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We consider the quantum Liouville equation and give a characterization of the solutions which
satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a
particular solution of the quantum Liouville equation: the Wigner transform f(x,v,t) of a generic
solution ψ(x;t) of the Schrödinger equation. We give a representation of ψ(x, t) by the Hermite
functions. We show that the values of the variances of x and v calculated by using the Wigner
function f(x,v,t) coincide, respectively, with the variances of position operator ̂X and conjugate
momentum operator ̂P obtained using the wave function ψ(x,t). Then we consider the Fourier
transform of the density matrix ρ(z,y,t) = ψ∗(z,t)ψ(y,t). We find again that the variances of x and v
obtained by using ρ(z, y,t) are respectively equal to the variances of ̂X and ̂P calculated in ψ(x,t).
Finally we introduce the matrix ‖Ann′(t)‖ and we show that a generic square-integrable function
g(x,v,t) can be written as Fourier transform of a density matrix, provided that the matrix ‖Ann′(t)‖
is diagonalizable.
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1. Introduction

In nonrelativistic quantummechanics the state of a system formed byN particles is described
by a state vector whose x-representation is given by the wave function ψ(x, t) (x is the generic
vector of a 3N-dimensional space). The square modulus of ψ(x, t) represents the probability
density that the particle is found in x at the time t. The time evolution of the state vector (or,
more precisely, the evolution of the correspondingwave function) is given by the Schrödinger
equation [1]

ı�
∂ψ(x, t)
∂t

= − �
2

2m
Δxψ(x, t) + V (x, t)ψ(x, t). (1.1)
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In classical mechanics the dynamics of a system is described by the Newton’s equa-
tions of motion which represent trajectory equations. Alternatively Lagrange or Hamilton
formulations emphasize other concepts, for example, the law of energy conservation, but
essentially nothing different is introduced [2].

A system formed by N particles, for example, a gas, is usually studied by the tools
of the statistical mechanics and its state may be described instantaneously by a probability
function which depends on both positions and velocities of the particles [3, 4]. The time
evolution of a statistical system can be obtained by several different equations. In particular
a system formed by N particles in a potential V (x, t) can be described by the classic Liouville
equation [5]

∂f

∂t
+ v · ∇xf − ∇xV · ∇vf = 0. (1.2)

The function f(x,v, t) is a probability density and it instantaneously describes the
system state inside the 6 N-dimensional phase space {x,v}. The use of the Liouville equation
instead of Newton’s equations shifts the emphasis from the concept of trajectory to that of
probability.

When the time evolution of a many-particle system is considered, it is useful to obtain
single-particle approximation of the classic Liouville equation. The Vlasov limit [6], where
the field is scaled as 1/N for particles’ number approaching infinite, and the use of a one-
dimensional model allow to obtain an equation which is formally identical to (1.2), the classic
Liouville equation in a two-dimensional phase space

∂f(x, v, t)
∂t

+ v
∂f(x, v, t)

∂x
− ∂V (x, t)

∂x

∂f(x, v, t)
∂v

= 0. (1.3)

In these conditions the probability function describes the density of single particle
in an unitary segment. In general, the Vlasov equation [7, 8] provides the probability
density of finding a single particle at the position x with speed v at the time t (x and v
are vectors belonging to the ordinary three-dimensional space). The use of the statistical
mechanics allows to connect the mechanical properties (mycroscopical domain) of the
constituting particles with the thermodynamic behaviour (macroscopical domain) of the
system. Moreover the importance of a formulation of classical mechanics based on the
Liouville equation is that quantum mechanics may be introduced from classical mechanics
amended by suitable postulates and principles [9].

In quantum physics a system can be also described by using the tools of the
statistical mechanics. The use of a stochastic formulation to describe the exciton transport
in polar media [10] and the existence of relation connecting physical observables with the
temperature [11] emphasize the importance of introducing statistical tools to resolve typical
problems of the quantum physics. It is useful to remember that ultimately in solid state
physics the study of the dressing processes of excitons and conduction electrons in polar
media [12–16] has been accompained by the realization of experimental techniques allowing
to create excitons within times of the order of hundred femtoseconds [17, 18]. When one
deals with dressing processes in the matter, the use of the statistical mechanics allows to treat
a many-particle system as an ensemble. This leads to a thermodynamic-like description of
quantum phenomena [19–21]. In example, the dressing dynamics of excitons and polarons
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may be connected with some mean properties of the matter and the theoretical results may
be compared with the experimental observations [22–25].

