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1. Introduction

1.1. Reduction of the Biharmonic Dynamics System to
the Duffing Equation

As is well known, nonlinear systems can perform a chaotic motion under the action of
periodic forces [1–4]. Frequently the Duffing equation is used to illustrate chaos [1–4], and
the chaotic behavior of various forms of the Duffing equation [5], some of which exhibit two-
frequency excitation [6] as well as the chaotic motion of Duffing system with bounded noise
[7] have been investigated. However the Duffing equation in the expanded (generalized)
form has many mechanical applications and it can be interesting to researchers.

In this paper, we will study periodically driven biharmonic dynamic system with a
damping force:

θ̈ = a sin θ + b sin 2θ + ε
(
a1 sin θ + b1 sin 2θ + c

)
cosωt − δθ̇, (1.1)

where ε and δ are assumed to be small positive parameters; ω > 0 is the frequency of the
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external force; and a, a1, b, b1, and c are coefficients. The terms in ε and in δ in (1.1) can be
considered as small perturbations.

If ε = 0 and δ = 0, then the periodic and the damping force are absent, and we have
the conservative system describing the motion of the undisturbed biharmonic oscillator as

θ̈ = a sin θ + b sin 2θ. (1.2)

We will show that (1.1) is equivalent to the Duffing equation for small values of θ. It is known
that

sinx = x − x
3

3!
+ · · · (x = θ, 2θ), (1.3)

and (1.1) can be written as

θ̈ − a
(
θ − θ

3

3!

)
− b

[
2θ − (2θ)3

3!

]
= ε

{
a

(
θ − θ

3

3!

)
+ b

[
2θ − (2θ)3

3!

]
+ c

}
cosωt − δθ̇ + · · · .

(1.4)

If the variable θ is a small of order ε, then we have the Duffing equation

θ̈ + λθ + μθ3 = ε(c − λθ) cosωt − δθ̇ +O
(
ε4), (1.5)

where λ = −(a + 2b), μ = (a + 8b)/3!.

1.2. Mechanical Applications

The disturbed system (1.1) has applications in space flight mechanics when studying a
problem of a spacecraft motion about its center of mass in the atmosphere. Atmospheric re-
entry is a critical phase for space vehicles. Dynamic stability issues play a crucial role for the
success of their mission. For effective breaking while descending in the rarefied atmosphere
of Mars or Titan we can compensate blunt-shaped spacecrafts by a small increase in length [8–
11]. We will consider blunt-shaped spacecraft. An aerodynamic restoring moment strongly
influences the motion of the spacecraft relative to the center of mass. The aerodynamic
restoring moment coefficient for an axisymmetric rigid body can be written as [12, 13]

mθ(θ) = mO(θ) + cn(θ)xc, (1.6)

where θ is the spatial angle of attack (θ is defined as the angle between symmetry axis and
the velocity of the spacecraft V , Figure 1), mO is the pitching moment coefficient concerning
the leading edge body, cn is the normal force coefficient, xc = xc/L is the nondimensional
coordinate of the center of mass, and L is aerodynamic reference length (shield diameter).
Such spacecrafts can have three positions of equilibrium according to the angle of attack
θ: stable position at the points θ∗ = 0 and θ∗ = π ; and unstable in the third intermediate
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Figure 1: A blunt-shaped spacecraft.

point θ∗ ∈ (0, π) [12, 13]. The restoring moment can be approximated as the biharmonic
dependence (Figure 1)

mθ = a sin θ + b sin 2θ. (1.7)

The presence of the second harmonic in (1.7) causes the possibility of appearance of
an additional equilibrium position—saddle point on a phase portrait. For the considered
spacecrafts position, θ = 0 is stable; therefore, a derivative of the function mθ(θ) with respect
to the angle of attack θ at this point is negative:

m′θ
∣∣
θ=0 = (a cos θ + 2b cos 2θ)

∣∣
θ=0 < 0 (1.8)

or

2b < −a, (1.9)

and if there exists an intermediate position of equilibrium inside the interval of (0, π), then

mθ(θ) = sin θ(a + 2b cos θ) = 0, (1.10)

which holds true, if

|2b| > |a|. (1.11)

It is obvious that (1.9) and (1.10) are valid simultaneously when b < 0. Note that the
dependence of mθ(θ) given in Figure 1 satisfies conditions (1.9) and (1.10).

