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1. Introduction

There is a huge amount of papers investigating properties of the so-called Stolar-
sky (or extended) two-parametric mean value, defined for positive values of x, y,
as

Er,s

(
x, y
)
:=

(
r
(
xs − ys

)

s
(
xr − yr

)

)1/(s−r)
,

rs(r − s)
(
x − y

)
/= 0.

(1.1)

E means can be continuously extended on the domain

{(
r, s;x, y

) | r, s ∈ R; x, y ∈ R+
}

(1.2)
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by the following:

Er,s

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r
(
xs − ys

)

s
(
xr − yr

)

)1/(s−r)
rs(r − s)/= 0;

exp
(
−1
s
+
xs logx − ys logy

xs − ys

)
, r = s /= 0;

(
xs − ys

s
(
logx − logy

)

)1/s

, s /= 0, r = 0;

√
xy, r = s = 0;

x, y = x > 0,

(1.3)

and in this form are introduced by Keneth Stolarsky in [1].
Most of the classical two-variable means are special cases of the class E. For example,

E1,2 = (x + y)/2 is the arithmetic mean, E0,0 =
√
xy is the geometric mean, E0,1 = (x −

y)/(logx − logy) is the logarithmic mean, E1,1 = (xx/yy)1/(x−y)/e is the identric mean, and
so forth. More generally, the rth power mean ((xr + yr)/2)1/r is equal to Er,2r .

Recently, several papers are produced trying to define an extension of the class E to
n, n > 2 variables. Unfortunately, this is done in a highly artificial mode (cf. [2–4]), without
a practical background. Here is an illustration of this point; recently Merikowski [4] has
proposed the following generalization of the Stolarsky mean Er,s to several variables:

Er,s(X) :=
[
L(Xs)
L(Xr)

]1/(s−r)
, r /= s, (1.4)

where X = (x1, . . . , xn) is an n-tuple of positive numbers and

L(Xs) := (n − 1)!
∫

En−1

n∏

i=1

xsui

i du1 · · ·dun−1. (1.5)

The symbol En−1 stands for the Euclidean simplex which is defined by

En−1 := {(u1, . . . , un−1) : ui ≥ 0, 1 ≤ i ≤ n − 1; u1 + · · · + un−1 ≤ 1}. (1.6)

In this paper, we give another attempt to generalize Stolarsky means to the
multivariable case in a simple and applicable way. The proposed task can be accomplished
by founding a “weighted” variant of the class E, wherefrom the mentioned generalization
follows naturally.

In the sequel, we will need notions of the weighted geometric mean G = G(p, q;x, y)
and weighted rth power mean Sr = Sr(p, q;x, y), defined by

G := xpyq; Sr :=
(
pxr + qyr)1/r , (1.7)
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where

p, q, x, y ∈ R+; p + q = 1; r ∈ R/{0} . (1.8)

Note that (Sr)
r > (G)r for x /=y, r /= 0, and limr→ 0 Sr = G.

1.1. Weighted Stolarsky Means

We introduce here a classW of weighted two-parameters means which includes the Stolarsky
class E as a particular case. Namely, for p, q, x, y ∈ R+, p + q = 1, rs(r − s)(x − y)/= 0, we define

W = Wr,s

(
p, q;x, y

)
:=

(
r2

s2
(Ss)s − (G)s

(Sr)r − (G)r

)1/(s−r)
=

(
r2

s2
pxs + qys − xpsyqs

pxr + qyr − xpryqr

)1/(s−r)
. (1.9)

Various properties concerning the means W can be established; some of them are the
following:

Wr,s

(
p, q;x, y

)
= Ws,r

(
p, q;x, y

)
;

Wr,s

(
p, q;x, y

)
= Wr,s

(
q, p;y, x

)
; Wr,s

(
p, q;y, x

)
= xyWr,s

(
p, q;x−1, y−1

)
;

War,as

(
p, q;x, y

)
=
(
Wr,s

(
p, q;xa, ya))1/a, a /= 0.