The statistical treatment of a quantum system may be led by introducing an equation
describing the global behaviour of the system and simultaneously considering that it
undergoes the laws of the quantum physics. In particular, it is possible to obtain an equation
which represents the extension of the Liouville equation to the quantum mechanics. For sake
of semplicity the particle system will be described referring to the Vlasov equation (i.e., the
Liouville equation for N = 1). A one-dimensional model will be studied without loss of
generality. Considerations and results can be successively extended to the multiparticle case.
ForN = 1 the one-dimensional Schrödinger equation is

ı�
∂ψ(x, t)

∂t
= − �

2

2m
∂2ψ(x, t)
∂x2

+ V (x, t)ψ(x, t). (1.4)

Defining the density matrix

ρ
(

z, y, t
)

= ψ∗(z, t)ψ
(

y, t
)

, (1.5)

where ψ∗ represents the conjugate complex of ψ, from Schrödinger equation (1.4) one obtains

ı�
∂ρ

∂t
= − �

2

2m
∂2ρ

∂y2
+

�
2

2m
∂2ρ

∂z2
− V (z)ρ + V

(

y
)

ρ. (1.6)

Setting

z = x +
�

2m
s, y = x − �

2m
s, (1.7)

u(x, s, t) = ρ
(

x +
�

2m
s, x − �

2m
s, t

)

, (1.8)

(1.6) becomes

∂u

∂t
+ ı

∂

∂s

(

∂u

∂x

)

− ıV (x + (�/2m)s, t) − V (x − (�/2m)s, t)
�

u = 0. (1.9)

Now the Wigner distribution function may be introduced [26]

f =
1
2π

∫

Rs

u(x, s, t)eısvds. (1.10)

From (1.9) the one-dimensional quantum Liouville equation [5] is obtained

∂f(x, v, t)
∂t

+ v
∂f(x, v, t)

∂x
+Wf = 0 (1.11)
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with

Wf = −ı 1
2π

∫

Rs

∫

Rv′

V (x + (�/2m)s, t) − V (x − (�/2m)s, t)
�

· f(x, v′, t
)

eıs(v−v
′)dv′ds.

(1.12)

The term −(∂V (x, t)/∂x)(∂f(x, v, t)/∂v) in the classic Liouville equation (1.3) is
replaced in the quantum extension (1.11) by the term Wf . The linear operator W is named
pseudodifferential operator and it is applied by a product operation acting on the Fourier
transform f . The multiplicator ̂W , that is, the symbol of the pseudodifferential operator, is
obtained comparing (1.9) and (1.11)

̂W = −ıV (x + (�/2m)s, t) − V (x − (�/2m)s, t)
�

. (1.13)

Using the Liouville equation in the place of Schrödinger equation allows to deal with
statistical mixtures of states which cannot be represented by a wave function. These states
may be defined by considering a complete set of orthonormal solutions for the Schrödinger
equation ψj (j = 1, 2, . . .): a state is obtained as a mixture, with probabilities λj(0 ≤ λj ≤
1;

∑

j λj = 1), of the orthonormal solutions. The corresponding density matrix is given by

ρ
(

z, y, t
)

=
∑

j

λjψ
∗
j (z, t)ψj

(

y, t
)

=
∑

j

λjρj
(

z, y, t
)

, (1.14)

where ρj(z, y, t) is the density matrix of the quantum state represented by the wave function
ψj (pure case). Since ρ(z, y, t) is a linear combination of solutions of (1.6), it is a solution of the
same equation. Defining u and f as in (1.8) and (1.10)we observe that generally the quantum
Liouville equation allows to describe statistical mixture of states (nonpure case).

Moreover the use of tools of statistical mechanics in treating quantum problems allows
to consider the effects due to the continuous reduction of the spatial domains where the
solid state physics works. The dimensions of the modern semiconductor devices become
comparable with the free mean path of the electrons which can cross the active zone without
undergoing scattering processes. These problems can be overcrossed by considering the
distribution function of the electrons f(x, v, t) and by introducing equations typical of the
statistical mechanics whose solutions provide a more precise and correct description of
the dynamics of these systems [27, 28]. Yet, the increasing reduction of the dimensions
where these devices work does not allow to neglect the quantum effects. It is necessary
to use equations including these contributions by extending the classical models to the
quantum physics [29]. Then, knowing the mathematical characteristics of these equations
becomes very important in order to study the physical properties of the systems considered.
Particularly, it was shown that the quantum hydrodynamic equation directly obtained
from the Schrödinger equation have solutions which generally do not converge to the
corresponding classical solutions, when the Planck constant tends to zero [30]. This problem
can be overcrossed by introducing theWigner transform and the quantum Liouville equation
given respectively by (1.10) and (1.11). In fact, it was shown that for � → 0 the solutions of
the quantum Liouville equation converge to those of the corresponding classical equation



International Journal of Mathematics and Mathematical Sciences 5

[31, 32]. Yet, the use of the quantum Liouville equation to describe a quantum system
suggests the necessity of verifying that this equation satisfies the Heisenberg uncertainty
relation. In this paper we give a characterization of the solutions of the quantum Liouville
equation (QLE) which satisfy the Heisenberg uncertainty relation. At this aim we show
that for suitable conditions the variances Δx and Δv calculated by using a solution of the
QLE coincide identically with the variances Δ ̂X and Δ ̂P of position operator and conjugate
momentum operator obtained by using the corresponding Schrödinger solution ψ(x, t).

