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1. Introduction

Let H and K denote real Hilbert spaces equipped with norms ‖ · ‖H and ‖ · ‖K, respectively,
and let the space of bounded linear operators from K to H be denoted by BL(K;H). For
Banach space X and Y , the space of continuous functions from X into Y (equipped with the
usual sup-norm) will be denoted by C(X;Y ), while Lp(0, T ;X) will represent the space of X-
valued functions that are p-integrable on [0, T]. Let (Ω, Z, P) be a complete probability space
equipped with a normal filtration {Zt : 0 ≤ t ≤ T}. An H-valued random variable is an Z-
measurable function X : Ω → H, and a collection of random variables ψ = {X(t;ω) : Ω →
H : 0 ≤ t ≤ T} is called a stochastic process. The collection of all strongly measurable square
integrable H-valued random variables, denoted by L2(Ω;H), is a Banach space equipped
with norm ‖X(·)‖L2(Ω;H) = (E‖X(·;ω)‖2H)1/2.

An important subspace is given by L2
0(Ω;H) = {f ∈ L2(Ω;H) : f is Z0 measurable}.

Next we define the space γ((0, T);H) to be the set {v ∈ C([0, T];L2(Ω;H) : v is Zt-adapted}
with norm

‖v‖γ = sup
0≤t≤T

(E‖v(t)‖2H)
1/2

(1.1)

(see in [1–5]). In this paper we study the existence and uniqueness of the mild solution of the
fractional stochastic integrodifferential equation of the form
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dαx(t)
dtα

= Ax(t) + F(x)(t) +
∫ t

0
G(x)(s)dW(s), 0 ≤ t ≤ T,

x(0) = h(x) + x0,

(1.2)

in a real separable Hilbert spaceH. Here, 1/2 ≤ α ≤ 1, A : D(A) ⊂ H → H is a linear closed
operator generating semigroup, F : γ([0, T];H) → Lp([0, T];L2(Ω;H)) (1 ≤ p < ∞), G :
γ([0, T];H) → C([0, T];L2(Ω; BL(K;H))) (whereK is a real separable Hilbert space),W is a
K-valued Wiener process with incremental covariance described by the nuclear operator Q,
x0 is an Z0-measurableH-valued random variable independent ofW and h : γ([0, T];H) →
L2
0(Ω;H).

Definition 1.1. An Zt-adapted stochastic process x : [0, T] → H is called a mild solution of
(1.2) if x(t) is measurable, for all t ∈ [0, T],

∫T

0
‖x(s)‖2Hds <∞,

x(t) =
∫∞

0
ξα(θ)S(tαθ)(h(x) + x0)dθ + α

∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)F(x)(η)dθ dη

+ α
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)

[∫η

0
G(x)(τ)dW(τ)

]
dθ dη, 0 ≤ t ≤ T,

(1.3)

where ξα(θ) is a probability density function defined on (0,∞),

∫∞

0
ξα(θ)dθ = 1 (1.4)

(see [6–12]). In the next section, we will prove the existence and uniqueness of the mild
solutions to (1.2).

2. Existence and Uniqueness

Consider the initial value problem (1.2) in a real separable Hilbert space H under the
following assumptions:

(I) the linear operator A : D(A) ⊂ H → H generates a C0-semigroup{S(t) : t ≥ 0} on
H;

(II) F : γ([0, T];H) → Lp(0, T ;L2(Ω;H)) is such that there existsMF > 0 for which

‖F(x) − F(y)‖Lp ≤MF‖x − y‖γ , ∀x, y ∈ γ([0, T];H); (2.1)

(III) G : γ([0, T];H) → C([0, T];L2(Ω; BL(K;H))) (= γBL) is such that there existsMG >
0 for which

‖G(x) −G(y)‖γBL ≤MG‖x − y‖γ ∀x, y ∈ γ([0, T];H); (2.2)
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(IV) h : γ([0, T];H) → L2
0(Ω;H) is such that there existsMh > 0 for which

‖h(x) − h(y)‖L2
0
≤Mh‖x − y‖γ ∀x, y ∈ γ([0, T];H); (2.3)

(V) x0 ∈ L2
0(Ω;H).

We can therefore state the following theorem.

Theorem 2.1. Assume that (I)–(V) hold. Then (1.2) has a unique solution on [0, T], provided that

MS

[
Mh + CFT

α +MGCGT
α+1/2

]
< 1, (2.4)

whereMh > 0,MS > 0, and CG > 0.