(1.10)

Note that

W2r,2s

(
1
2
,
1
2
;x, y

)
=

(
r2

s2
x2s + y2s − 2

(√
xy
)2s

x2r + y2r − 2
(√

xy
)2r

)1/2(s−r)

=

(
r2

s2

(
xs − ys

)2

(
xr − yr

)2

)1/2(s−r)

= E
(
r, s;x, y

)
.

(1.11)

In the same manner, we get

Wr,s

(
2
3
,
1
3
;x3, y3

)
=
(
2xs + ys

2xr + yr

)1/(s−r)(
E
(
r, s;x, y

))2;

Wr,s

(
3
4
,
1
4
;x4, y4

)
=

(
3x2s − (xy)s + y2s

3x2r − (xy)r + y2r

)1/(s−r)
(
E
(
r, s;x, y

))2
.

(1.12)

The weighted means from the class W can be extended continuously to the domain

D =
{(

r, s;x, y
) | r, s ∈ R; x, y ∈ R+

}
. (1.13)
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This extension is given by

Wr,s

(
p, q;x, y

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r2

s2
pxs + qys − xpsyqs

pxr + qyr − xpryqr

)1/(s−r)
, rs(r − s)

(
x − y

)
/= 0;

(

2
pxs + qys − xpsyqs

pqs2log2
(
x/y

)

)1/s

, s
(
x − y

)
/= 0, r = 0;

exp

(
−2
s

+
pxs logx + qys logy − (p log x + q log y

)
xpsyqs

pxs + qys − xpsyqs

)

, s
(
x − y

)
/= 0, r = s;

x(p+1)/3y(q+1)/3, x /=y, r = s = 0;

x, x = y.

(1.14)

Note that those means are homogeneous of order 1, that is, Wr,s(p, q; tx, ty) =
tWr,s(p, q;x, y), t > 0, symmetric in r, s,Wr,s(p, q;x, y) = Ws,r(p, q;x, y) but are not symmetric
in x, y unless p = q = 1/2.

1.2. Multivariable Case

A natural generalization of weighted Stolarsky means to the multivariable case gives

Wr,s(p; x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝

r2
(∑

pix
s
i −
(∏

x
pi
i

)s)

s2
(∑

pix
r
i −
(∏

x
pi
i

)r)

⎞

⎟
⎠

1/(s−r)

, rs(s − r)/= 0;

⎛

⎜
⎝

2
s2

∑
pix

s
i −
(∏

x
pi
i

)s

∑
pi log

2 xi −
(∑

pi log xi

)2

⎞

⎟
⎠

1/s

, r = 0, s /= 0;

exp

⎛

⎜
⎝

−2
s

+

∑
pix

s
i log xi −

(∑
pi log xi

)(∏
x
pi
i

)s

∑
pix

s
i −
(∏

x
pi
i

)s

⎞

⎟
⎠, r = s /= 0;

exp

⎛

⎜
⎝

∑
pi log

3 xi −
(∑

pi logxi

)3

3
(∑

pi log
2 xi −

(∑
pi log xi

)2)

⎞

⎟
⎠, r = s = 0,

(1.15)

where x = (x1, x2, . . . , xn) ∈ R
n
+, n ≥ 2, p is an arbitrary positive weight sequence associated

with x and Wr,s(p; x0) = a for x0 = (a, a, . . . , a).
We also write

∑
(·),∏(·) instead of

∑n
1(·),

∏n
1(·).
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The above formulae are obtained by an appropriate limit process, implying continuity.
For example, applying

ts = 1 + s log t +
s2

2
log2 t +

s3

6
log3 t + o

(
s3
)

(s −→ 0), (1.16)

we get

W0,0(p; x) = lim
s→ 0

Ws,0(p; x) = lim
s→ 0

⎛

⎜
⎝

2
s2

∑
pix

s
i −
(∏

x
pi
i

)s

∑
pi log

2xi −
(∑

pi logxi

)2

⎞

⎟
⎠

1/s

= lim
s→ 0

⎛

⎜
⎝

2

s2
(∑

pi log
2xi −

(∑
pi logxi

)2)