2. Square-Integrable Functions ψ(X, T): The Space L2

Any arbitrary solution ψ(x) of the Schrödinger equation, due to its expandibility in plane
waves,

ψ(x) =
1√
2π

∫+∞

−∞
dk ψ(k) eıkx, (2.1)

verifies the inequality[1]

Δ ̂XΔ ̂P ≥ �

2
, (2.2)

where ̂X and ̂P are observables which satisfy the commutation rule

[

̂X, ̂P
]

= ı�. (2.3)

The probabilistic interpretation [33, 34] of the wave function ψ(x, t) of a particle
implies that |ψ(x, t)|2dx is the probability of measuring, at the time t, the particle inside a
segment with amplitude dx and centered in x (one-dimensional model). The total probability
of detecting the particle somewhere in space has to be obviously equal to 1 (probability
conservation), so we must have

∫+∞

−∞
dx

∣

∣ψ(x, t)
∣

∣

2 = 1. (2.4)

With each pair of square-integrable functions φ(x, t), ψ(x, t) a complex number is associated
by the definition of scalar product

(

φ, ψ
)

=
∫+∞

−∞
dx φ∗(x)ψ(x). (2.5)

The set of the square-integrable functions conjunctly with the correspondence defined
in (2.5) is called L2 and it has the structure of a Hilbert space [35–37]. L2 satisfies all the
criteria of a vector space where the scalar product is given by the operation defined in (2.5).
From a physical point of view the set L2 is too wide. It is then useful to reduce the set of
square-integrable functions to the ones which possess certain properties of regularity and
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describe real physical systems. The functions have to be everywhere defined, (a probability
value must be associated to the particle at every point in the space); the functions must
be everywhere continuous (the probability amplitude in an arbitrary point of the space x0
cannot depend on the size of the volume which contains the particle); the functions have
to be infinitely differentiable (this also assures the possibility of approximating them by a
Taylor’s expansion). No complete list of the necessary properties is given; the prescription is
only considering in L2 the set F constituted by functions which are “enough” regular, that is
functions which are suitable for describing the behavior of real physical systems.

As we said in the previous sections, the dynamics of a quantum system can be
described applying the formalism of the statistic mechanics. This treatment can be performed
by using the quantum Liouville equation introduced in the first section. In order to obtain
the QLE, the passage from the density matrix ρ(x + (�/2m)s, x − (�/2m)s, t) as a function
of x and s to the Wigner function f(x, v, t) has been performed. It is not obvious that the
variances Δx and Δv, obtained using the Wigner functions f(x, v, t), satisfy the Heisenberg
uncertainty relation. In the following, a study of the solutions of the quantum Liouville
equation is performed. A solution of the quantum Liouville equation is obtained considering
the Wigner transform f(x, v, t) of an arbitrary Schrödinger function ψ(x, t) (pure state).
Expanding ψ(x, t) by Hermite functions, it is shown that the variances of x and v obtained
using the Wigner function f(x, v, t) coincide respectively with the variances of the operators
position and conjugate momentum calculated using the wave function ψ(x, t).

This comparison is repeated exploiting a more general solution, that is the Fourier
transform of an arbitrary density matrix (Wigner function for a statistical mixture of states).
The results show that any solution of the quantum Liouville equation, defined as Fourier
transform of any density matrix, also verifies the Heisenberg uncertainty relation.

Finally a larger characterization is presented for functions which contemporaneously
satisfy both the quantum Liouville equation and the Heisenberg relation. This characteriza-
tion is obtained by defining the space S2 of the square-integrable functions. We show that the
Heisenberg inequality is verified by an arbitrary function f(x, v, t) ∈ S2 provided that, given
any arbitrary basis {Tnn′(x, v)} in S2, the matrix ‖Ann′(t)‖ of the coefficients of the expansion

f(x, v, t) =
∑

nn′
Ann′(t)Tnn′(x, v) (2.6)

is diagonalizable.

3. Heisenberg Relation and Wigner Distribution Function: Pure State

The “enough” regular solutions of the Schrödinger equation which belong to the space F,
verify instantaneously the Heisenberg uncertainty relation

Δ ̂XΔ ̂P ≥ �

2
, (3.1)

where ̂X and ̂P are observables which satisfy the commutation rule [1]

[

̂X, ̂P
]

= ı�. (3.2)
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In x representation ̂X and ̂P coincide respectively with the operator which multiplies by x
and with the differential operator (�/i)(∂/∂x).