Proof. Define the solution map J : γ([0, T];H) → γ([0, T];H) by

(Jx)(t) =
∫∞

0
ξα(θ)S(tαθ)(h(x) + x0)dθ

+ α
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)F(x)(η)dθ dη

+ α
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)

×
[∫η

0
G(x)(τ)dW(τ)

]
dθ dτ, 0 ≤ t ≤ T.

(2.5)

From Holder’s inequality, we get

⎡
⎣E

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)F(x)(η)dθ dη

∥∥∥∥∥
2

H

⎤
⎦

1/2

≤MS

[∫T

0
‖(T − η)α−1F(x)(η)‖2L2(Ω;H)dη

]1/2

≤MS

[∫T

0

(
T − η)2(α−1)dη

]1/2[∫T

0
‖F(x)(η)‖2L2(Ω;H)dη

]1/2

≤MS
Tα−1/2

(2α − 1)1/2

[∫T

0
‖F(x)(η)‖2L2(Ω;H)dη

]1/2

≤ CFMST
α−1/2‖F(x)‖Lp ,

(2.6)

where CF is a constant depending on α.
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Subsequently, an application of (II), together with Minkowski’s inequality enables us
to continue the string of inequalities in (2.6) to conclude that

⎡
⎣E

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t−η)α−1ξα(θ)S((t−η)αθ)F(x)(η)dθ dη

∥∥∥∥∥
2

H

⎤
⎦

1/2

≤MSCFT
α−1/2

[
MF‖x‖γ+‖F(0)‖Lp

]
.

(2.7)

Taking the supermum over [0, T] in (2.7) then implies that

∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)F(x)(η)dθ dη ∈ γ([0, T];H), (2.8)

for any x ∈ γ([0, T];H). Furthermore for such x, G(x)(η) ∈ BL(K;H), and h(x) + x0 ∈
L2
0(Ω;H) (by (IV) and (V)). Consequently, one can argue as in [13–15] to conclude that J

is well defined.
Next we show that J is a strict contraction.
Observe that for x, y ∈ γ([0, T];H),we infer from (2.5) that

(Jx)(t) − (
Jy

)
(t)

=
∫∞

0
ξα(θ)S(tαθ)

(
h(x) − h(y))dθ

+ α
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)(F(x)(η) − F(y)(η))dθ dη

+ α
∫ t

0

∫∞

0
θ(t − η)α−1ξα(θ)S

(
(t − η)αθ)

[∫η

0

(
G(x)(τ) −G(y(τ)))dW(τ)

]
dθ dη, 0 ≤ t ≤ T.

(2.9)

Squaring both sides and taking the expectation in (2.9) yields, with the help of Young’s
inequality,

E‖(Jx)(t) − (Jy)(t)‖2H

≤ 4E
∥∥∥∥
∫∞

0
ξα(θ)S(tαθ)(h(x) + x0)dθ

∥∥∥∥
2

H

+ 4α2
⎡
⎣E

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)(F(x)(η) − F(y)(η))dθ dη

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)

×
[∫η

0

(
G(x)(τ) −G(y)(τ))dW(τ)

]
dθ dη

∥∥∥∥
2

H

]
,

(2.10)
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and subsequently,

‖(Jx)(t) − (Jy)(t)‖γ

≤
∥∥∥∥
∫∞

0
ξα(θ)S(tαθ)(h(x) − h(y))dθ

∥∥∥∥
γ

+ 4α2
⎡
⎣
∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)(F(x)(η) − F(y)(η))dθ dη

∥∥∥∥∥
γ

+

∥∥∥∥∥
∫ t

0

∫∞

0
θ(t − η)α−1ξα(θ)S

(
(t − η)αθ)

×
[∫η

0

(
G(x)(τ) −G(y)(τ))dW(τ)

]
dθ dη

∥∥∥∥
γ

]
.

(2.11)

Using reasoning similar to that which led to (2.6), one can show that

∥∥∥∥
∫∞

0
ξα(θ)S(tαθ)

(
h(x) − h(y))dθ

∥∥∥∥
γ

= E
∥∥∥∥
∫∞

0
ξα(θ)S(tαθ)(h(x) + x0)dθ

∥∥∥∥
2

H

≤MsMh‖x − y‖γ ,
∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)(F(x)(η) − F(y)(η))dθ dη

∥∥∥∥∥
γ

=

∥∥∥∥∥
∫ t

0

∫∞

0
θ(t − η)α−1ξα(θ)S((t − η)αθ)(F(x)(η) − F(y)(η))dθ dη

∥∥∥∥∥
γ

≤ CFMST
α‖x − y‖γ ,

(2.12)

where CF depending on α andMF . We also infer that

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)

[∫η

0

(
G(x)(τ) −G(y)(τ))dW(τ)