×
((

∑
pi + s

∑
pi logxi +

(
s2

2

)
∑

pi log
2xi +

(
s3

6

)
∑

pi log
3xi

)

−
(
∑

pi + s log
(∏

x
pi
i

)
+

(
s2

2

)

log2
(∏

x
pi
i

)

+

(
s3

6

)

log3
(∏

x
pi
i

))

+ o
(
s3
))
⎞

⎟
⎠

1/s

= lim
s→ 0

⎛

⎜
⎝1 +

∑
pi log

3xi −
(∑

pi logxi

)3

3
(∑

pi log
2xi −

(∑
pi logxi

)2)s(1 + o(1))

⎞

⎟
⎠

1/s

= exp

⎛

⎜
⎝

∑
pilog

3xi −
(∑

pi logxi

)3

3
(∑

pi log
2xi −

(∑
pi logxi

)2)

⎞

⎟
⎠.

(1.17)

Remark 1.1. Analogously to the former considerations, one can define a class of Stolarsky
means in n variables Er,s(x;n) as

Er,s(x;n) := Wnr,ns(p0, x), (1.18)

where p0 = {1/n}n1 .
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Therefore,

Er,s(x;n) =

(
r2

s2

∑n
1 x

ns
i − n

∏n
1x

s
i∑n

1 x
nr
i − n

∏n
1x

r
i

)1/n(s−r)
, rs(r − s)/= 0. (1.19)

Details are left to the readers.

2. Results

The following basic assertion is of importance.

Proposition 2.1. The expressions Wr,s(p; x) are actual means, that is, for arbitrary weight sequence
p one has

min{x1, x2 . . . , xn} ≤ Wr,s(p; x) ≤ max{x1, x2, . . . , xn}. (2.1)

Our main result is contained in the following.

Proposition 2.2. The means Wr,s(p, x) are monotone increasing in both variables r and s.

Passing to the continuous variable case, we get the following definition of the class
Wr,s(p, x).

Assuming that all integrals exist,

Wr,s(p, x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r2
(∫

p(t)xs(t)dt − exp
(
s
∫
p(t) logx(t)dt

))

s2
(∫

p(t)xr(t)dt − exp
(
r
∫
p(t) logx(t)dt

))

)1/(s−r)
, rs(s − r)/= 0;

(
2
s2

∫
p(t)xs(t)dt − exp

(
s
∫
p(t) logx(t)dt

)

∫
p(t)log2x(t)dt − (∫ p(t) logx(t)dt)2

)1/s

, r = 0, s /= 0;

exp

(
−2
s

+

∫
p(t)xs(t) logx(t)dt − (∫ p(t) logx(t)dt) exp(s ∫ p(t) logx(t)dt)

∫
p(t)xs(t)dt − exp

(
s
∫
p(t) logx(t)dt

)

)

,

r = s /= 0;

exp

⎛

⎜
⎝

∫
p(t)log3x(t)dt − (∫ p(t) logx(t)dt)3

3
(∫

p(t)log2x(t)dt − (∫ p(t) logx(t)dt)2
)

⎞

⎟
⎠, r = s = 0,

(2.2)

where x(t) is a positive integrable function and p(t) is a nonnegative function with∫
p(t)dt = 1.
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From our former considerations, a very applicable assertion follows.

Proposition 2.3. Wr,s(p, x) is monotone increasing in either r or s.

3. Applications

3.1. Applications in Analysis

As an illustration of the above, we give the following proposition.

Proposition 3.1. The function w(s), defined by

w(s) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
12

(πs)2
(Γ(1 + s) − e−γs)

)1/s

, s /= 0;

exp
(
−γ − 4ξ(3)

π2

)
, s = 0,

(3.1)

is monotone increasing for s ∈ (−1,∞).
In particular, for s ∈ (−1, 1), one has

Γ(1 − s)e−γs + Γ(1 + s)eγs − πs

sin(πs)
≤ 1 − (πs)4

144
, (3.2)

where Γ(·), ξ(·), γ stands for the Gamma function, Zeta function, and Euler’s constant, respectively.