In order to characterize the solutions of the quantum Liouville equation which
preserves the Heisenberg relation, we calculate the variances Δx and Δv using the Wigner
transform of a generic solution ψ(x, t) of the one-dimensional Schrödinger equation (1.4).
For this purpose we introduce the basis composed of the Hermite functions. Consider an
arbitrary solution of (1.4) (Schrödinger equation) and its Wigner transform given by (1.10)
(pure state case). It is known that the Hermite functions, which are defined by

Sn =
(

1
π

)1/4

e−x
2/2 1√

2nn!
Hn(x), (3.3)

whereHn(x) is the Hermite polynomial of degree n given by [38, 39]

Hn(x) = (−1)nex2 d
n

dxn
e−x

2
, (3.4)

constitute a basis in F.
We may expand the generic wave function ψ(x, t) on this basis obtaining

ψ(x, t) =
(

1
π

)1/4

e−x
2/2

∑

n

An(t)√
2nn!

Hn(x) (3.5)

with An(t) given by

An(t) =
∫

Rx

dx ψ∗(x, t)Sn(x). (3.6)

For the mean values of X and X2 it results

〈X〉 =
∫

Rx

dx ψ∗(x, t)xψ(x, t), (3.7)

〈

X2
〉

=
∫

Rx

dx ψ∗(x, t)x2ψ(x, t). (3.8)

The integrals present in (3.7) and (3.8)may be worked out by means of the expansion
of ψ(x, t) in Hermite functions. By using (3.5) and (3.7) the expression for 〈X〉 becomes

〈X〉 =
(

1
π

)

1
2∑

n

∑

n′

A∗
n(t)An′(t)√
2n′n′!2nn!

∫+∞

−∞
dx x e−x

2
Hn(x)Hn′(x). (3.9)
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Analogously, by using (3.5) in (3.8), one obtains

〈X2〉 =
(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2n′n′!2nn!

∫+∞

−∞
dx x2 e−x

2
Hn(x)Hn′(x). (3.10)

For the mean value of ̂P it results

〈 ̂P〉 =
�

i

(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2n′n′!2nn!

·
[

n′
∫+∞

−∞
dx e−x

2
Hn(x)Hn′−1(x) − n

∫+∞

−∞
dx e−x

2
Hn′(x)Hn−1(x)

]

.

(3.11)

Finally, by using (3.5), for the mean value of ̂P 2 we get

〈 ̂P 2〉 = −�
2
(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2n′n′!2nn!

·

·
[

−1
2

∫+∞

−∞
dx e−x

2
Hn(x)H ′

n(x) − 2nn′
∫+∞

−∞
dx e−x

2
Hn−1(x)Hn′−1(x)

+ n(n − 1)
∫+∞

−∞
dx e−x

2
Hn−2(x)H ′

n(x) + n
′(n′ − 1

)

∫+∞

−∞
dx e−x

2
Hn′−2(x)Hn(x)

]

.

(3.12)

In order to show that the variances Δx =
√

〈x2〉 − 〈x〉2 and Δv =
√

〈v2〉 − 〈v〉2
verify the Heisenberg uncertainty relation, we may compare them with the variances Δ ̂X =
√

〈 ̂X2〉 − 〈 ̂X〉2 and Δ ̂P =
√

〈 ̂P 2〉 − 〈 ̂P〉2 of the operators ̂X and ̂P calculated by using the
wave function ψ(x, t). It is then necessary to calculate the mean values 〈x〉, 〈x2〉, 〈v〉, 〈v2〉
using the formalism of Wigner transform. By using the expansion given in (3.5), the Wigner
transform (1.10) of the generic wave function ψ(x, t) becomes (settingm = 1)

f =
1
2π

∑

n

∑

n′

(

1
π

)1/2A∗
n(t)An′(t)√
2nn!2n′n′!

·
∫+∞

−∞
ds eısve−(x+(�/2)s)

2/2e−(x−(�/2)s)
2/2Hn

(

x +
�

2
s

)

Hn′

(

x − �

2
s

)

.

(3.13)

Now we may obtain the mean value of x, x2, v, and v2 using the distribution function
given in (3.13). For 〈x〉 it results

〈x〉 =
(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2nn!2n′n′!

∫+∞

−∞
dx xe−x

2
Hn(x)Hn′(x). (3.14)
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By following an analogous procedure we obtain

〈x2〉 =
(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2nn!2n′n′!

∫+∞

−∞
dx x2e−x

2
Hn(x)Hn′(x). (3.15)

In a similar way one obtains the expression giving the mean value of v

〈v〉 = i�
∑

n

∑

n′

(

1
π

)1/2A∗
n(t)An′(t)√
2nn!2n′n′!

·
∫+∞

−∞
dx e−x

2[

nHn−1(x)Hn′(x) − n′Hn′−1(x)Hn(x)
]

.

(3.16)

Finally the expression for the mean value of v2 is obtained

〈v2〉 = −�
2
(

1
π

)1/2
∑

n

∑

n′

A∗
n(t)An′(t)√
2nn!2n′n′!

∫+∞

−∞
dx e−x

2

·
[

−1
2
Hn(x)Hn′(x) + n(n − 1)Hn−2(x)Hn′(x)

+ n′
(

n′ − 1
)

Hn(x)Hn′−2(x) − 2nn′Hn−1(x)Hn′−1(x)
]

.

