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1. Introduction

Throughout the paper, we let |q| < 1 and we employ the standard notation:

(a)0 :=
(
a; q

)
0 = 1,

(a)∞ :=
(
a; q

)
∞ =

∞∏

n=0

(
1 − aqn),

(a)n :=
(
a; q

)
n =

(
a; q

)
∞(

aqn; q
)
∞
, −∞ < n <∞.

(1.1)

Ramanujan [1] stated several q-series identities in his “lost” notebook. One of the beautiful
identities is the two-variable reciprocity theorem.

Theorem 1.1 (see [2]). For ab /= 0,

ρ(a, b) − ρ(b, a) =
(
1
b
− 1
a

)(
aq/b

)
∞
(
bq/a

)
∞
(
q
)
∞(−aq)∞

(−bq)∞
, (1.2)
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where

ρ(a, b) :=
(
1 +

1
b

) ∞∑

n=0

(−1)nqn(n+1)/2anb−n
(−aq)n

. (1.3)

In the recent past many new proofs of (1.2) have been found. The first proof of
(1.2) was given by Andrews [3] using four-free-variable identity and Jacobi’s triple product
identity. Further, Andrews [4] applied (1.2) in proving Euler partition identity analogues
stated in [1]. Somashekara and Fathima [5] established an equivalent version of (1.2) using
Ramanujan’s 1ψ1 summation formula [6] and Heine’s transformation [7, 8]. Berndt et al. [9]
also derived (1.2) using the same above mentioned two transformations. In fact, Berndt et al.
[9] in the same paper have given two more proofs of (1.2) one employing the Rogers-Fine
identity [10] and the other is purely combinatorial. Using the q-binomial theorem:

∞∑

n=0

(a)n(
q
)
n

tn =
(at)∞
(t)∞

, |t| < 1,
∣∣q
∣∣ < 1, (1.4)

Kim et al. [11] gave a much different proof of (1.2). Guruprasad and Pradeep [12] also
devised a proof of (1.2) using the q-binomial theorem. Adiga and Anitha [13] established
(1.2) along the lines of Ismail’s proof [14] of Ramanujan’s 1ψ1 summation formula. Further,
they showed that the reciprocity theorem (1.2) leads to a q-integral extension of the classical
gamma function. Kang [2] constructed a proof of (1.2) along the lines of Venkatachaliengar’s
proof of the Ramanujan 1ψ1 summation formula [6, 15].

In [2] Kang proved the following three- and four-variable generalizations of (1.2).
For |c| < |a| < 1 and |c| < |b| < 1,

ρ3(a, b, c) − ρ3(b, a, c) =
(
1
b
− 1
a

) (c)∞
(
aq/b

)
∞
(
bq/a

)
∞
(
q
)
∞

(−c/a)∞(−c/b)∞
(−aq)∞

(−bq)∞
, (1.5)

where

ρ3(a, b, c) :=
(
1 +

1
b

) ∞∑

n=0

(c)n(−1)nqn(n+1)/2anb−n(−aq)n(−c/b)n+1
, a,

c

b
/= − q−n, (1.6)

and for |c|, |d| < |a|, |b| < 1,

ρ4(a, b, c, d) − ρ4(b, a, c, d) =
(
1
b
− 1
a

) (d)∞(c)∞(cd/ab)∞
(
aq/b

)
∞
(
bq/a

)
∞
(
q
)
∞

(−d/a)∞(−d/b)∞(−c/a)∞(−c/b)∞
(−aq)∞

(−bq)∞
,

(1.7)
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where

ρ4(a, b, c, d)

:=
(
1 +

1
b

) ∞∑

n=0

(d)n(c)n(cd/ab)n
(
1 + cdq2n/b

)
(−1)nqn(n+1)/2anb−n

(−aq)n(−c/b)n+1(−d/b)n+1
, a,

c

b
,
d

b
/= − q−n.

(1.8)

Kang [2] established (1.5) on employing Ramanujan’s 1ψ1 summation formula and Jackson’s
transformation of 2φ1 and 2φ2-series. Recently (1.5) was derived by Adiga and Guruprasad
[16] using q-binomial theorem and Gauss summation formula. Somashekara andMamta [17,
18] obtained (1.5) using the two-variable reciprocity theorem (1.2), Jackson’s transformation,
and again two-variable reciprocity theorem by parameter augmentation. Zhang [19] also
established (1.5).