The stable position occurs not only in the point of θ = 0 but also in the point of θ = π
when (1.9) for the spacecraft is fulfilled. The motion of the spacecraft in a neighborhood of
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θ = π cannot be allowed, because in this case the back part of the spacecraft will move toward
to an approach flow.

The aerodynamic restoring moment can be written by

Mθ = mθ(θ)qSL, (1.12)

where S is reference surface and q is the dynamic pressure. Disturbance will simulate periodic
change of position of the center of mass

xc = xc0 + ε cosωt, (1.13)

where xc0 is an initial position of the center of mass. Using expression (1.6), we represent the
aerodynamic restoring moment as

Mθ = A sin θ + B sin 2θ + ε(A sin θ + B sin 2θ) cosωt. (1.14)

Thus, the planar motion of the spacecraft about the center of mass can be described by

Iθ̈ = A sin θ + B sin 2θ + ε(A sin θ + B sin 2θ) cosωt +Md, (1.15)

where I is the transverse moment of inertia,Md = −δ1θ̇ is small damping moment. Obviously,
the equation of spacecraft motion (1.15) corresponds to the biharmonic dynamics system (1.1)
at c = 0 up to constants.

Let us observe, that the undisturbed equation (1.2) describes the motion of a known
mechanical system—a heavy material point on a circle, rotating about a vertical axis [14]

θ̈ = a sin θ + b sin 2θ
(
a = −

g

l
, b = Ω2 > 0

)
, (1.16)

where g is the gravitational acceleration, l is the radius of the circle and Ω is the angular
velocity of the circle.

1.3. Aim and Structure of the Article

Let conditions (1.9) and (1.11) be satisfied, and let there be three positions of equilibrium.
In this case, we find three regions in the phase portrait separated by separatrixes. Under the
effect of disturbances the phase trajectory θ̇ = θ̇(θ) can repeatedly intersect the separatrixes,
thus moving from one an area to another, is accompanied by a jump change of the variable
θ. We can observe chaos. It is an accepted fact in the theory of nonlinear dynamic systems
that knowledge of the stable and unstable manifolds of hyperbolic equilibrium or hyperbolic
periodic orbits may play a crucial role in understanding many issues of dynamics [1, 2]. For
many dynamic systems, the only general way of studying such stable and unstable manifolds
is computing them numerically. However, in some cases we can obtain analytic solutions.

The aim of this paper is to analyze the motion of the disturbed system (1.1) near
the undisturbed separatrixes and to define the boundaries of chaos. We will carry out
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the theoretical studies by means of the Melnikov method [15]. The Melnikov method
is an analytical tool used to determine to first order, the existence of homo/heteroclinic
intersections and so chaotic behavior. The Melnikov method allows us to obtain a necessary
condition for the existence of chaos, therefore, numerical simulation is needed to confirm the
predicted behavior and to give a deeper understanding of the global dynamics of the system.
We will show that our theoretical results are in good agreement with the results of numerical
calculations.

The present paper is structured in the following way. Section 2 gives the analysis of
the unperturbed motion of the biharmonic dynamics system (1.1) and the phase portrait.
On the phase portrait characteristic regions of the possible motions are found and for these
areas the analytical solutions of the equation of the unperturbed motion are obtained. The
main features of the phase space of the unperturbed system are defined. In Section 3 the
Melnikov criterion for the perturbed system is analytically calculated for various areas of
the phase portrait with help of the theory of residues. In Section 4 the Melnikov criterion is
numerically calculated for various areas of a phase portrait for the case of disturbed motion
of the spacecraft. By means of computer numerical simulations of the disturbed motion, we
use several numerical techniques to check the validity of the analytical criterion for chaos
obtained using Melnikov method.