(3.17)

The comparison between the set constituted by (3.9), (3.10), (3.11), (3.12) and that
formed by (3.14), (3.15), (3.16), (3.17) indicates that the variances Δ ̂X and Δ ̂P of the
quantum operators ̂X and ̂P calculated by the use of a generic wave function ψ(x, t) coincide
respectively with the variances Δx and Δv of the variables x and v obtained by using the
Wigner transform f(x, v, t) defined in (1.10).

4. Heisenberg Relation and Wigner Distribution Function:
Statistical Mixture of States

Within the usual one-dimensional model we consider a quantum particle whose dynamics
is given by the Liouville equation. The state of the particle is represented by the Wigner
distribution function obtained as Fourier transform of the density matrix ρ(x + (�/2m)s, x −
(�/2m)s, t). In the most general case, as we said, the density matrix (and then the
corresponding Wigner function) describes a statistical mixture of states which is not
associated with a wave function. Using a basis of the space F, the density matrix of the system
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can be expressed in terms of density matrices of pure states. For example, if {rj} is a basis of
the vectorial space F, an arbitrary density matrix is given by

ρ

(

x +
�

2m
s, x − �

2m
s, t

)

=
∑

j

λjr
∗
j

(

x +
�

2m
s

)

rj

(

x − �

2m
s

)

=
∑

j

λjρj

(

x +
�

2m
s, x − �

2m
s

)

(4.1)

with

ρj

(

x +
�

2m
s, x − �

2m
s

)

= r∗j

(

x +
�

2m
s

)

rj

(

x − �

2m
s

)

. (4.2)

The coefficients λj , which determine the time evolution of the system, satisfy the relation

∑

j

λj = 1. (4.3)

Due to the presence of the single contributions ρj , (4.1) allows to introduce again the
idea of wave function. Each of these contributions represents the density matrix of a pure
state. The mean value of an arbitrary operator is then obtained using the Wigner distribution
function calculated as Fourier transform of ρ(x + (�/2m)s, x − (�/2m)s, t) and it can be
expressed by the linear combination of the mean values calculated in each pure state

〈x〉 =
∑

j

λj〈x〉j ,
〈

x2
〉

=
∑

j

λj
〈

x2
〉

j
,

〈v〉 =
∑

j

λj〈v〉j ,
〈

v2
〉

=
∑

j

λj
〈

v2
〉

j
,

(4.4)

where 〈〉j represents the mean value obtained using the Wigner function

fj(x, v, t) =
1
2π

∫+∞

−∞
ds eısvρj

(

x +
�

2m
s, x − �

2m
s

)

. (4.5)

We must evaluate if the product ΔxΔv satisfies the Heisenberg relation for every set of λj .
We then consider a statistical mixture of N quantum states which is described, at the time t,
by the density matrix given in (4.1). The corresponding Wigner function is given by

f(x, v, t) =
1
2π

∫+∞

−∞
ds eısvρ

(

x +
�

2m
s, x − �

2m
s, t

)

=
1
2π

∑

j

λj

∫+∞

−∞
ds eısvρj

(

x +
�

2m
s, x − �

2m
s

)

.

(4.6)
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The mean square deviations of x and v calculated in f(x, v, t) are given by

(Δx)2 =
∑

j

λj
〈

x2
〉

j
−
∑

j

λ2j 〈x〉2j −
∑

i /= j

λiλj〈x〉i〈x〉j , (4.7)

(Δv)2 =
∑

j

λj
〈

v2
〉

j
−
∑

j

λ2j 〈v〉2j −
∑

i /= j

λiλj〈v〉i〈v〉j . (4.8)

Note that (4.7) can be written

(Δx)2 =
∑

j

λj

(

〈

x2
〉

j
− λj〈x〉2j

)

−
∑

i /= j

λiλj〈x〉i〈x〉j

=
∑

j

λj
[

(

Δxj
)2 +

(

1 − λj
)〈x〉2j

]

−
∑

i /= j

λiλj〈x〉i〈x〉j

=
∑

j

λj
(

Δxj
)2 +

∑

i /= j

λiλj〈x〉2j −
∑

i /= j

λiλj〈x〉i〈x〉j

=
∑

j

λj
(

Δxj
)2 −

∑

i<j

λiλj
(

〈x〉j − 〈x〉i
)2
.

(4.9)

By an analogous procedure, from (4.8) one gets

(Δv)2 =
∑

j

λj
(

Δvj
)2 −

∑

i<j

λiλj
(

〈v〉j − 〈v〉i
)2
. (4.10)

Finally using (4.9) and (4.10) one gets

(Δx)2(Δv)2 =
∑

j,j ′
λj(Δx)2j λj ′(Δv)

2
j ′

+
∑

i<j,j ′
λiλj

(

〈x〉j − 〈x〉i
)2
λj ′(Δv)2j ′

+
∑

j,i′<j ′
λj(Δx)2j λi′λj ′

(

〈v〉j − 〈v〉i
)2

+
∑

i<j,i′<j ′
λiλj

(

〈x〉i − 〈x〉j
)2
λi′λj ′

(

〈v〉i′ − 〈v〉j ′
)2
.

