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1. Introduction

Let P denote the regular wreath product group C � Q, where Q is an arbitrary nontrivial
finite p-group, for some prime p, and where C is an any finite cyclic p-group. Thus P is the
semidirect product B � Q, where B is a direct product of |Q| copies of C, and where Q acts
via automorphisms on B by regularly permuting these direct factors.

In [1], Houghton determines some information on the structure of the automorphism
group Aut(P). Using this work of Houghton (see also [2, Chapter 5]), it is possible to
calculate the order of Aut(P). Our first result in this paper is to present an alternative
method for calculating the order of Aut(P). Our approach to this calculation is to apply the
Automorphism Counting Formula (established in [3]), a general formula for the order of the
automorphism group Aut(G) of a monolithic finite group G in terms of information about
the complex characters of G and information about how G is embedded as a subgroup of a
particular finite general linear group. A finite group is said to be monolithic if and only if it
has a unique minimal normal subgroup. Thus a finite p-group is monolithic if and only if its
center is cyclic. Let |C| = pe and |Q| = pn. Throughout this paper we assume that pen ≥ 3,
which excludes only the case where p = 2 and e = n = 1, for which P is dihedral of order 8.
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Theorem 1.1. Aut(P) has order |Aut(Q)|(p − 1)pa, where a = 2epn − e − 1.

Because the dihedral group of order 8 has an automorphism group of order 8, the
condition pen ≥ 3 is a necessary hypothesis for Theorem 1.1.

The next result is a step along the way to proving Theorem 1.1. We mention it here.

Theorem 1.2. Let q be any prime-power larger than 1 such that pe is the full p-part of q − 1. Then
the general linear group GL(pn, q) has exactly one conjugacy class of subgroups whose members are
isomorphic to P .

Now suppose that the groupQ of order pn is cyclic. Since Aut(Q) has order (p−1)pn−1,
Theorem 1.1 yields |Aut(P)| = (p − 1)2p2ep

n+n−e−2. Using knowledge of |Aut(P)| and little
more than an elementary counting argument, we obtain a useful new characterization of the
automorphisms of P . Before stating this characterization, we establish some notation.

Hypothesis 1.3. Assume that the group Q of order pn is cyclic. Let x0, x1, . . . , xpn−1 be a
collection of elements of order pe that constitutes a generating set for the homocyclic group B
of exponent pe and of rank pn. Let w be a generator for the cyclic group Q and suppose that
xwu = xu−1 for each u ∈ {1, . . . , pn − 1} and that xw0 = xpn−1.

Under Hypothesis 1.3, it is clear that {xpn−1,w} is a generating set for the group P , and
so every automorphism of P is determined by where it maps these two elements.

Neumann [4] has characterized the regular wreath product groups (including infinite
groups) for which the so-called base group is a characteristic subgroup. This general result
of Neumann implies that B is always a characteristic subgroup of P for the particular class of
wreath product groups P considered in this paper. Nevertheless, in our proof of Theorem 1.1
we present our own brief argument (see Step 7) that B is a characteristic subgroup of P . From
this fact it follows that [B, P] is a characteristic subgroup of P .

We are now ready to state the main result of this paper.

Theorem A. Assume Hypothesis 1.3. Then the group B/[B, P] is cyclic of order pe, and therefore
has a unique maximal subgroup which one denotes asD/[B, P], and soD is a characteristic subgroup
of P that satisfies |B : D| = p. Let E denote the set of all elements g ∈ P of order pn that satisfy the
condition P = 〈B, g〉. Then for each pair of elements (a, b) such that a ∈ B−D and b ∈ E, there exists
an automorphism of P that maps xpn−1 to a and maps w to b. Furthermore, every automorphism of P
is of this type.

In the notation of Theorem A, the information that we have about the subgroupD and
the set E makes it clear that every automorphism of P maps the set B −D to itself and maps
the set E to itself. It is not difficult to see that the element xpn−1 belongs to the set B − D and
that the element w belongs to the set E. From this perspective, we might summarize Theorem
A as stating that every mapping that could possibly be an automorphism of P actually is an
automorphism of P .