2. The Unperturbed Solutions

The ε and δ terms in (1.1) are considered as small perturbations. If ε = 0 and δ = 0, then
periodic and dissipation forces are absent, and we have the conservative system (1.2). It is
obvious that if b = 0 or a = 0 (replacement of variables ϕ = 2θ) we have the equation of a
mathematical pendulum. However, if (1.9) and (1.11) are satisfied (b < 0), then biharmonic
dynamic system has a more complicated phase portrait in comparison with the mathematical
pendulum or with the heavy material point on a circle (1.16). The equilibrium positions of
the system (1.2) are defined from (1.10). If (1.9) and (1.11) are satisfied, then the undisturbed
system (1.2) has four equilibrium positions at θ ∈ [−π,π]: two stable—center type

θ = 0, π (2.1)

and two unstable—saddle type

θ∗ = ± arccos
(
− a

2b

)
, (2.2)

where b < 0. The center θ∗ = −π coincides with the center θ∗ = π . At θ∗ → −π and at θ∗ → π
the speeds θ̇ coincide, therefore we can say, that phase trajectories are closed on a cylindrical
phase space. We will consider the evolution of the cylindrical space in the range θ ∈ [−π,π].
We will separate two regions A0 and A1, divided by the two saddles s1 and s−1 (Figure 2). It
is necessary to note, that the region A1 of the development of the cylinder undergoes a break
at θ = π,−π . From (2.2) it follows, that if the coefficient a is equal 0, the saddle s1 is in the
position: θ∗ = π/2. At positive values of the coefficient a > 0 the saddle s1 belongs to the
interval: θ∗ ∈ (0, π/2), and at negative values a < 0 the saddle s1 belongs to the interval:
θ∗ ∈ (π/2, π) (Figure 2).
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Figure 2: The potential energy W(θ) = a cos θ + b cos2θ and the phase space for a = 1, b = −1.

The following energy integral corresponds to (1.2):

1
2
θ̇2 + a cos θ + b cos2θ = E, (2.3)

where E is total energy. The biharmonic oscillator as well as the mathematical pendulum can
perform oscillations and rotation. The shape of the phase portrait depends on the potential
energy:

W(θ) = a cos θ + b cos2θ. (2.4)

The centers (2.1) correspond to the minimum of the potential energy (2.4), and the saddles
(2.2)—to the maximum of the potential energy (2.4). If E > W∗, where W∗ = W

(
θ∗), then the

motion is possible in the outer regions (Figure 2). In the opposite case (E < W∗) the motion
can occur in any of the inner regions, depending on initial conditions. The equality E = W∗
corresponds to the motion along separatrixes. In this case, the two saddles s1 and s−1 are
connected by four heteroclinic trajectories.

First of all, we will consider the separatrixes, limiting the region A0. Separating the
variables in the energy integral (2.3), and taking into account (2.2) and (2.4), the equation of
the motion on the separatrixes can be written as in the integrated form

t − t0 =
∫θ

θ0

dθ
√

2
[
W

(
θ∗
)
− a cos θ − b cos2θ

] , (2.5)

where

W
(
θ∗
)
= a cos θ∗ + b cos2θ∗ = −

a2

4b
. (2.6)
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Substituting the variables:

x = tan
θ

2
, (2.7)

we can rewrite (2.5) as

t − t0 = 2
∫x

x0

dx
√
ψ(x)

, ψ(x) = Px4 + Cx2 +A, (2.8)

where P = 2[W(θ∗) + a − b], C = 4[W(θ∗) + b], A = 2[W(θ∗) − a − b].
The integral (2.8) can be simplified [16]

t − t0 =
2√
P

∫x

x0

dx

x2
∗ − x2

=
2√
P

ln
∣
∣∣∣
x∗ + x
x∗ − x

∣
∣∣∣

∣
∣∣∣

x

x0

, (2.9)

where x∗ = tan(θ∗/2) and P = 2[W(θ∗) + a − b] = −(a − 2b)2/2b > 0 and conditions (1.9) and
(1.11) are satisfied.