(4.11)
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Setting

Θ =
∑

i<j,j ′
λiλj

(

〈x〉j − 〈x〉i
)2
λj ′(Δv)2j ′

+
∑

j,i′<j ′
λj(Δx)2j λi′λj ′

(

〈v〉j − 〈v〉i
)2

+
∑

i<j,i′<j ′
λiλj

(

〈x〉i − 〈x〉j
)2
λi′λj ′

(

〈v〉i′ − 〈v〉j ′
)2
,

(4.12)

(4.11) becomes

(Δx)2(Δv)2 =
∑

j,j ′
λj(Δx)2j λj ′(Δv)

2
j ′ + Θ. (4.13)

From (4.13) it results

(Δx)2(Δv)2 =
∑

j ′<j

λjλj ′
[

(Δx)2j (Δv)
2
j ′ + (Δx)2j ′(Δv)

2
j

]

+
∑

j

λ2j (Δx)
2
j (Δv)

2
j + Θ.

(4.14)

The term Θ is nonnegative. Moreover, as we showed in the previous section, the
variances (Δx)j and (Δv)j obtained using Wigner transform of pure states coincide with the

variances (Δ ̂X)j and (Δ ̂P)j calculated by the corresponding wave functions and they satisfy
the Heisenberg uncertainty relation

(Δx)2j (Δv)
2
j ≥

�
2

4
=⇒ (Δv)2j ≥

�
2

4
1

(Δx)2j
(4.15)

which implies

(Δx)2j ′(Δv)
2
j ≥

�
2

4

(Δx)2j ′

(Δx)2j
. (4.16)

Using (4.15) and (4.16) in (4.14) the following inequality is obtained:

(Δx)2(Δv)2 ≥ �
2

4

∑

j

λ2j +
�
2

4

∑

j ′<j

λjλj ′

⎡

⎣

(Δx)2j

(Δx)2j ′
+
(Δx)2j ′

(Δx)2j

⎤

⎦ + Θ

=
�
2

4

∑

j

λ2j +
�
2

4

∑

j ′<j

λjλj ′

[

yjj ′ +
1
yjj ′

]

+ Θ,

(4.17)
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where the nonnegative variable

yjj ′ =
(Δx)2j

(Δx)2j ′
(4.18)

has been defined.
Noting

yjj ′ +
1
yjj ′

≥ 2, ∀yjj ′ ≥ 0, (4.19)

(4.17) allows to write

(Δx)2(Δv)2 ≥ �
2

4

⎡

⎣

∑

j

λ2j + 2
∑

j ′<j

λjλj ′

⎤

⎦ + Θ =
�
2

4

⎡

⎣

∑

j

λj

⎤

⎦

2

+ Θ. (4.20)

Finally, remembering that for the coefficients λj the normalization relation holds

∑

j

λj = 1 (4.21)

and that Θ is defined nonnegative, from (4.20) the following inequality is obtained:

ΔxΔv ≥ �

2
(4.22)

which represents the Heisenberg uncertainty relation within the two-dimensional phase
space {x, v}.

5. The Set of the Square-Integrable Functions: The Space S2

Consider the set {f(x, v, t)} constituted by the functions which obey the relation:

∫+∞

−∞
dx

∫+∞

−∞
dv f(x, v, t) = 1. (5.1)

Inside the set {f(x, v, t)} we characterize the subset formed by the square-integrable
functions, that is the functions which satisfy the following relation

∫+∞

−∞
dx

∫+∞

−∞
dv

∣

∣f(x, v, t)
∣

∣

2
<∞. (5.2)
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This set, named S2, possesses the structure of a vectorial space. In fact, if we consider
two arbitrary functions f(x, v, t), g(x, v, t) ∈ S2 and two arbitrary complex numbers λ1, λ2,
for the function λ1f(x, v, t) + λ2g(x, v, t) the following relation holds:

∫+∞

−∞
dx

∫+∞

−∞
dv

∣

∣λ1f(x, v, t) + λ2g(x, v, t)
∣

∣

2 ≤ ∞. (5.3)

Equation (5.3) indicates that the sum of two square-integrable functions is itself a square-
integrable function. The set is then closed respect to the sum. It is easy to verify the set S2

satisfies all the properties of a vectorial space.
Moreover a scalar product (f, g) can be defined

(

f, g
)

=
∫+∞

−∞
dx

∫+∞

−∞
dvf∗(x, v)g(x, v), (5.4)

which associates each pair of elements of S2 with a complex number.
The set of the functions belonging to S2 with the scalar product defined in (5.4)

constitutes a Hilbert space.