Kang [2] established (1.7) on employing Andrews’s generalization of 1ψ1 summation
formula, Sears’s transformation of 3φ2-series, and a limiting case of Watson’s transformation
for a terminating very well-poised 8φ7-series [8]:

∞∑

n=0

(α)n
(
β
)
n

(
γ
)
n(δ)n(ε)n

(
1 − αq2n)qn(n+3)/2

(
αq/β

)
n

(
αq/γ

)
n

(
αq/δ

)
n

(
αq/ε

)
n

(
q
)
n(1 − α)

(
−α2
βγδε

)n

=

(
αq

)
∞
(
αq/δε

)
∞(

αq/δ
)
∞
(
αq/ε

)
∞

∞∑

n=0

(δ)n(ε)n
(
αq/βγ

)
n(

αq/β
)
n

(
αq/γ

)
n

(
q
)
n

(
αq

δε

)n

.

(1.9)

Recently Ma [20, 21] proved a six-variable generalization and a five-variable generalization
of (1.2). The main purpose of this paper is to provide a new proof of (1.7) using (1.9), Heine’s
transformation:

∞∑

n=0

(α)n
(
β
)
n(

q
)
n

(
γ
)
n

zn =

(
γ/β

)
∞
(
βz

)
∞(

γ
)
∞(z)∞

∞∑

n=0

(
αβz/γ

)
n

(
β
)
n(

βz
)
n

(
q
)
n

(
γ

β

)n

,
∣∣q
∣∣ < 1, |z| < 1,

∣∣γ
∣∣ <

∣∣β
∣∣ < 1

(1.10)

and Ramanujan’s 1ψ1 summation formula:

1ψ1(a; b; z) :=
∞∑

n=−∞

(a)n
(b)n

zn =
(b/a)∞(az)∞

(
q/az

)
∞
(
q
)
∞(

q/a
)
∞(b/az)∞(b)∞(z)∞

,
∣∣q
∣∣ < 1,

∣∣∣∣
b

a

∣∣∣∣ < |z| < 1. (1.11)

Jacobi’s triple product identity states that

∞∑

n=−∞
qn(n+1)/2zn =

(
q
)
∞
(−zq)∞

(
−1
z

)

∞
, z /= 0,

∣∣q
∣∣ < 1. (1.12)
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Andrews [22] gave a proof of (1.12) using Euler identities. Combinatorial proofs of Jacobi’s
triple product identity were given by Wright [23], Cheema [24], and Sudler [25]. We can also
find a proof of (1.12) in [26]. Using (1.12), Hirschhorn [27, 28] established Jacobi’s two-square
and four-square theorems.

Somashekara and Fathima [5] and Kim et al. [11] established

∞∑

n=0

(−1)nanb−nqn(n+1)/2
(−a)n+1

−
∞∑

n=0

(−1)na−(n+1)bn+1qn(n+1)/2
(−b)n+1

=

(
aq/b

)
∞(b/a)∞

(
q
)
∞

(−a)∞(−b)∞
. (1.13)

Note that (1.13) which is equivalent to (1.2) may be considered as a two-variable
generalization of (1.12). Corteel and Lovejoy [29, equation (1.5)] have given a bijective proof
of (1.13) using representations of over partitions. All the reciprocity theorems (1.2), (1.5), and
(1.7) are generalizations of Jacobi’s triple product identity (1.12).

We also obtain a generalization of Jacobi’s triple product identity (1.12) which is due
to Kang [2].

2. Proof of (1.7)—The Four-Variable Reciprocity Theorem

On employing q-binomial theorem, we have

∞∑

n=0

(−cq)n
(−dq)n(−aq)n
(−bq)n

qn =

(−dq)∞(−bq)∞

∞∑

n=0

(−cq)n
(−bqn+1)∞(−aq)n
(−dqn+1)∞

qn

=

(−dq)∞(−bq)∞

∞∑

m=0

(b/d)m(
q
)
m

(−dq)m
∞∑

n=0

(−cq)n(−aq)n

(
qm+1

)n
.

(2.1)

On using Heine’s transformation (1.10)with α = −cq, β = q, γ = −aq, z = qm+1, we have

∞∑

n=0

(−cq)n(−aq)n

(
qm+1

)n
=

(
qm+2)

∞(−a)∞(
qm+1

)
∞
(−aq)∞

∞∑

n=0

(
cqm+2/a

)
n(

qm+2
)
n

(−a)n

=

(
q
)
m(1 + a)(−a)−m−1
(
cq/a

)
m+1

∞∑

n=0

(
cq/a

)
n+m+1(

q
)
n+m+1

(−a)n+m+1

=

(
q
)
m(1 + a)(−a)−m−1
(
cq/a

)
m+1

[ ∞∑

n=0

(
cq/a

)
n(

q
)
n

(−a)n −
m∑

n=0

(
cq/a

)
n(

q
)
n

(−a)n
]

=

(
q
)
m(−a)−m−1(−cq)∞(
cq/a

)
m+1

(−aq)∞
−
(
q
)
m(1 + a)(−a)−m−1
(
cq/a

)
m+1

m∑

n=0

(
cq/a

)
n(

q
)
n

(−a)n.