Finally, using the change of variables (2.7) and (2.9), the solution of (1.2) for the
heteroclinic orbits, for the region A0 (Figure 2), can be written as

θ+(t) = 2 arctan
[

tan
θ∗
2

tanh
(
λt

2

)]
, σ+(t) = (θ̇) =

λ sin θ∗
cosh(λt) + cos θ∗

,

[
θ−(t), σ−(t)

]
=
[
− θ+(t),−σ+(t)

]
,

(2.10)

where

λ = tan
θ∗
2

√
P =

√
a2 − 4b2

2b
. (2.11)

Now we will consider the region A1, including the center c1. Let us make a substitution to the
new variable

β = π − θ (2.12)

in the equation of undisturbed motion (1.2) and obtain the following equation

β̈ = −a sin β + b sin 2β. (2.13)

Computing as in (2.3)–(2.9), we obtain the solution of this equation in the form

β = 2 arctan
{

tan
β∗
2

tanh
[
λ
(
t − t0

)

2

]}
, (2.14)
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where β∗ = π −θ∗. Then, coming back to the variable θ with help of (2.11), we will receive the
equation of the heteroclinic orbits, bounding the region A1, including the center c1 (Figure 2):

θ+(t) = π − 2 arctan
[

cot
θ∗
2

tanh
(
λt

2

)]
, σ+(t) = (θ̇) =

λ sin θ∗
cosh(λt) − cos θ∗

,

[
θ−(t), σ−(t)

]
=
[
2π − θ+(t),−σ+(t)

]
.

(2.15)

3. Chaotic Motion. The Melnikov Criterion

3.1. General Positions

Now we set the stage for our study of the disturbed system (1.1). The stable and unstable
manifolds do not necessarily coincide and it is possible that they can cross transversally
leading to an infinite number of new heteroclinic points. Then, a heteroclinic tangle is
generated. In this case, because of the perturbation, the motion of the system (1.1), near the
unperturbed separatrices, becomes chaotic. Inside this chaotic layer small isolated regions of
regular motion with periodic orbits can also appear. The existence of heteroclinic intersections
may be proved by means of the Melnikov method [15]. We present a more convenient form
the for application of Melnikov method to the disturbed nonautonomous equation of the
second order (1.1) as three differential autonomous equations of the first order [2]:

θ̇ = σ = f1 + g1,

σ̇ = a sin θ + b sin 2θ + ε
(
a1 sin θ + b1 sin 2θ + c

)
cosφ − δσ = f2 + g2,

φ̇ = ω,

(3.1)

where

f1 = σ, g1 = 0, f2 = a sin θ + b sin 2θ,

g2 = ε
(
a1 sin θ + b1 sin 2θ + c

)
cosφ − δσ.

(3.2)

The Melnikov function [2] for system (3.1) is given by

M±(t0, φ0
)
=
∫∞

−∞

{
f1
[
q0
±(t)

]
g2
[
q0
±(t), ωt +ωt0 + φ0

]
− f2

[
q0
±(t)

]
g1
[
q0
±(t), ωt +ωt0 + φ0

]}
dt

=
∫∞

−∞

{
f1
[
q0
±(t)

]
g2
[
q0
±(t), ωt +ωt0 + φ0

]}
dt,

(3.3)

where q0
±(t) = [θ±(t), σ±(t)] are the solutions of the undisturbed heteroclinic orbits (2.10) or

(2.15) for the areas A0 or A1.
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3.2. Case 1 (a1 = 0, b1 = 0, c = 1)

The disturbed system (3.1) in this case takes the form

θ̇ = σ = f1 + g1,

σ̇ = a sin θ + b sin 2θ + ε cosφ − δσ = f2 + g2,

φ̇ = ω,

(3.4)

where

f1 = σ, g1 = 0, f2 = a sin θ + b sin 2θ, g2 = ε cosφ − δσ. (3.5)

Substituting (3.5) into (3.3) gives

M±(t0, φ0
)
=
∫∞

−∞
σ±

{
ε cos

(
ωt +ωt0 + φ0

)
− δσ±

}
dt

= ε
∫∞

−∞
σ± cos

(
ωt +ωt0 + φ0

)
dt − δ

∫∞

−∞

(
σ±

)2
dt =Mε +Mδ,

(3.6)

where Mε and Mδ are the functions corresponding to both perturbations: the external
periodic force (ε cosωt) and the damping force (−δθ̇), respectively. The Melnikov function
describes the splitting of the stable and unstable manifolds of the disturbed hyperbolic fixed
points defined on the cross-section. Thus, there are transverse intersections between the stable
and unstable trajectories, if M±(t0) = 0.

