remark that V 1 is a potential that plays a critical role with regards to soliton-solutions
in de Korteweg-de Vries (KdV) hierarchy. With the n = 1 solutions on can also get the
eigenfunctions and eigenvalues for n = 2 (related to the φ4-theory [22, 23]), and so on. The
V 1-partner is the free-particle Hamiltonian and

ψ1
0 =

1√
2
cosh−1x (2.11)

of energy E1
0 = 0. In turn, for other potentials of the type (2.9) with n > 1, that is, for ψ2

n and
E2
n, one has

ψ2
n = einx, E2

n =
1
2

(
1 + n2

)
, (2.12)

while

ψ1
n+1 =

1√
E2
n

Q+ψ2
n =

(tanhx − in)√
1 + n2

einx, (2.13)

and we see that the states ψ1
n+1 do not contain reflected waves. The energy eigenvalues are E2

n.
Successive reiteration of the approach yields the eigenstates of the potentials n(n−1)/2cosh2x
starting from the free-particle instance. The number of bound states is n. For the gs one gets,
from (d/dx + n tanhx)ψ1

0 = 0,

ψ1
0(x) ∝

1

cosh2x
. (2.14)

The gs-energy equals 0, and the remaining eigenvalues are identical to those for V 2.
Application ofQ+

n = (1/
√
2)(−d/dx + n tanhx) gives the remaining eigenstates. SUSY allows

one to relate transmission and reflection coefficients for potentials associated to continuous
spectra. Define now

W(x −→ ±∞) ≡W±, (2.15)
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and thus,

V1,2 −→W2
± for x −→ ±∞. (2.16)

Consider an incoming (from x → −∞) plane wave eikx of energy E [11–17]. After V1,2-
scattering, we get transmitted waves T1,2(k)eik

′x and reflected ones R1,2(k)e−ikx, so that [11–
17]

ψ(1,2)(k, x −→ −∞) −→ eikx + R1,2e
−ikx,

ψ(1,2)(k, x −→ +∞) −→ T1,2e
ik′x,

(2.17)

with k and k′ being of the form [11–17]

k =
(
E −W2

−
)1/2

, k′ =
(
E −W2

+

)1/2
. (2.18)

SUSY connects continuous same-energy w.f.s of, respectively, H1, H2 as in the discrete
instance. One has [11–17]

ψ
(2)
n =

[
E
(1)
n+1

]−1/2
Qψ

(1)
n+1,

ψ
(1)
n+1 =

[
E
(n)
n

]−1/2
Q†ψ(2)

n ,

eikx + R1e
−ikx =N

[
(−ik +W−)eikx + (ik +W−)e−ikxR2

]
,

T1e
ik′x =N

[(−ik′ +W+
)
eik

′xT2
]
,

(2.19)

with N being a normalization constant. Equating same-exponent-terms we find, after
elimination ofN [11–17]

R1(k) =
(
W− + ik
W− − ik

)
R2(k),

T1(k) =
(
W+ − ik′
W− − ik

)
T2(k).

(2.20)

Note that (i) |R1|2 = |R2|2 and also |T1|2 = |T2|2. (ii) R1(T1) and R2(T2) share poles in the
complex plane, saving for the fact that R1(T1) has an extra-pole at k = −iW−. The pole lies on
the positive imaginary axis only ifW− < 0, corresponding to a bound state of null energy. (iii)
For W+ = W− one has T1(k) = T2(k). (iv) For W− = 0, R1(k) = −R2(k). If one of the partner-
potentials is a constant (free particle), the the other partner is reflectionless. Consequently,
potentials of the type V (x) = A sech2αx play a critical role in soliton-studies.
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3. De La Peña’s Treatment

We pass now to consider the alternative approach of [8]. This is a factorization method that
provides an easily implementable algorithm for the purpose, based in the commutator and
anticommutator of the creation and destruction operators that affect the factorization. These
two operators play here the role of the SUSY-partner potentials. From a practical viewpoint
the two techniques are equivalent. Notice that De La Peña’s one was advanced one year
before Witten’s celebrated paper [1–5], so that one cannot ask for it to be superior in any
sense to SUSY. As a matter of fact, De La Peña introduced his ideas in a journal that devotes
much space to teaching techniques so as to provide beginners with an intuitive grasp of the
factorization method (we will follow below the notation of [8]), as applied to any Hermitian
operator P̂ . His technique is then of utility to anyone without great experience in Quantum
Mechanics. He denotes with {|n〉} its eigenstate-set, a complete basis for Hilbert’s space, that
for simplicity’s sake we assume to be characterized by the single quantum number n. Let {pn}
be the P̂ -spectrum. Then

P̂ |n〉 = pn|n〉. (3.1)