3.2. Applications in Probability Theory

For a random variableX and an arbitrary probability distribution with support on (−∞,+∞),
it is well known that

EeX ≥ eEX. (3.3)

Denoting the central moment of order k by μk = μk(X) := E(X − EX)k, we improve
this inequality to the following propsositions.

Proposition 3.2. For an arbitrary probability law with support on R, one has

EeX ≥
(
1 +
(μ2

2

)
exp
(

μ3

3μ2

))
eEX. (3.4)
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Proposition 3.3. One also has that

(
EesX − esEX

s2σ2
X/2

)1/s

(3.5)

is monotone increasing in s.

3.3. Shifted Stolarsky Means

Especially interesting is studying the shifted Stolarsky means E∗, defined by

E∗
r,s

(
x, y
)
:= lim

p→ 0+
Wr,s

(
p, q;x, y

)
. (3.6)

Their analytic continuation to the whole (r, s) plane is given by

E∗
r,s

(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r2
(
xs − ys

(
1 + s log

(
x/y

)))

s2
(
xr − yr

(
1 + r log

(
x/y

)))

)1/(s−r)
, rs(r − s)

(
x − y

)
/= 0;

(
2
s2

xs − ys
(
1 + s log

(
x/y

))

log2
(
x/y

)

)1/s

, s
(
x − y

)
/= 0, r = 0;

exp

(
−2
s

+

(
xs − ys

)
logx − sys log y log

(
x/y

)

xs − ys
(
1 + s log

(
x/y

))

)

, s
(
x − y

)
/= 0, r = s;

x1/3y2/3, r = s = 0;

x, x = y.

(3.7)

Main results concerning the means E∗ are contained in the following propositions.

Proposition 3.4. Means E∗
r,s(x, y) are monotone increasing in either r or s for each fixed x, y ∈ R

+.

Proposition 3.5. Means E∗
r,s(x, y) are monotone increasing in either x or y for each r, s ∈ R.

A well known result of Qi ([5]) states that the means Er,s(x, y) are logarithmically
concave for each fixed x, y > 0 and r, s ∈ [0,+∞); also, they are logarithmically convex for
r, s ∈ (−∞, 0].

According to this, we propose the following proposition.

Open Question

Is there any compact interval I, I ⊂ R such that themeansE∗
r,s(x, y) are logarithmically convex

(concave) for r, s ∈ I and each x, y ∈ R
+?
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A partial answer to this problem is given in what follows.

Proposition 3.6. On any interval I which includes zero and r, s ∈ I,
(i) E∗

r,s(x, y) are not logarithmically convex (concave);
(ii)Wr,s(p, q;x, y) are logarithmically convex (concave) if and only if p = q = 1/2.

4. Proofs

For the proof of Proposition 2.1, we apply the following assertion on Jensen functionals
Jf(p, x) from [6].

Theorem 4.1. Let f, g : I → R be twice continuously differentiable functions. Assume that g is
strictly convex and φ is a continuous and strictly monotonic function on I. Then the expression

φ−1
(

Jn
(
p, x; f

)

Jn
(
p, x; g

)

)

(n ≥ 2) (4.1)

represents a mean value of the numbers x1, . . . , xn, that is,

min{x1, . . . , xn} ≤ φ−1
(

Jn
(
p, x; f

)

Jn
(
p, x; g

)

)

≤ max{x1, . . . , xn} (4.2)

if and only if the relation

f ′′(t) = φ(t)g ′′(t) (4.3)

holds for each t ∈ I.