Firstly we consider the functions M(0)
δ

and M
(0)
ε for the area A0, including the center

c0 (Figure 2). Substituting (2.10) into (3.6) gives

M
(0)
δ = −δ

∫∞

−∞

(
σ±

)2
dt = −δ sin2θS

∫∞

−∞

dt
[

cosh(λt) + cos θ∗
]2
,

M
(0)
ε

(
t0, φ0

)
= ε

∫∞

−∞
σ± cos

(
ωt +ωt0 + φ0

)
dt = ελ sin θS

∫∞

−∞

cos
(
ωt +ωt0 + φ0

)

cosh(λt) + cos θ∗
dt.

(3.7)

So using the tabulated integrals [16, 17], for the integrals (3.7) we obtain the following
expressions

M
(0)
δ

= −2δλ
(
1 − θ∗ cot θ∗

)
,

M
(0)
ε

(
t0, φ0

)
= 2επ

sinh
(
θ∗(ω/λ)

)

λ sin
(
θ∗
)

sinh
(
π(ω/λ)

) cos
(
ωt0 + φ0

)
=M(0)

ε max cos
(
ωt0 + φ0

)
.

(3.8)
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Similar expressions can be obtained for M(1)
δ and M

(1)
ε for the region A1, including the center

c1 (Figure 2), using the solutions (2.15)

M
(1)
δ

= −δ
∫∞

−∞

(
σ±

)2
dt = −δ sin2θ∗

∫∞

−∞

dt
[

cosh(λt) − cos θ∗
]2
,

M
(1)
ε

(
t0, φ0

)
= ε

∫∞

−∞
σ± cos

(
ωt +ωt0 + φ0

)
dt = ελ sin θS

∫∞

−∞

cos
(
ωt +ωt0 + φ0

)

cosh(λt) − cos θ∗
dt,

(3.9)

or

M
(1)
δ

= −2δλ
[
1 +

(
π − θ∗

)
cot θ∗

]
,

M
(1)
ε

(
t0, φ0

)
= 2επ

sinh
[(
π − θ∗

)
(ω/λ)

]

λ sin
(
θ∗
)

sinh(π(ω/λ))
cos

(
ωt0 + φ0

)
=M(1)

ε max cos
(
ωt0 + φ0

)
,

(3.10)

where M(1)
ε max and M

(2)
ε max are measures of the maximum splitting of the stable and unstable

manifolds, when the disturbed system (3.4) is only under the action of the one perturbation
the external periodic force (ε cosωt) for the regions A0 and A1, respectively.

Obviously, at a = 0 the undisturbed biharmonic oscillator (1.2) is transformed to the
simpler system: θ̈ = sin 2θ. The regions A0 and A1 are equal. From (2.2), (2.10), and (2.15),
we obtain

θ∗ =
π

2
, λ =

√
−2b. (3.11)

Following the expressions (3.8)–(3.10), the Melnikov function becomes identical for the
regions A0 and A1:

M±(t0, φ0
)
=Mδ +Mε

(
t0, φ0

)
= −2δλ + ε

π

λ
sech

(
π

2
ω

λ

)
cos

(
ωt0 + φ0

)
. (3.12)

From (3.8)–(3.10), it is easy to see that the conditions for the manifolds to intersect in
terms of the parameters (δ, ε) is given by

δ <

[
π sinh

(
θ∗(ω/λ)

)

λ2
(
1 − θS cot θ∗

)
sin

(
θ∗
)

sinh(π(ω/λ))

]
ε

(
for the area A0

)
,

δ <

{
π sinh[

(
π − θ∗

)
(ω/λ)]

λ2
[
1 +

(
π − θ∗

)
cot θ∗

]
sin

(
θ∗
)

sinh(π(ω/λ))

}
ε

(
for the area A1

)
.

(3.13)

Let us define a new parameter of the damping force, divided into amplitude of external force:

Δ =
δ

ε
, (3.14)
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Figure 4: The criteria Δj as functions of the frequency ω.

then conditions (3.13) are given by

Δ <
π sinh

(
θ∗(ω/λ)

)

λ2
(
1 − θ∗ cot θ∗

)
sin

(
θ∗
)

sinh(π(ω/λ))
= Δ0

(
for the area A0

)
,

Δ <
π sinh

[(
π − θ∗

)
(ω/λ)

]

λ2
[
1 +

(
π − θ∗

)
cot θ∗

]
sin

(
θ∗
)

sinh(π(ω/λ))
= Δ1

(
for the area A1

)
.