Theorem A gives us a factorization of A = Aut(P), namely, A = CA(w)CA(x′) with
CA(w) ∩ CA(x′) = 1, where x′ = xpn−1. Houghton’s main result in [1] is a factorization of
A, namely, A = CA(w)I � Q∗ with CA(w) ∩ I = 1, where I denotes the group of inner
automorphisms of P induced by elements of B, and where Q∗ is the image of the usual
embedding of Aut(Q) in A (see [2]). In particular Q∗ ∼= Aut(Q). Since I ⊆ CA(x′), these two
factorizations are the same if and only if Q∗ ⊆ CA(x′). However, Q∗ permutes the elements
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x0, x1, . . . , xpn−1 with x′ = xpn−1 lying in a regular orbit, and so Q∗ ∩ CA(x′) = 1. Hence these
two factorizations are the same if and only if Q∗ = 1, which happens only when |Q| = 2.

We now discuss an application of Theorem A. In [5] we classify up to isomorphism
the nonabelian subgroups of the wreath product group P = Zpe � Zp for an arbitrary prime p
and positive integer e such that pe ≥ 3. In [6] we use the characterization of the elements of
A = Aut(P) that is provided by Theorem A to compute the index |NA(H) : CA(H)| for each
groupH of class 3 or larger appearing in this classification. For each such groupH, we then
observe that this index is equal to the order of the automorphism group Aut(H), from which
we deduce that the group NA(H)/CA(H) is isomorphic to Aut(H), which says that the full
automorphism group Aut(H) is realized inside the group A = Aut(P).

In Section 3 we prove Theorems 1.1 and 1.2. In Section 4 we prove Theorem A. In
Section 2 we discuss some preliminary results used in our proof of Theorem 1.1.

Let Irr(G) denote the set of irreducible ordinary characters of a finite group G.

2. Preliminaries

For each finite group G and prime-power q, let mindeg(G, q) denote the smallest positive
integerm such that the general linear group GL(m, q) contains a subgroup that is isomorphic
to G. Thus mindeg(G, q) is the minimal degree among all the faithful F-representations of
the group G, where F denotes the field with q elements. For any groups H and G such that
H ⊆ G, we have mindeg(H, q) ≤ mindeg(G, q).

Definition 2.1. Let G be a monolithic finite group, let q be a prime-power that is relatively
prime to the order of G, and let m = mindeg(G, q). We say that the ordered triple (G, q,m) is
a monolithic triple in case every faithful irreducible ordinary character of G has degree at least
m. Assuming that (G, q,m) is a monolithic triple, we define F(G, q) to be the set of all faithful
irreducible ordinary characters of G of degree m. We say that the monolithic triple (G, q,m)
is good provided that every value of each character belonging to the set F(G, q) is a Z-linear
combination of complex (q − 1)st roots of unity.

The following is a special case of result that was proved in [3]. We call this result the
Automorphism Counting Formula. It is the key to establishing Theorem 1.1.

Theorem 2.2. Let (G, q,m) be a good monolithic triple. Suppose that Γ = GL(m, q) has a unique
conjugacy class of subgroups whose members are isomorphic to G. LetH be any subgroup of Γ that is
isomorphic to G. Then |Aut(G)|(q − 1) = |F(G, q)| · |NΓ(H)|.

In our proof of Theorem 1.1, the idea is to define a goodmonolithic triple (G, q,m)with
G = P that satisfies the hypothesis of Theorem 2.2. The conclusion of Theorem 2.2 would then
yield |Aut(G)| provided that we know in advance |F(G, q)| and |NΓ(H)|.

Given a monolithic group G, in order to define a good monolithic triple (G, q,m) we
must choose an appropriate prime-power q and then calculate mindeg(G, q). The following
result may be used to calculate mindeg(G, q) for certain groups G and prime-powers q.

Lemma 2.3. Let G be any finite group containing an abelian p-subgroup B of exponent pe and of
rank r, where p is a prime. Let F be any field containing a primitive peth root of unity. If there exists
a faithful F-representation of G of degree r, thenmindeg(G,F) = r.
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Proof. The hypotheses yield mindeg(B, F) ≤ mindeg(G,F) ≤ r. It remains to show that
r ≤ mindeg(B, F). The hypothesis on F implies that every irreducible F-representation of
B has degree 1 and that the characteristic of the field F is not p. Let X be any faithful F-
representation of B, and let n be its degree. ByMaschke’s theorem,X is similar to a faithful F-
representationY consisting of diagonal matrices. LetE be the subgroup of GL(n, F) consisting
of all diagonal matrices of order dividing pe. Then Y(B) ⊆ E while E is homocyclic of
exponent pe and of rank n. Since Y is faithful, indeed Y(B) is an abelian p-group of rank
r. It follows that r ≤ n. Therefore mindeg(B, F) ≥ r, as desired.