This operator P̂ is to be later identified with the Hamiltonian of the system under
consideration. Creation and destruction operators associated to P̂ are to be denoted with
η̂†-η̂:

η̂† =
∑
n

Cn|n + 1〉〈n|; η̂ =
∑
n

Cn−1|n − 1〉〈n|, (3.2)

for as yet unspecified coefficients Cn that, when applied to |n〉 ≡ |k〉, yield

η̂†|k〉 = Ck|k + 1〉; η̂|k〉 = Ck−1|k − 1〉. (3.3)

In determining the coefficients Cn De La Peña leaves two of them undetermined, so as to get
useful degrees of freedom. The Cn are related to the eigenvalues of the bilinear operators η̂η̂†

and η̂†η̂, as seen from (3.3):

η̂η̂†|k〉 = |Ck|2|k〉; η̂†η̂|k〉 = |Ck−1|2|k〉. (3.4)

Since |n = 0〉 should reasonably be the “vacuum,” here

η̂|0〉 = 0; entailing C−1 = 0. (3.5)

Next one considers whether an n-upper bound exists or not. If the affirmative is the case,
n =N, then

η̂†|N〉 = 0; entailing CN = 0. (3.6)
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Otherwise, such condition is missing. The degrees of choice mentioned above can be put to
good use by requiring P̂ to be of a linear nature

P̂ = a00 + a10η̂η̂† + a01η̂†η̂. (3.7)

With this form for P̂ and (3.5) we evaluate its eigenvalues pm according to

pm = a00 + a10|Cm|2 + a01|Cm−1|2. (3.8)

At this stage we are left with (N + 3) unknowns, namely, a00, a10, a01, and {|Cn|, n =
0, 1, 2, . . . ,N − 1}. To determine them we have at our disposal the N + 1 conditions arising
from (3.8), with n = 0, 1, 2, . . . ,N, plus normalization, that is, scale-fixing, and its “origin”-
choice, which suffices for reproducing the P̂ -spectrum. We realize now that for representing
an arbitrary operator it is easier to work with the product of the operators η̂ and η̂† than
with these operators themselves. This forces us to introduce yet two new operators as linear
combinations of the just mentioned product:

Â =
[
η̂, η̂†

]
= η̂η̂† − η̂†η̂; Ŝ =

{
η̂, η̂†

}
= η̂η̂† + η̂†η̂, (3.9)

so that one casts P̂ in a fashion that constitutes the main advantage of the approach

P̂ = q0 + qaÂ + qsŜ, (3.10)

where the constants in the equation are fitted by comparison with the known form of P̂ . The
eigenvalues of the just introduced operators Âand Ŝ are called, respectively, ak and sk and
are obtained via (3.3) and (3.9):

Â|k〉 = ak|k〉 =
(
|Ck|2 − |Ck−1|2

)
|k〉; Ŝ|k〉 = sk|k〉 =

(
|Ck|2 + |Ck−1|2

)
|k〉, (3.11)

entailing

ak = |Ck|2 − |Ck−1|2; sk = |Ck|2 + |Ck−1|2, (3.12)

which in turn are manipulated to yield, after summation and subtraction of them,

|Ck|2 = 1
2
(sk + ak) =

1
2
(sk+1 − ak+1). (3.13)

With these results one ascertains that the spectra of Â-Ŝ fulfill a set of consistency relations.
We get, (i) from (3.12) and (3.13),

sk ≥ 0; sk + ak ≥ 0; sk − ak ≥ 0, (3.14)
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further (ii) from (3.13),

sk+1 − sk = ak+1 + ak, (3.15)

and (iii), from (3.12) and (3.6),

s0 = a0; sN = −aN. (3.16)

These relations can be interpreted as follows. Equations (3.14) show that the spectrum
of Ŝ is nonnegative and with lower bound a0. The basic condition (3.15) fixes the P̂ -
spectrum’s structure. Lower and (possible) upper spectral bounds are determined by (3.16).
If application of (3.16) leads to a contradiction, this entails that no upper bound exists. The
consistency relations (3.14), (3.15), and (3.16) contain all possible information concerning P̂ -
spectrum in a most compact and accessible fashion, given that one knows the operators Â
and Ŝ associated to any P̂ .