Recall that the Jensen functional Jn(p, x; f) is defined on an interval I, I ⊆ R by

Jn
(
p, x; f

)
:=

n∑

1

pif(xi) − f

(
n∑

1

pixi

)

, (4.4)

where f : I → R, x = (x1, x2, . . . , xn) ∈ In, and p = {pi}n1 is a positive weight sequence.
The famous Jensen’s inequality asserts that

Jn
(
p, x; f

) ≥ 0, (4.5)

whenever f is a (strictly) convex function on I, with the equality case if and only if x1 = x2 =
· · · = xn.
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Proof of Proposition 2.1. Define the auxiliary function hs(x) by

hs(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

esx − sx − 1
s2

, s /= 0;

x2

2
, s = 0.

(4.6)

Since

h′
s(x) =

⎧
⎪⎨

⎪⎩

esx − 1
s

, s /= 0;

x, s = 0,

h′′
s(x) = esx, s ∈ R,

(4.7)

we conclude that hs(x) is a continuously twice differentiable convex function on R.
Denoting f(t) := hs(t), g(t) := hr(t), we realize that the condition (4.3) of Theorem 4.1

is fulfilled with φ(t) = e(s−r)t. Hence, applying Theorem 4.1, we obtain that logWr,s(p, ex)
represents a mean value, which is equivalent to the assertion of Proposition 2.1.

Proof of Proposition 2.2. We prove first a global theorem concerning log-convexity of the
Jensen’s functional with a parameter, which can be very usable (cf. [7]).

Theorem 4.2. Let fs(x) be a twice continuously differentiable function in x with a parameter s. If
f ′′
s (x) is log-convex in s for s ∈ I := (a, b); x ∈ K := (c, d), then the Jensen functional

Jf(w,x; s) = J(s) :=
∑

wifs(xi) − fs
(∑

wixi

)
, (4.8)

is log-convex in s for s ∈ I, xi ∈ K, i = 1, 2, . . ., where w = {wi} is any positive weight sequence.

At the beginning, we need some preliminary lemmas.

Lemma 4.3. A positive function f is log-convex on I if and only if the relation

f(s)u2 + 2f
(
s + t

2

)
uw + f(t)w2 ≥ 0 (4.9)

holds for each real u,w and s, t ∈ I.

This assertion is nothing more than the discriminant test for the nonnegativity of
second-order polynomials. Other well known assertions are the following (cf [8, pages 74,
97-98]) lemmas.
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Lemma 4.4 (Jensen’s inequality). If g(x) is twice continuously differentiable and g ′′(x) ≥ 0 on K,
then g(x) is convex on K and the inequality

∑
wig(xi) − g

(∑
wixi

)
≥ 0 (4.10)

holds for each xi ∈ K, i = 1, 2, . . . , and any positive weight sequence {wi},
∑

wi = 1.

Lemma 4.5. For a convex f , the expression

f(s) − f(r)
s − r

(4.11)

is increasing in both variables.

Proof of Theorem 4.2. Consider the function F(x) defined as

F(x) = F(u, v, s, t;x) := u2fs(x) + 2uvf(s+t)/2(x) + v2ft(x), (4.12)

where u, v ∈ R; s, t ∈ I are real parameters independent of the variable x ∈ K.
Since

F ′′(x) = u2f ′′
s (x) + 2uvf ′′

(s+t)/2(x) + v2f ′′
t (x), (4.13)

and by assuming f ′′
s (x) is log-convex in s, it follows from Lemma 4.3 that F ′′(x) ≥ 0, x ∈ K.

Therefore, by Lemma 4.4, we get

∑
wiF(xi) − F

(∑
wixi

)
≥ 0, xi ∈ K, (4.14)

which is equivalent to

u2J(s) + 2uvJ
(
s + t

2

)
+ v2J(t) ≥ 0. (4.15)

According to Lemma 4.3 again, this is possible only if J(s) is log-convex and the proof
is done.