One of the hypotheses of Theorem 2.2 is that the general linear group GL(m, q) has
a unique conjugacy class of subgroups whose members are isomorphic to G. The following
result (Lemma 4.5 in [3]) is useful for establishing this condition in certain situations.

Lemma 2.4. Let F be a field containing a primitive peth root of unity, where p is some prime and
e is some positive integer. Let G be any finite group containing an abelian normal p-subgroup B
of exponent pe and of rank r. Then every faithful F-representation of G of degree r is similar to
a representation Y such that Y(B) consists of diagonal matrices and Y(G) consists of monomial
matrices.

Using Theorem 2.2 to calculate the order of the automorphism group Aut(G) for a
given monolithic triple (G, q,m) requires that we know in advance the cardinality of the set
F(G, q) that was defined in Definition 2.1. The following result is helpful for calculating the
cardinality of the set F(G, q) in certain situations.

Lemma 2.5. Let p be a prime and let P be a monolithic finite p-group. One defines the set A = {ψ ∈
Irr(P) | ψ is faithful}. Let n be a nonnegative integer and suppose that every character belonging to
the setA has degree pn. Then |A| = |P |(p − 1)/p2n+1.

Proof. We define the set B = Irr(P) − A. LetN be the unique minimal normal subgroup of P ,
and note that B = {ψ ∈ Irr(P) | N ⊆ kerψ}. Hence the set B may be identified with the set
Irr(P/N). We have |N| = p, and so |P/N| = |P |/p. By Corollary 2.7 in [7], along with the fact
that Irr(P) = A ∪ B is a disjoint union, we deduce that

|P | =
∑

ψ∈A
ψ(1)2 +

∑

ψ∈B
ψ(1)2 = |A|p2n + |P |

p
. (2.1)

Solving this equation for |A|, we obtain the desired conclusion.

Using Theorem 2.2 to calculate the order of the automorphism group Aut(G) for a
givenmonolithic triple (G, q,m) requires that we know in advance the order of the normalizer
of a certain subgroupH in the general linear group GL(m, q). The following result (which is
part of Theorem 4.4 in [3]) is useful for this task in certain situations.

Theorem 2.6. Let Γ = GL(m, q) where q > 1 is any prime-power andm is any positive integer. Let F
be the field with q elements, let F0 be any nontrivial subgroup of the multiplicative group F× = F−{0},
and let E be the group of all diagonal matrices in Γ having the property that each entry along the
diagonal belongs to F0. Let S be the subgroup of Γ consisting of all permutation matrices, and note
that S ∼= Sym(m). Let T be any transitive subgroup of the symmetric group S and letH = E � T . If
E is a characteristic subgroup ofH, then |NΓ(H)| = |NS(T) : T | · |H|(q − 1)/|F0|.
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The following rather specialized result will be used in our proof of Theorem 1.1.

Lemma 2.7. Let p be any prime and let e, n, and j be positive integers such that j ≤ n. Then the
condition epn−j(pj − 1) ≤ j holds if and only if p = 2 and e = n = j = 1.

Proof. First, an easy inductive argument shows that 2j − 1 > j whenever j ≥ 2. Now suppose
that epn−j(pj − 1) ≤ j holds. First we show that j = 1. Assuming instead that j ≥ 2, we get
pj−1 ≥ 2j−1 > j, forcing epn−j(pj−1) > j, a contradiction. Hence j = 1, and so epn−1(p1−1) ≤ 1,
which forces each of the positive integers e, pn−1, and p − 1 to be 1. Therefore e = n = 1 and
p = 2, as desired. The reverse implication is trivial.

The next two results on permutation groups will be used later in this article.

Lemma 2.8. Let H1 and H2 be isomorphic transitive subgroups of order n of the symmetric group
Sym(n). ThenH1 andH2 are conjugate subgroups of Sym(n).

Proof. For each α ∈ Ω = {1, . . . , n} and each x ∈ Sym(n), let α · x denote the image of α under
x. For i ∈ {1, 2}, the maps fi : Hi → Ω defined by fi(x) = 1 ·x are bijections. Let θ : H1 → H2

be an isomorphism. The composition y = f2θf−1
1 : Ω → Ω is an element of Sym(n). It suffices

to show that y−1xy = θ(x) for each x ∈ H1. A straightforward calculation (left to the reader)
yields α · y−1xy = α · θ(x) for arbitrary α ∈ Ω.

Theorem 2.9. Let H be any transitive subgroup of order n in the symmetric group S = Sym(n).
Then the normalizierNS(H) is isomorphic to the holomorphH � Aut(H).