(2.2)
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Substituting this in (2.1), we obtain

∞∑

n=0

(−cq)n
(−dq)n(−aq)n
(−bq)n

qn =

(−dq)∞
(−cq)∞

(−a)(−bq)∞
(−aq)∞

∞∑

m=0

(b/d)m(
cq/a

)
m+1

(
dq

a

)m

+

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

m=0

m∑

n=0

(b/d)m
(
dq/a

)m(
cq/a

)
n(−a)n(

cq/a
)
m+1

(
q
)
n

.

(2.3)

Now,

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

m=0

m∑

n=0

(b/d)m
(
dq/a

)m(
cq/a

)
n(−a)n(

cq/a
)
m+1

(
q
)
n

=

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

n=0

(b/d)n
(−dq)n

(
q
)
n

(
1 − cqn+1/a)

∞∑

m=0

(
bqn/d

)
m

(
dq/a

)m
(
cqn+2/a

)
m

=

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

n=0

(b/d)n
(−dq)n

(
q
)
n

(
1 − cqn+1/a) ·

(
1 − cqn+1/a)
(
1 − dq/a)

∞∑

m=0

(b/c)m
(
cqn+1/a

)m
(
dq2/a

)
m

,

(

on using (1.10) with α =
bqn

d
, β = q, γ =

cqn+2

a
, z =

dq

a

)

=

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

m=0

(b/c)m
(
cq/a

)m
(
dq/a

)
m+1

∞∑

n=0

(b/d)n
(−dqm+1)n
(
q
)
n

=

(
1 + a−1

)(−dq)∞(−bq)∞

∞∑

m=0

(b/c)m
(
cq/a

)m
(
dq/a

)
m+1

·
(−bqm+1)

∞(−dqm+1
)
∞

=
(
1 + a−1

) ∞∑

m=0

(b/c)m
(−dq)m(−bq)m

(
dq/a

)
m+1

(cq
a

)m
.

(2.4)

Substituting (2.4) in (2.3), we obtain

∞∑

n=0

(−cq)n
(−dq)n(−aq)n
(−bq)n

qn =

(−dq)∞
(−cq)∞

(−a)(−bq)∞
(−aq)∞

∞∑

m=0

(b/d)m(
cq/a

)
m+1

(
dq

a

)m

+
(
1 + a−1

) ∞∑

m=0

(b/c)m
(−dq)m(−bq)m

(
dq/a

)
m+1

(cq
a

)m

=

(−dq)∞
(−cq)∞

(−a)(−bq)∞
(−aq)∞

∞∑

m=0

(b/c)m(
dq/a

)
m+1

(cq
a

)m

+
(
1 + a−1

) ∞∑

m=0

(b/c)m
(−dq)m(−bq)m

(
dq/a

)
m+1

(cq
a

)m
.

(2.5)

(Here, we used (1.10) with α = b/d, β = q, γ = cq2/a, z = dq/a.)
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Changing c to −c/q, d to −d/q in (2.5), we get

∞∑

n=0

(c)n(d)n(−aq)n
(−bq)n

qn =
(d)∞(c)∞

(−a)(−bq)∞
(−aq)∞

∞∑

m=0

(−bq/c)m
(−d/a)m+1

(
− c
a

)m

+
(
1 + a−1

) ∞∑

m=0

(−bq/c)m(d)m(−bq)m(−d/a)m+1

(
− c
a

)m
.

(2.6)

Interchanging a and b in (2.6), we have

∞∑

n=0

(c)n(d)n(−aq)n
(−bq)n

qn =
(d)∞(c)∞

(−b)(−bq)∞
(−aq)∞

∞∑

m=0

(−aq/c)m
(−d/b)m+1

(
− c
b

)m

+
(
1 + b−1

) ∞∑

m=0

(−aq/c)m(d)m(−aq)m(−d/b)m+1

(
− c
b

)m
.

(2.7)

Subtracting (2.6) from (2.7), we deduce that

(d)∞(c)∞(−bq)∞
(−aq)∞

[
1
b

∞∑

m=0

(−aq/c)m
(−d/b)m+1

(
− c
b

)m
− 1
a

∞∑

m=0

(−bq/c)m
(−d/a)m+1

(
− c
a

)m
]

=
(
1 + b−1

) ∞∑

m=0

(−aq/c)m(d)m(−aq)m(−d/b)m+1

(
− c
b

)m
−
(
1 + a−1

) ∞∑

m=0

(−bq/c)m(d)m(−bq)m(−d/a)m+1

(
− c
a

)m
.