6. A Basis of S2

In order to construct a basis of the vectorial space S2 we consider the Hermite functions
defined in (3.3). They constitute a basis of the space formed by the solutions of the
Schrödinger equation. Using the generic Hermite function Sn(x) it is possible to introduce
the set {fnn′(x, v)}with

fnn′(x, v) =
∫+∞

−∞
ds eısve−(x+(�/2)s)

2/2e−(x−(�/2)s)
2/2 Hn(x + (�/2)s)√

π1/22nn!

Hn′(x − (�/2)s)√
π1/22n′n′!

. (6.1)

We propose to show that the set {fnn′(x, v)} constitutes a basis of S2. This may be obtained
by proving that {fnn′(x, v)} is an orthonormal and complete set of this space.

6.1. Orthonormality

In order to prove the orthonormality of the set {fnn′(x, v)}, we calculate the following integral:

∫+∞

−∞
dx

∫+∞

−∞
dvfnn′(x, v)f∗

mm′(x, v)

=
∫+∞

−∞
dx

∫+∞

−∞
dv

∫+∞

−∞
ds eısve−(x+(�/2)s)

2/2e−(x−(�/2)s)
2/2

× Hn(x + (�/2)s)√
π1/22nn!

Hn′(x − (�/2)s)√
π1/22n′n′!

·
∫+∞

−∞
ds′e−ıs

′ve−(x+(�/2)s
′)2/2e−(x−(�/2)s

′)2/2 Hm(x + (�/2)s′)√
π1/22mm!

Hm′(x − (�/2)s′)√
π1/22m′m′!

,

(6.2)
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where fnn′(x, v), fmm′(x, v) are two arbitrary functions belonging to S2. Performing the
variable change

y = x +
�

2
s, z = x − �

2
s, (6.3)

and using the orthonormality of the Hermite functions, from (6.2) one gets

∫+∞

−∞
dx

∫+∞

−∞
dv fnn′(x, v)f∗

mm′(x, v) = 2πδnmδn′m′ , (6.4)

which represents the orthonormality relation for the functions fnn′(x, v).

6.2. Closure

To prove that the set {fnn′(x, v)} satisfies closure relation, we write

∑

nn′
fnn′(x, v)f∗

nn′
(

x′, v′)

=
∑

nn′

∫+∞

−∞
dseısve−(x+(�/2)s)

2/2e−(x−(�/2)s)
2/2

× Hn(x + (�/2)s)√
π1/22nn!

Hn′(x − (�/2)s)√
π1/22n′n′!

·
∫+∞

−∞
ds′e−ıs

′v′e−(x
′+(�/2)s′)2/2e−(x

′−(�/2)s′)2/2Hn(x′ + (�/2)s′)√
π1/22nn!

Hn′(x′ − (�/2)s′)√
π1/22n′n′!

.

(6.5)

Applying the closure relation of the Hermite functions, from (6.5), one gets

∑

nn′
fnn′(x, v)f∗

nn′
(

x′, v′) = 2πδ
(

x − x′)δ
(

v − v′), (6.6)

which expresses the closure relation. The set {fnn′(x, v)}, which is orthonormal and complete,
constitutes a basis of the space S2.

7. Functions of the Space S2 and Solutions of
the Quantum Liouville Equation

Consider an arbitrary function f(x, v, t) ∈ S2. Its expansion in terms of basis vectors fnn′(x, v)
is given by

f(x, v, t) =
∑

nn′
Ann′(t)fnn′(x, v) =

∑

nn′
Ann′(t)

∫+∞

−∞
ds eısvSn

(

x +
�

2
s

)

Sn′

(

x − �

2
s

)

, (7.1)

where the coefficients Ann′(t) are complex numbers.
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It is useful noting that (5.1) and (5.2) determine some properties of the coefficients
Ann′ . In fact, using condition (5.1) in (7.1), one gets

∫+∞

−∞
dx

∫+∞

−∞
dv

∑

nn′
Ann′(t)

∫+∞

−∞
ds eısvSn

(

x +
�

2
s

)

Sn′

(

x − �

2
s

)

= 1, (7.2)

which determines

∑

nn′
Ann′(t)

∫+∞

−∞
ds

∫+∞

−∞
dv eısv

∫+∞

−∞
dxSn

(

x +
�

2
s

)

Sn′

(

x − �

2
s

)

= 2π
∑

nn′
Ann′(t)

∫+∞

−∞
ds δ(s)

∫+∞

−∞
dxSn

(

x +
�

2
s

)

Sn′

(

x − �

2
s

)

= 2π
∑

nn′
Ann′(t)

∫+∞

−∞
dxSn(x)Sn′(x) = 2π

∑

nn′
Ann′(t)δnn′ = 2π

∑

n

Ann(t) = 1.