The following basic lemma is needed for our proof of Theorem 2.9.

Lemma 2.10. Let G be a group of permutations of a set Ω, let H be a transitive subgroup of G, and
let C = CG(H). For each α ∈ Ω, the stabilizer subgroup Cα is trivial.

Proof. Let x ∈ Cα. To prove that x = 1, it suffices to show that β · x = β for arbitrary β ∈ Ω,
since G acts faithfully. There exists h ∈ H such that α · h = β. Since x ∈ C, we have hx = xh,
and so β · x = (α · h) · x = α · (hx) = α · (xh) = (α · x) · h = α · h = β.

Proof of Theorem 2.9. Let G be a group that is isomorphic to H. Let V = G � A where A =
Aut(G). First we identify a subgroup D of V that is isomorphic to G and that centralizes G.
The rule x �→ ϕxx

−1 defines an injective homomorphism θ : G → V , where ϕx ∈ A is the
inner automorphism induced by x. Let D = θ(G). For x, y ∈ G, observe that

θ(x)−1yθ(x) =
(
xϕ−1

x

)
y
(
ϕxx

−1
)
= x

(
ϕ−1
x yϕx

)
x−1 = x

(
x−1yx

)
x−1 = y. (2.2)

Next we embed V as a subgroup of S in such a way thatG becomes a transitive (in fact
regular) subgroup of S. Since coreV (A) = 1, the action of V on the setΩ consisting of the right
cosets of A in V is faithful. We now argue that the action of G on Ω is regular. Since |G| = |Ω|,
it suffices to show that each nonidentity element of G fixes no element of Ω. Let x ∈ G and
Av ∈ Ω such that x fixes Av. Thus Avx = Av and so vxv−1 ∈ A. Since x ∈ G � V , we obtain
vxv−1 ∈ A ∩ G = 1, and so x = 1, as desired. Now label the members of Ω as the numbers
1, 2, . . . , n. In this way we regard V as a subgroup of S.
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SinceH and G are isomorphic transitive subgroups of order n in S, by Lemma 2.8 we
may complete the proof by showing that NS(G) = V . Write C = CS(G). Lemma 2.10 implies
that every orbit in the action of C on {1, . . . , n} has size |C|. Hence |C| divides n = |G| = |D|.
But since D centralizes G, we have D ⊆ C. It follows that D = C.

Write N = NS(G). By the N-Mod-C Theorem, the integer |N|/|C| divides |A|, which
says that |N| divides |C| · |A|. Recalling that |C| = |D| = |G|, this says that |N| divides |G| · |A| =
|V |. But since G � V ⊆ S, we have V ⊆N. It follows that V =N.

3. Proof of Theorem 1.1

Let {xu | u ∈ Q} be a collection of elements of order pe that constitutes a generating set for
the homocyclic group B of exponent pe and of rank |Q| = pn. We now define an action of the
group Q on the set {xu | u ∈ Q}. For each pair u, v ∈ Q, we let xvu = xuv, where the product
uv is computed inQ. This action naturally gives rise to an action ofQ via automorphisms on
the group B. Let P = B�Q denote the semidirect product group corresponding to this action.
Let F denote the set consisting of all functions from Q into the additive group Zpe . For each
function f ∈ F, we define the element

x
(
f
)
=
∏

u∈Q
xf(u)u ∈ B. (3.1)

Each element of B has the form x(f) for some unique function f ∈ F. We define the element
z ∈ B of order pe by letting z denote the product of all the elements xu for u ∈ Q.

Step 1. For each subgroup L ofQ, the centralizer CB(L) is equal to the set of all elements x(f)
such that the function f ∈ F is constant on each of the left cosets of L in Q.

Proof. Let T be a transversal for the left cosets of L in Q. For each t ∈ T , observe that the set
{xu | u ∈ tL} is an orbit in the action of L on the set of generators {xu | u ∈ Q} for B.

Step 2. The group P is monolithic, and its center is the cyclic group 〈z〉 of order pe.

Proof. Since B is abelian and the action of Q via automorphisms on B is faithful, the center of
P = B �Q is CB(Q). By Step 1, CB(Q) is the cyclic group generated by the element z. Finally,
since P is a p-group whose center is cyclic, P is indeed monolithic.

Following standard notation (see [7]), we define the inertia subgroup of any character
θ ∈ Irr(B) as the subgroup IP (θ) = {x ∈ P | θx = θ}.