(3.15)

Let us note, that θ∗ and λ, according to (2.2) and (2.11), depend on coefficients a and b,
therefore criteria (3.15) are functions of the parameters a, b, and ω

Δj = Δj(a, b,ω), j = 0, 1. (3.16)

The criteria (3.16) define chaotic behavior of the perturbed system (3.4) in the regions A0 and
A1. In Figure 3, we graph these criteria and the variable θ∗ as functions of parameter a for
the fixed parameter b = −1 and ω = 1. Figure 4 shows the criteria (3.16) as functions of the
frequency ω.
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3.3. Case 2 (a1 /= 0, b1 /= 0, c = 0)

The disturbed system (3.1) in this case takes the form of

θ̇ = σ = f1 + g1,

σ̇ = a sin θ + b sin 2θ + ε
(
a1 sin θ + b1 sin 2θ

)
cosφ − δσ = f2 + g2,

φ̇ = ω,

(3.17)

where f1 = σ, g1 = 0, f2 = a sin θ + b sin 2θ, g2 = ε(a1 sin θ + b1 sin 2θ) cosφ − δσ,

M±(t0, φ0
)
=
∫∞

−∞
σ±

[
ε
(
a1 sin θ± + b1 sin 2θ±

)
cos

(
ωt +ωt0 + φ0

)
− δσ±

]
dt (3.18)

or

M±(t0, φ0
)
=Mε +Mδ, (3.19)

where

Mε = ε
∫∞

−∞
σ±

(
a1 sin θ± + b1 sin 2θ±

)
cos

(
ωt +ωt0 + φ0

)
dt,

Mδ = −δ
∫∞

−∞

(
σ±

)2
dt.

(3.20)

For the two regions A0 and A1 the functions (3.20) can be represented as

M
(k)
ε = −εI(k)± sin

(
ωt0 + φ0

)
,

M
(k)
δ = −δJ(k)± , k = 0, 1,

(3.21)

where

I
(k)
± =

∫∞

−∞
σ
(k)
±

(
a1 sin θ(k)± + b1 sin 2θ(k)±

)
sin(ωt)dt, (3.22)

J
(k)
± =

∫∞

−∞

(
σ
(k)
±

)2
dt. (3.23)

It is obvious that using (3.8) integrals (3.23) can be rewritten as

J
(0)
± = 2λ

(
1 − θ∗ cot θ∗

)
, J

(1)
± = 2λ

[
1 +

(
π − θ∗

)
cot θ∗

]
, (3.24)
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The improper integral (3.22) in view of (2.10) and (2.15) is calculated numerically. For
parameter (3.14) the conditions for the manifolds to intersect are given by

Δ <
I
(0)
±

J
(0)
±

= Δ0
(
for the area A0

)
,

Δ <
I
(1)
±

J
(1)
±

= Δ1
(
for the area A1

)
.

(3.25)

Criteria (3.25) define behavior of the perturbed system (3.17) in a vicinity of separatrixes.

4. Numerical Analysis

We have analyzed the evolution of the dynamical behavior of the disturbed system (1.1)
as the parameters vary, studying the time histories of the variable θ and its derivative
θ̇. Numerical techniques are based on the numerical integration of the equation of the
disturbed motion (1.1) implementing a fixed-step fourth-order Runge-Kutta algorithm. For
all numerical calculations the following biharmonic force parameters were used: a = 1,
b = −1 and the frequency of the perturbed force was ω = 1. For the numerical analysis of
the disturbed system (3.1) we use the P Poincaré cross-section method, examining manifolds
with plane sections, perpendicular to the phase axis φ in the two-dimensional space (θ, θ̇),
divided with an interval of 2π . It allows us to study the disturbed system (3.1) using a discrete
phase instead of examining the continuous dynamics of the system. At ε = 0, δ = 0 the regular
structure of phase space is observed, trajectories have no intersections, and Poincaré sections
coincide with undisturbed phase portrait (Figure 5).

Disturbances (ε /= 0) result in the complication of phase space and the occurrence of
a chaotic layer near the undisturbed separatrixes (Figures 6–9). Figures 6 and 7 contain
Poincaré sections for the case considered in Section 3.2, and in Figures 8 and 9—in Section 3.3.
The growth of disturbances there leads to an increase in the width of the chaotic layer, and
the new oscillatory modes determined by closed curves, uncharacteristic for the undisturbed
case are observed.