Now, the proof of Proposition 2.2 easily follows.
From the above, we see that hs(x) is twice continuously differentiable and that h′′

s(x)
is a log-convex function for each real s, x.
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Applying Theorem 4.2, we conclude that the form

Φh(w,x; s) = Φ(s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
wie

sxi − es
∑

wixi

s2
, s /= 0,

∑
wix

2
i − (

∑
wixi)

2

2
, s = 0,

(4.16)

is log-convex in s.
By Lemma 4.5, with f(s) = logΦ(s), we find out that

logΦ(s) − logΦ(r)
s − r

= log
(
Φ(s)
Φ(r)

)1/(s−r)
(4.17)

is monotone increasing either in s or r. Therefore, by changing variable xi → logxi, we finally
obtain the proof of Proposition 2.2.

Proof of Proposition 2.3. The assertion of Proposition 2.3 follows from Proposition 2.2 by the
standard argument (cf. [8, pages 131–134]). Details are left to the reader.

Proof of Proposition 3.1. The proof follows putting x(t) = t, p(t) = e−t, t ∈ (0,+∞) and
applying Proposition 2.2. with r = 0. Corresponding integrals are

∫∞

0
e−t log t = −γ ;

∫∞

0
e−t log2 t = γ2 +

π2

6
;

∫∞

0
e−t log3 t = −γ3 − γπ2

2
− 2ξ(3), (4.18)

with

Γ(1 − s)Γ(1 + s) =
πs

sin(πs)
. (4.19)

Proof of Proposition 3.2. By Proposition 2.3, we get

W0,1(p, ex) ≥ W0,0(p, ex), (4.20)

that is,

EeX − eEX

μ2/2
≥ exp

(
EX3 − (EX)3

3μ2

)

. (4.21)

Using the identity EX3 − (EX)3 = μ3 + 3μ2EX, we obtain the proof of Proposition 3.2.

Proof of Proposition 3.3. This assertion is straightforward consequence of the fact that
W0,s(p, ex) is monotone increasing in s.
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Proof of Proposition 3.4. Direct consequence of Proposition 2.2.

Proof of Proposition 3.5. This is left as an easy exercise to the readers.

Proof of Proposition 3.6. We prove only part (ii). The proof of (i) goes along the same lines.
Suppose that 0 ∈ (a, b) := I and that Er,s(p, q;x, y) are log-convex (concave) for r, s ∈ I

and any fixed x, y ∈ R
+. Then there should be an s, s > 0 such that

Fs

(
p, q;x, y

)
:= W0,s

(
p, q;x, y

)
W0,−s

(
p, q;x, y

) − (W0,0
(
p, q;x, y

))2 (4.22)

is of constant sign for each x, y > 0.
Substituting (x/y)s := ew, w ∈ R, after some calculations, we get that the above is

equivalent to the assertion that F(p, q;w) is of constant sign, where

F
(
p, q;w

)
:= pew + q − epw − e(2/3)(1+p)w

(
pe−w + q − e−pw

)
. (4.23)

Developing in power series in w, we get

F
(
p, q;w

)
=

1
1620

pq
(
1 + p

)(
2 − p

)(
1 − 2p

)
w5 +O

(
w6
)
. (4.24)

Therefore, F(p, q;w) can be of constant sign for each w ∈ R only if p = 1/2(= q).
Suppose now that I is of the form I := [0, a) or I := (−a, 0], a > 0. Then there should be

an s, s /= 0, s ∈ I such that

W0,0
(
p, q;x, y

)
W0,2s

(
p, q;x, y

) − (W0,s
(
p, q;x, y

))2 (4.25)

is of constant sign for each x, y ∈ R
+.

Proceeding as before, this is equivalent to the assertion that G(p, q;w) is of constant
sign with

G
(
p, q;w

)
:= p3q3w6e(2/3)(p+1)w

(
pe2w + q − e2pw

)
− (pew + q − epw

)4
. (4.26)

However,

G
(
p, q;w

)
=

2
405

p4q4
(
1 + p

)(
1 + q

)(
q − p

)
w11 +O

(
w12
)
. (4.27)

Hence, we conclude that G(p, q;w) can be of constant sign for sufficiently small
w, w ∈ R only if p = q = 1/2. Combining this with Feng Qi theorem, the assertion from
Proposition 3.6 follows.
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