Step 3. For each character θ ∈ Irr(B) such that IP (θ) > B, every irreducible constituent of the
induced character θP is not faithful.

Proof. For each pair of functions f , g ∈ F we define the dot product f · g to be the value

f · g =
∑

u∈Q
f(u)g(u) ∈ Zpe . (3.2)
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Let ε be any primitive complex peth root of unity. For each function g ∈ F, we define the
character ϕg ∈ Irr(B) by ϕg(x(f)) = εf ·g for every function f ∈ F. It is clear that every
irreducible ordinary character of B is of the form ϕg for some function g ∈ F.

Let θ ∈ Irr(B) such that IP (θ) > B. Since ker θP is equal to the intersection of the kernels
of the irreducible constituents of θP , it suffices to show that ker θP > 1. Because P = B�Q, we
have IP (θ) = B � L for some nontrivial subgroup L of Q. Let T be any transversal for the left
cosets of L in Q. Since 1 < L ⊆ Q, the prime p divides |L|. Since θ ∈ Irr(B), we have θ = ϕg for
some function g ∈ F. Because the character θ is L-invariant, the function g must be constant
on each left coset of L inQ. This says that for each t ∈ T , there exists a value ct ∈ Zpe such that
g(u) = ct for each element u ∈ tL.

By Step 2, 〈zpe−1〉 is the unique minimal normal subgroup of P . Note that zp
e−1

= x(f)
for the constant function f ∈ F defined as f(u) = pe−1 for u ∈ Q. Observe that

θ
(
zp

e−1)
= εf ·g where f · g =

∑

u∈Q
f(u)g(u) =

∑

t∈T

∑

u∈tL
f(u)g(u). (3.3)

For each t ∈ T , using the fact that |tL| = |L| is divisible by p, we deduce that

∑

u∈tL
f(u)g(u) =

∑

u∈tL
pe−1ct = |L|pe−1ct = 0. (3.4)

It follows that f · g = 0, which yields zp
e−1

= x(f) ∈ ker θ. Hence 〈zpe−1〉 ⊆ ker θ. Using
ker θP = coreP (ker θ) and 1 < 〈zpe−1〉 � P , we obtain 1 < 〈zpe−1〉 ⊆ ker θP , as desired.

We define the set A = {ψ ∈ Irr(P) | ψ is faithful}.

Step 4. For each character χ ∈ A we have χ(1) = pn, and for each element x ∈ P the value
χ(x) is a sum of complex peth roots of unity. Furthermore |A| = (p − 1)|P |/p2n+1.

Proof. Let χ ∈ A be arbitrary and let θ ∈ Irr(B) be any irreducible constituent of the restriction
χB. Hence χ is an irreducible constituent of the induced character θP . Since B ⊆ IP (θ) and
since χ is faithful, Step 3 yields IP (θ) = B. By the Clifford Correspondence [7, Theorem 6.11],
it follows that θP is irreducible, and so χ = θP . Since θ ∈ Irr(B) while B is abelian, we have
θ(1) = 1. Therefore χ(1) = θP (1) = |P : B|θ(1) = |Q| = pn.

Since χ = θP with θ ∈ Irr(B) and B � P , the character χ vanishes off B. Furthermore,
because B is an abelian p-group of exponent pe, every value of θ is a complex peth root of
unity. By Theorem 6.2 in [7], the restriction χB is a sum of conjugates of θ in P . Hence for each
element x ∈ B, the value χ(x) is a sum of complex peth roots of unity.

Finally, Lemma 2.5 yields |A| = |P |(p − 1)/p2n+1, as desired.

Let q > 1 be any prime-power such that pe is the full p-part of q − 1. Let Γ = GL(pn, F)
where F is the field with q elements. LetD, S, andM denote the subgroups of Γ consisting of
all diagonal matrices, permutation matrices, and monomial matrices, respectively. Note that
M = D � S and that S is isomorphic to the symmetric group of degree pn. Let E denote the
subgroup of Γ consisting of all diagonal matrices of order dividing pe. Thus E is homocyclic
of exponent pe and of rank pn. Note that E is the unique Sylow p-subgroup of the abelian
group D, and that E is a separator subgroup of Γ.
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We will now define a faithful representation Z : P → Γ. Recall that {xu | u ∈ Q} is a
collection of elements of order pe that constitutes a generating set for the homocyclic group
B of exponent pe and of rank |Q| = pn. We index the rows and the columns of the matrices in
Γ by the elements of the group Q. We choose an arbitrary element ω of order pe in the cyclic
multiplicative group of nonzero elements in the field F. For each u ∈ Q, we define Z(xu) to
be the diagonal matrix in Γwhose (u, u)-entry is ω, and each of whose other diagonal entries
is 1. Thus Z(B) = E consists of diagonal matrices. We define Z|Q : Q → Γ to be the right
regular representation of the group Q. Thus Z(Q) consists of permutation matrices and is a
regular subgroup of the symmetric group S. The action of Q by conjugation on B inside the
group P is similar to the action of Z(Q) by conjugation on Z(B) inside the group Γ. Thus,
since P = QB and B ∩ Q = 1, we have a faithful representation Z : P → Γ whose image
Z(P) = Z(Q)Z(B) is a subgroup of SE.