4. Relation between SUSY and De La Peña

As recounted above, De La Peña introduces his two operators η̂, η̂† [8] so as to be in a position
to cast his all-important operator in the bilinear fashion (3.7) and then employs two auxiliary
operators Â, Ŝ (3.9) so as to cast P̂ in the final form (3.10). It seems rather natural to identify
with each other the creation-annihilation operators of the two factorization approaches, that
is, SUSY’s Q̂−, Q̂+ with, respectively, η̂ and η̂†. Such a procedure then tells us that

Âψ(x) = Q̂−Q̂+ψ − Q̂+Q̂−ψ

=
1
2

(
d

dx
+
√
2W

)(
− d

dx
+
√
2W

)
ψ − 1

2

(
− d

dx
+
√
2W

)(
d

dx
+
√
2W

)
ψ,

(4.1)

which, after suitable manipulations, leads to

Âψ(x) =
√
2W ′ψ(x), (4.2)

entailing

Â =
√
2W ′1̂, (4.3)

involving the unity operator.
This is an important relation, our first new result, linking the De La Peña operator Â

to the SUSY superpotential. It generalizes the HO-commutation rule, in which [â, â†] = 1.
In other words, De La Peña’s Â carries information regarding the way the SUSY’s Q̂± differ
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from their HO-counterparts. The Q̂± commutators become now nontrivial operators instead
of the customary, HO-related constants. Analogously (cf. (2.2)),

Ŝψ(x) = Q̂−Q̂+ψ + Q̂+Q̂−ψ = −d
2ψ

dx2
+ 2W2ψ =⇒ Ŝ = − d2

dx2
+ 2W2 = 2

[
−
(
1
2

)
d2

dx2
+W2

]
.

(4.4)

Notice that Ŝ is proportional to a Hamiltonian form in which the square of W acts as the
potential. More specifically, De La Peña’s Ŝ is the Hamiltonian of a particle of mass 4m (cf.
(2.1)) moving in a 2W2-well.

We reach thus an interesting conclusion from the present linkage between two
factorization methods: De La Peña’s way of splitting its operator P̂ , to be later identified with the
system’s HamiltonianH1, shows that it has a pure “Hamiltonian” component plus one that relates to
the form in which the supersymmetricQ± differ from their HO-counterparts. Combining now (2.7),
(4.3), and (4.4) leads immediately to

Ŝ = Ĥ1 + Ĥ2; Â = V̂ 2 − V̂ 1 = Ĥ2 − Ĥ1, (4.5)

which entails expressing De La Peña’s all important operator P̂ in SUSY terms

P̂ = q0 + qaÂ + qsŜ = q0 + qa
(
Ĥ2 − Ĥ1

)
+ qs

(
Ĥ2 + Ĥ1

)

= q0 + 2qs
[
K +W2

]
+
√
2qaW ′

= q0 + 2qsĤS +
√
2qaW ′,

(4.6)

where ĤS is a putative Hamiltonian whose potential is the square of the superpotential.
We immediately realize that De La Peña’s approach seems to require some additional
information vis-a-vis SUSY, namely, the three parameters q0, qs, qa, which might, at first
sight, be regarded as superfluous information, since SUSY (a complete treatment) does not
need them. This is not so, as the following example will show.

4.1. Application of the De La Peña-SUSY Linkage

As an application we tackle the potentials discussed in Secion 1. In dealing with a potential
of the form

V 1 =
1
2

[
1 − 2

cosh2x

]
, (4.7)

that is derived from the general instance

V 1 =
1
2

[
n2 − n(n + 1)

cosh2x

]
, (4.8)
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for n = 1 we are left with a Hamiltonian

Ĥ1 ≡ Ĥ =
p2

2
+
1
2

[
1 − 2

cosh2x

]
=
p2

2
− 1

cosh2x
+
1
2
. (4.9)

Here we must identify De La Peña’s P̂ with the Hamiltonian. We have

H2 =
p2

2
+
1
2
entailing Ŝ = H1 +H2 = p2 + 1 − sech2(x),

Â = H2 −H1 = sech2(x),

(4.10)

which agrees nicely with (4.3).
Thus, looking back at (3.10)

Ĥ = q0 + qsŜ + qaÂ = q0 + qs
[
p2 + 1 − sech2(x)

]
+ qasech

2(x) (4.11)

we can determine the values of the constants q0, qa, qs that relate P̂ ≡ Ĥ to Â and Ŝ. We find
qs = 1/2, qa = −1/2, and q0 = 0. Consequently, we get the “correct” spectrum.

5. Conclusions

We have compared here two factorization methods in vogue lately, namely, SUSY and De La
Peña’s (the S-DLP linkage). We were able to establish a relation between them that yields
some new insight into supersymmetry. Given a Hamiltonian Ĥ that is to be factorized via
the creation-destruction operators Q̂±, the above linkage shows that Ĥ gets partitioned into
a linear combination of two DLP-terms, involving the DLP-operators Ŝ and Â. The first one
has the Hamiltonian aspect, but with the square of the superpotential as a pseudopotential,
while Â refers to the way inwhich the Q̂± differ fromHO’s creation-destruction operators.We
also see that the commutator of the supersymmetric creation-destruction operators becomes
a nontrivial operator, linked to De La Peña’s operator Â. Summing up, we have shown that
by linking two factorization techniques one can give any one-dimensional Hamiltonian the
same form in terms of quantities typical of these approaches.
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