In the presence of damping phase trajectories eventually tended to reach steady
positions of equilibrium of the undisturbed system (Figures 10, 11).

In order to check in a quantitative way the validity of the analytic criteria (3.15) we
focus on the evolution of the stable and unstable manifolds associated to the saddle fixed
points. Parameters a = 1, b = −1 and the frequency ω = 1 in expressions (3.15) give a critical
value for the regions A0 and A1:

Δ0 = 0.9115, Δ1 = 0.4530, (4.1)

or critical values of the coefficients of a damping force for ε = 0.02:

δ0 = εΔ0 = 0.01823, δ1 = εΔ1 = 0.00906. (4.2)
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Figure 5: Poincaré sections for ε = 0, δ = 0.
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Figure 6: Poincaré sections in the case of a1 = 0, b1 = 0, c = 1 for ε = 0.01, δ = 0.
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Figure 7: Poincaré sections in the case of a1 = 0, b1 = 0, c = 1 for ε = 0.02, δ = 0.
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Figure 8: Poincaré sections in the case of a1 = 1, b1 = −1, c = 0 for ε = 0.01, δ = 0.
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Figure 9: Poincaré sections in the case of a1 = 1, b1 = −1, c = 0 for ε = 0.02, δ = 0.
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Figure 10: Poincaré sections in the case of a1 = 0, b1 = 0, c = 1 for ε = 0.02, δ = 0.0001.
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Figure 11: Poincaré sections in the case of a1 = 1, b1 = −1, c = 0 for ε = 0.02, δ = 0.0001.

Figure 12 shows numerical simulations of the phase space with initial conditions close to the
undisturbed separatrix (θ0 = −1.0572, θ̇0 = 0.01, φ0 = π/10) for the region A0. Now, we reset
the value of δ from δ0 = 0.01823 to greater ones (see Figure 12). It can be observed clearly that,
for δ < δ0 (δ = 0.018), the stable and unstable manifolds transversally intersect each other
(Figure 12(a)). However, when δ > δ0 (δ = 0.020), the invariant manifolds do not intersect
(Figure 12(b)).

Similar results for the region A1 are shown in Figure 13 (δ1 = 0.00906) for the
following initial conditions: θ0 = 0.9472, θ̇0 = 0.2, φ0 = π . Figure 13(a) δ < δ1 (δ = 0.0090).
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Figure 12: Evolution of stable and unstable manifolds as a function of the damping force coefficients δ for
a = 1, b = −1, ε = 0.02, ω = 1 and two different values of δ close to the critical value δ0 = 0.01823. (a)
δ = 0.018 (b) δ = 0.020, with following initial conditions: θ0 = −1.0572, θ̇0 = 0.01, φ0 = π/10 for the area A0.

Figure 13(b) δ > δ1 (δ = 0.0113). Thus the description, based on numerical simulations for
some certain parameter values, makes a good match with the analytic criteria (3.15) provided
by Melnikov method.

5. Conclusion

This work attempts to describe the transient cases occurring during a spacecraft descent in a
planet atmosphere using methods of chaotic mechanics, in particular, the Melnikov method.
We have suggested to introduce the concept of a biharmonic system (1.1) which reflects the
behavior of the spacecrafts, and also, probably, more general mechanical systems. We have
established the existence of transient heteroclinic chaos by means of the Melnikov method.
Moreover, this method has provided an analytic criterion for the existence of chaotic behavior
in terms of the system parameters. We have found a transition from chaotic to regular regime
in the motion of the biharmonic oscillator, as the heteroclinic chaos can be removed by
increasing the coefficient of a damping force. The analytic results given by the Melnikov
method have been confirmed by a good match with the numeric research.
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Figure 13: Evolution of stable and unstable manifolds as a function of the damping force coefficients δ for
a = 1, b = −1, ε = 0.02, ω = 1 and two different values of δ close to the critical value δ1 = 0.00906. (a)
δ = 0.0090 (b) δ = 0.0113, with following initial conditions: θ0 = 0.9472, θ̇0 = 0.2, φ0 = π for the area A1.
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