Step 5. mindeg(P, F) = pn.

Proof. Recall that Z is a faithful F-representation of P of degree pn; use Lemma 2.3.

The next step establishes Theorem 1.2.

Step 6. Every faithful F-representation of P of degree pn is similar to Z.

Proof. By Lemma 2.4, every faithful F-representation of P of degree pn is similar to a faithful
F-representation X such that X(B) ⊆ D and X(P) ⊆ M. Since E is the unique Sylow p-
subgroup ofD, indeedX(B) ⊆ E. SinceX is faithful, the p-groupsX(B) and E are homocyclic
of exponent pe and of rank pn. It follows that X(B) = E. That E is the unique Sylow p-
subgroup of D yields E � NΓ(D). Satz II.7.2(a) in [8] yields NΓ(D) = M, so E � M = DS.
Let R be a Sylow p-subgroup of S. Thus ER is a Sylow p-subgroup of M. Since X(P) is
a p-subgroup of M, Sylow’s theorem asserts that X is similar (by a matrix in M) to a
representation Y such that Y(P) ⊆ ER. We have Y(B) = E, since E � M. Thus Y(P)/E
and Z(P)/E are regular subgroups of the symmetric group ES/E ∼= Sym(pn), and are both
isomorphic to Q. By Lemma 2.8, conjugation by some element of ES/E maps Y(P)/E to
Z(P)/E. Conjugation by the unique preimage of this element under the natural isomorphism
S → ES/Emaps Y(P) to Z(P). Hence Y is similar to Z.

Step 7. B is a characteristic subgroup of P .

Proof. We argue that B is the only abelian normal subgroup of index pn in P . Let A be an
abelian normal subgroup of P such that |P : A| = pn and A/=B. Write |AB : B| = pj with
j ∈ {1, . . . , n} and let L = AB∩Q. We now argue thatAB = B�L. Since L ⊆ Qwhile B∩Q = 1,
we have B ∩L = 1. Because B ⊆ AB, Dedekind’s lemma yields BL = AB ∩BQ = AB ∩P = AB,
and soAB = B�L. From this we obtain |L| = |AB : B| = pj . SinceA and B are abelian, we have
A∩B ⊆ Z(AB). It follows thatA∩B ⊆ CB(L) ⊆ B and |B : CB(L)| ≤ |B : A∩B| = pj . By Step 1,
we have |CB(L)| = (pe)|Q:L| = pep

n−j
. Since |B| = pep

n
, it follows that |B : CB(L)| = pep

n−j (pj−1).
Thus epn−j(pj − 1) ≤ j. By Lemma 2.7, this contradicts the hypothesis pen ≥ 3.

Step 8. The normalizer NΓ(Z(P)) has order (q − 1)|P | · |Aut(Q)|/pe.

Proof. Using P = B�Q and E = Z(B), we obtainZ(P) = E�Z(Q). By Step 7 and the fact that
Z is faithful, E = Z(B) is a characteristic subgroup of Z(P). Since Z(Q) is a regular subgroup
of the symmetric group S and since Z(Q) ∼= Q, Theorem 2.9 implies that the normalizer



International Journal of Mathematics and Mathematical Sciences 9

NS(Z(Q)) is isomorphic to the holomorph of Q. Therefore |NS(Z(Q)) : Z(Q)| = |Aut(Q)|.
The statement now follows from Theorem 2.6.

Step 9. |Aut(P)| = (p − 1)|Aut(Q)|p2epn−e−1.

Proof. By Steps 2, 4, and 5, (P, q, pn) is a good monolithic triple and F(P, q) = A. Thus Step 4
yields |F(P, q)| = (p − 1)|P |/p2n+1. By Step 6, Z(P) belongs to the unique conjugacy class of
subgroups of Γ whose members are isomorphic to P . In view of Step 8, Theorem 2.2 yields
|Aut(P)| = (p − 1)|Aut(Q)| · |P |2/pe+2n+1 where |P | = pepn+n.