(7.3)

Analogously, using (5.2) and (7.1), we get

∫+∞

−∞
dx

∫+∞

−∞
dv

∣

∣f(x, v, t)
∣

∣

2 = 2π
∑

nn′
|Ann′(t)|2 <∞. (7.4)

From (7.3) and (7.4) it results that the following conditions hold:

2π
∑

n

Ann(t) = 1

2π
∑

nn′
|Ann′(t)|2 <∞.

(7.5)

Consider again the expansion (7.1) which holds for an arbitrary function f(x, v, t) ∈ S2.
Now we introduce another hypothesis for the coefficients Ann′(t), that is, we suppose that
the matrix A(t) = ‖Ann′(t)‖ can be put in diagonal form in L2 (L2 is the space which contains
the square-integrable Schrödinger functions). If D is the matrix which diagonalizes A(t), it
results

D−1A(t)D = AD(t) (7.6)

with

AD
nn′(t) =

⎧

⎨

⎩

AD
nn(t), (n = n′),

0, (n/=n′).
(7.7)

This transformation induces in L2 the basis change

Sn(x) = DPn(x) (7.8)
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where Pn(x) are the vectors belonging to the new basis. The matrix elements of
‖Ann′(t)‖ represent in the space S2 the coefficients of the expansion (7.1) on the basis
vectors {fnn′(x, v)}. The diagonalization defined by (7.6) induces within the space S2 the
transformation

fnn′(x, v) −→ gnn′(x, v) (7.9)

with

gnn′(x, v) =
∫+∞

−∞
ds eısvPn

(

x +
�

2
s

)

P ∗
n′

(

x − �

2
s

)

. (7.10)

By following a procedure similar to that used for the set {fnn′(x, v)} it is easy to verify
that the functions gnn′(x, v) satisfy relations both of ortonormality and closure. Therefore they
constitute a new basis of S2. Equation (7.1) then becomes

f(x, v, t) =
∑

nn′
AD
nn′(t)δnn′gnn′(x, v) =

∫+∞

−∞
ds eısv

∑

n

λn(t)ρn(x, s), (7.11)

where we set

λn(t) = AD
nn(t),

ρn(x, s) = Pn
(

x +
�

2
s

)

P ∗
n

(

x − �

2
s

)

.
(7.12)

Now we define the density matrix

ρ(x, s, t) =
∑

n

λn(t)ρn(x, s). (7.13)

Using (7.13) in (7.11) allows to write

f(x, v, t) =
∫+∞

−∞
ds eısvρ(x, s, t). (7.14)

Equation (7.14) indicates that any function f(x, v, t) ∈ S2, whose matrix ‖Ann′(t)‖ is
diagonalizable, may be expressed as Fourier transform of a density matrix and then it verifies
the Heisenberg uncertainty relation given in (4.22).

8. Conclusions

The quantum Liouville equation allows to deal with a quantum system using methods and
tools of the statistic mechanics. This equation is derived from a typical quantum equation,
that is the Schrödinger equation. In order to characterize the set of solutions of the quantum
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Liouville equation which satisfy the Heisenberg uncertainty principle we investigated both
the Schrödinger equation and the quantum Liouville equation. So, we recalled that an
arbitrary solution ψ(x) of the Schrödinger equation, because of its expansibility in plane
waves,

ψ(x) =
1√
2π

∫+∞

−∞
dk ψ(k)eıkx, (8.1)

verifies the inequality

Δ ̂XΔ ̂P ≥ �

2
, (8.2)

where ̂X and ̂P are observables which satisfy the commutation rule

[

̂X, ̂P
]

= ı�. (8.3)

Afterwards we investigated the Heisenberg inequality with reference to the quantum
Liouville equation. We studied three different cases. Initially a particular solution of the
quantum Liouville equation has been considered, this solution being the Wigner transform
f(x, v, t) of an arbitrary wave function ψ(x, t). So, we found that the product of the
variances Δx and Δv, which are defined within a two-dimensional phase space, verifies
the Heisenberg uncertainty relation. Then we considered a more general case: the quantum
Liouville equation has been resolved by using the Fourier transform of the density matrix of
an arbitrary quantum state. This allows to deal with states which cannot be represented by a
wave function. The expressions obtained for the variances Δx and Δv verify the Heisenberg
relation and allow to extend the result obtained for the pure state case to the statistical mixture
of states. Finally, we showed that an arbitrary function f(x, v, t) ∈ S2 admits the following
expansion:

f(x, v, t) =
∑

nn′
Ann′(t)

∫+∞

−∞
ds eısvSn

(

x +
�

2
s

)

Sn′

(

x − �

2
s

)

, (8.4)

and this expression can be written as Fourier transform of a density matrix provided that the
matrix ‖Ann′(t)‖ is diagonalizable.

In conclusion we applied an alternative procedure, based on the use of the Hermite
functions, to characterize the solutions of the quantum Liouville equation which verify the
Heisenberg uncertainty relation.
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