]
dθ dη

∥∥∥∥∥
γ

=

⎡
⎣E

∥∥∥∥∥
∫ t

0

∫∞

0
θ
(
t − η)α−1ξα(θ)S((t − η)αθ)

[∫η

0

(
G(x)(τ) −G(y)(τ))dW(τ)

]
dθ dη

∥∥∥∥∥
2

H

⎤
⎦

1/2

≤ Tr(Q)
Tα−1/2

(2α − 1)1/2
MS

[∫T

0

∫T

0
‖G(x)(τ) −G(y)(τ)‖2L2(Ω;H)dτ dη

]1/2

≤ CGT
α+1/2MsMG‖x − y‖γ ,

(2.13)
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where CG is a constant depending on (α and Tr(Q)). Using (2.12) and (2.13) in (2.11) enables
us to conclude that J is a strict contraction, provided that (2.4) is satisfied, and has a unique
fixed point which coincides with a mild solution of (1.2). This completes the proof.

3. Application

Let D be a bounded domain in RN with smooth boundary ∂D, and consider the initial
boundary value problem:

∂α(t, z)
∂tα

= Δzx(t, z) +
∫T

0
a(t, s)f1

(
s, x(s, z),

∫ s

0
k(s, τ, x(τ, z))dτ

)
ds

+
∫T

0
b(t, s)f2(s, x(s, z))dW(s), on (0, T) ×D,

(3.1)

x(0, z) =
n∑
i=1

gi(z)x(ti, z) +
∫T

0
c(s)f3(s, x(s, z))ds, on D,

x(t, z) = 0, on (0, T) × ∂D,
(3.2)

where 0 ≤ t1 < t2 · · · < tn ≤ T are given andW is an L2(D)-valuedWiener process. We consider
the equation (3.1) under the following conditions.

(H1) f1 : [0, T] × R × R → R satisfies the Caratheodory conditions as well as

(i) f1(·, 0, 0) ∈ L2(0, T),
(ii) |f1(t, x1, y1) − f1(t, x2, y2)| ≤ Mf1[|x1 − x2| + |y1 − y2|], for all x1, x2, y1, y2 ∈ R

and almost t ∈ (0, T) for someMf1 > 0,

(H2) f2 : [0, T] × R → BL(L2(D)) where BL(L2(D)) is the space of bounded linear
operator from L2(D) to L2(D) satisfies the Caratheodory conditions as well as

(i) f2(·, 0) ∈ L2(0, T),
(ii) |f2(t, x) − f2(t, y)|BL(H) ≤ Mf2 |x − y|, for all x, y ∈ R and almost all t ∈ (0, T),

for someMf2 > 0.

(H3) f3 : [0, T] × R → R satisfies the Caratheodory conditions as well as

(i) f3(·, 0) ∈ L2(0, T),
(ii) |f3(t, x) − f3(t, y)| ≤ Mf3 |x − y|, for all x, y ∈ R and almost t ∈ (0, T) for some

Mf3 > 0,

(H4) a ∈ L2((0, T)2),

(H5) b ∈ L∞((0, T)2),

(H6) c ∈ L2((0, T)2),

(H7) k : Y × R → R, where Y = {(t, s) : 0 < s < t < T}, satisfies |k(t, s, x1) − k(t, s, x2)| ≤
Mk|x1 − x2|, for all x1, x2 ∈ R, and almost (t, s) ∈ Y ,

(H8) gi ∈ L2(D), i = 1, . . . , n.
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The stochastic integropartial differential equation (3.1) can be written in the abstract form
(1.2), where K = H = L2(D), A = Δz, with domain D(A) = H2(D) ∪ H1

0((D)). It is well
known that A is a closed linear operator which generates a C0-semigroup. We also introduce
the mappings F, G, and h defined by, respectively,

F(x)(t, ·) =
∫T

0
a(t, s)f1

(
s, x(s, z),

∫s

0
k(s, τ, x(τ, z))dτ

)
ds,

G(x)(t, ·) = b(t, s)f2(s, x(s, ·)),

h(x)(·) = x(0, z) =
n∑
i=1

gi(·)x(ti, ·) +
∫T

0
c(s)f3(s, x(s, ·))ds.

(3.3)

One can use (H1)–(H8) to verify that F, G, and h satisfy (II)–(IV) in the last section,
respectively, with

MF = 2Mf1T |a|L2((0,T)2)

(
1 +MkT

3
)1/2

,

MG =Mf2 ,

Mh = 2
n∑
i=1

‖gi‖L2(D) +Mf3

√
m(D)|G|L2(0,T).

(3.4)

Consequently theorem (2.4) can be applied for (3.1).
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