4. Proof of Theorem A

Assume Hypothesis 1.3. Let F denote the set of all functions from the setU = {0, 1, . . . , pn −1}
into the additive group Zpe . For each function f ∈ F, we define the element

x
(
f
)
= xf(0)0 xf(1)1 · · · xf(pn−1)pn−1 ∈ B. (4.1)

Each element of B has the form x(f) for some unique f ∈ F. The mapping ϕ : B → Zpe

defined by ϕ(x(f)) = f(0) + f(1) + · · · + f(pn − 1) is a surjective homomorphism. Hence
B/kerϕ is cyclic of order pe. To establish Theorem A, our first task is to prove that B/[B, P]
is cyclic of order pe. For this it suffices to show that [B, P] = kerϕ.

Lemma 4.1. For each function f ∈ F, the commutator element [x(f),w] has the form

xf(1)−f(0)0 xf(2)−f(1)1 · · · xf(pn−1)−f(pn−2)pn−2 xf(0)−f(p
n−1)

pn−1 . (4.2)

Proof. Note that [x(f),w] = x(f)−1x(f)w. Conjugating x(f) by w, we obtain

x
(
f
)w =

(
xw0

)f(0)(xw1
)f(1)(xw2

)f(2) · · ·
(
xwpn−1

)f(pn−1)

= xf(0)pn−1x
f(1)
0 xf(2)1 · · · xf(pn−1)pn−2 = xf(1)0 xf(2)1 · · · xf(pn−1)pn−2 xf(0)pn−1.

(4.3)

Since x(f)−1 = x−f(0)0 x−f(1)1 · · · x−f(pn−2)pn−2 x−f(p
n−1)

pn−1 , the result follows.

Theorem 4.2. [B, P] = kerϕ.

Proof. Let [B,w] denote the subgroup of P that is generated by all elements of the form [b,w]
with b ∈ B. Using Q = 〈w〉, we can show that [B,w] = [B,Q]. Since P = BQ while B is
abelian, it is clear that [B,Q] = [B, P]. Hence it suffices to show that [B,w] = kerϕ.

To show that [B,w] ⊆ kerϕ, we must verify that [x(f),w] ∈ kerϕ for each f ∈ F, but
this is obvious by Lemma 4.1. Next we argue that kerϕ ⊆ [B,w]. An arbitrary element of kerϕ
has the form x(g) for some function g ∈ F satisfying g(0)+g(1)+· · ·+g(pn−1) = 0. To establish
that x(g) ∈ [B,w], we will now define a particular function f ∈ F such that [x(f),w] = x(g).
Let f(0) = 0, and for each u ∈ {1, . . . , pn − 1} let f(u) = g(0) + g(1) + · · · + g(u − 1). It follows
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that for each u ∈ {0, 1, . . . , pn − 2} we have f(u + 1) − f(u) = g(u). Furthermore, using the
condition g(0) + g(1) + · · · + g(pn − 1) = 0, we obtain

f(0) − f(pn − 1
)
= 0 −

pn−2∑

v=0

g(v) = g
(
pn − 1

)
. (4.4)

By Lemma 4.1, we deduce that [x(f),w] = x(g). Therefore x(g) ∈ [B,w], as desired.

The cyclic group Zpe has a unique subgroup of index p, namely, pZpe = {pa | a ∈ Zpe}.
Let D be the group consisting of all those elements x(f) in B such that ϕ(x(f)) ∈ pZpe . It is
clear that kerϕ ⊆ D ⊆ B and |B : D| = p.

Corollary 4.3. kerϕ and D are characteristic subgroups of P .

Proof. By Step 7 in the proof of Theorem 1.1, B is a characteristic subgroup of P . It follows
that [B, P] is a characteristic subgroup of P . By Theorem 4.2, we deduce that kerϕ is a
characteristic subgroup of P . Since B/kerϕ is cyclic,D is the only subgroup of P that satisfies
the conditions kerϕ ⊆ D ⊆ B and |B : D| = p. Because B and kerϕ are characteristic subgroups
of P , it follows that D is a characteristic subgroup of P .