(2.8)

Now change a to −b/d, b to −c/a, and z to −d/a in (1.11) to obtain

∞∑

n=1

(−b/d)n
(−c/a)n

(
−d
a

)n

+
∞∑

n=0

(−aq/c)n(−dq/b)n

(
− c
b

)n
=

(cd/ab)∞(b/a)∞
(
aq/b

)
∞
(
q
)
∞

(−c/a)∞(−c/b)∞(−d/a)∞
(−dq/b)∞

. (2.9)

Changing n to n + 1 in the first summation of the above identity and then multiplying both
sides by (1 + d/b)−1, we find that

1
(1 + d/b)

∞∑

n=0

(−b/d)n+1
(−c/a)n+1

(
−d
a

)n+1

+
∞∑

n=0

(−aq/c)n
(−d/b)n+1

(
− c
b

)n

=
(
1 − b

a

) (cd/ab)∞
(
bq/a

)
∞
(
aq/b

)
∞
(
q
)
∞

(−c/a)∞(−c/b)∞(−d/a)∞(−d/b)∞
.

(2.10)
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Using (1.10) with α = −bq/c, β = q, γ = −dq/a, and z = −c/a in the first summation of the
above identity and then multiplying both sides by 1/b, we get

1
b

∞∑

n=0

(−aq/c)n
(−d/b)n+1

(
− c
b

)n
− 1
a

∞∑

n=0

(−bq/c)n
(−d/a)n+1

(
− c
a

)n

=
(
1
b
− 1
a

) (cd/ab)∞
(
bq/a

)
∞
(
aq/b

)
∞
(
q
)
∞

(−c/a)∞(−c/b)∞(−d/a)∞(−d/b)∞
.

(2.11)

Substituting (2.11) in (2.8), we see that

(
1
b
− 1
a

) (cd/ab)∞(c)∞(d)∞
(
bq/a

)
∞
(
aq/b

)
∞
(
q
)
∞(−aq)∞

(−bq)∞(−c/a)∞(−c/b)∞(−d/a)∞(−d/b)∞

=
(
1 + b−1

) ∞∑

m=0

(−aq/c)m(d)m(−aq)m(−d/b)m+1

(
− c
b

)m
−
(
1 + a−1

) ∞∑

m=0

(−bq/c)m(d)m(−bq)m(−d/a)m+1

(
− c
a

)m
.

(2.12)

Now setting α = −cd/b, β = cd/ab, γ = c, δ = q, and ε = d in (1.9) and then multiplying both
sides by 1/(1 + d/b)(1 + c/b), we obtain

∞∑

n=0

(cd/ab)n(c)n(d)n
(
1 + cdq2n/b

)
qn(n+1)/2(−1)nanb−n

(−aq)n(−c/b)n+1(−d/b)n+1

=
∞∑

n=0

(−aq/c)n(d)n(−aq)n(−d/b)n+1
(
− c
b

)n
.

(2.13)

Interchanging a and b in (2.13), we have

∞∑

n=0

(cd/ab)n(c)n(d)n
(
1 + cdq2n/a

)
qn(n+1)/2(−1)nbna−n

(−bq)n(−c/a)n+1(−d/a)n+1
=

∞∑

n=0

(−bq/c)n(d)n(−bq)n(−d/a)n+1
(
− c
a

)n
. (2.14)

Substituting (2.13) and (2.14) in (2.12), we deduce (1.7).

Theorem 2.1 (A four-variable generalization of Jacobi’s triple product identity). For |c|, |d| <
|a|, |b| < 1,

(cd/ab)∞(c)∞(d)∞(b/a)∞
(
aq/b

)
∞
(
q
)
∞

(−a)∞(−b)∞(−c/a)∞(−c/b)∞(−d/a)∞(−d/b)∞

=
∞∑

m=0

(d)m
(−cq−m/a)m(−1)mamb−mqm(m+1)/2

(−a)m+1(−d/b)m+1

−
∞∑

m=0

(d)m
(−cq−m/b)m(−1)ma−(m+1)bm+1qm(m+1)/2

(−b)m+1(−d/a)m+1
.

(2.15)



8 International Journal of Mathematics and Mathematical Sciences

Proof. Employing

(
−aq
c

)

m

=
(
a

c

)m

qm(m+1)/2
(
−cq

−m

a

)

m

,

(
−bq
c

)

m

=
(
b

c

)m

qm(m+1)/2
(
−cq

−m

b

)

m

(2.16)

in the right side of (2.12) and then multiplying both sides by b/(1 + a)(1 + b), we obtain
(2.15).
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