For the next result, we need a formula (due to Philip Hall) for raising the product of
two group elements to an arbitrary positive integer power. For any positive integer n and any
elements a and b belonging to some group, the element (ab)n may be written as

an
(
a−(n−1)ba(n−1)

)(
a−(n−2)ba(n−2)

)
· · ·

(
a−2ba2

)(
a−1ba1

)
b. (4.5)

This says that (ab)n = anba
n−1
ba

n−2 · · · ba2ba1b. Furthermore, in case all the conjugates of b by
powers of a commute with each other (which is automatically true if b is contained in an
abelian normal subgroup of any group containing a and b), this formula becomes

(ab)n = anbba
1
ba

2 · · · ban−2ban−1 = an
n∏

j=0

ba
j

. (4.6)

Lemma 4.4. The set E has cardinality (p − 1)pep
n−e+n−1.

Proof. Each element g of the group P = B � Q has the form g = wmx(f) for a unique integer
m ∈ {0, 1, . . . , pn − 1} and a unique function f ∈ F. We will argue that g ∈ E if and only if
x(f) ∈ kerϕ while p does not divide m. From this it will follow that, to construct an element
g ∈ E, there are (p − 1)pn−1 choices form and |kerϕ| = pepn−e choices for f .

Because P/B is cyclic of order pn, the condition 〈B, g〉 = P holds if and only if the coset
gB = wmx(f)B = wmB has order pn as an element of P/B. Since the subgroups Q = 〈w〉 and
B intersect trivially, the coset wmB has order pn if and only if the element wm has order pn.
Recalling that the element w has order pn, we see that the element wm has order pn if and
only if p does not dividem. Therefore the condition 〈B, g〉 = P holds if and only if p does not
dividem.
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Also because P/B is cyclic of order pn, the condition 〈B, g〉 = P implies that the order
of the element g is divisible by pn. Henceforth we suppose that p does not divide m. To
complete the proof, it suffices to show that gp

n
= 1 if and only if x(f) ∈ kerϕ.

Write y = wm. Thus g = yx(f). Using Philip Hall’s formula for raising the product of
two elements to a power, along with the fact that yp

n
= 1, we obtain

gp
n

=
pn−1∏

j=0

x
(
f
)yj =

pn−1∏

j=0

[
∏

u∈U
xf(u)u

]yj

=
pn−1∏

j=0

[
∏

u∈U

(
xy

j

u

)f(u)
]

=
∏

u∈U

⎡

⎣
pn−1∏

j=0

(
xy

j

u

)
⎤

⎦
f(u)

.

(4.7)

We define the element z = x0x1 · · · xpn−1 ∈ B of order pe. Conjugation by w cyclically
permutes the elements x0, x1, . . ., xpn−1. Since p does not divide m, conjugation by y = wm

cyclically permutes the elements x0, x1, . . ., xpn−1 in some order. It follows that

pn−1∏

j=0

(
xy

j

u

)
= z. (4.8)

From our work above, we deduce that

gp
n

=
∏

u∈U
zf(u) = zs, where s =

∑

u∈U
f(u) = ϕ

(
x
(
f
))
. (4.9)

Recalling that the element z has order pe, we deduce that gp
n
= 1 if and only if x(f) ∈ kerϕ.

We will now complete the proof of Theorem A. Since D ⊆ B while D and B are
characteristic subgroups of P , every automorphism of P maps the set B −D to itself. Because
xpn−1 ∈ B and ϕ(xpn−1) = 1, we have xpn−1 ∈ B − D. Since B is a characteristic subgroup
of P , every automorphism of P maps the set E to itself. Note that w ∈ E. Thus for each
automorphism σ ∈ Aut(P), we have xσpn−1 ∈ B −D and wσ ∈ E.

Let S be the set consisting of all ordered pairs (a, b) such that a ∈ B −D and b ∈ E. We
now define the mapping Ψ : Aut(P) → S as follows. For each automorphism σ ∈ Aut(P)
we let Ψ(σ) = (xσpn−1,w

σ). By the last sentence of the preceding paragraph, the mapping Ψ
is well defined. Since {xpn−1,w} is a generating set for the group P , every automorphism of
P is determined by where it maps the two elements xpn−1 and w, and so the mapping Ψ is
injective. We now argue that |Aut(P)| = |S|, an equality that would force the mapping Ψ to
be a bijection, thereby completing the proof of Theorem A.

Using |B : D| = p and |B| = pep
n
, we obtain |B − D| = (p − 1)pep

n−1. It is clear that
|S| = |B −D| · |E|, and so by Lemma 4.4 we deduce that |S| = (p − 1)2p2ep

n+n−e−2. On the other
hand, in the Introduction we calculated that |Aut(P)| = (p − 1)2p2ep

n+n−e−2.
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