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We generalize wave maps to biwave maps. We prove that the composition of a biwave map and
a totally geodesic map is a biwave map. We give examples of biwave nonwave maps. We show
that if f is a biwave map into a Riemannian manifold under certain circumstance, then f is a wave
map. We verify that if f is a stable biwave map into a Riemannian manifold with positive constant
sectional curvature satisfying the conservation law, then f is a wave map. We finally obtain a
theorem involving an unstable biwave map.
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1. Introduction

Harmonic maps between Riemannian manifolds were first introduced and established by
Eells and Sampson [1] in 1964. Afterwards, there were two reports on harmonic maps by
Eells and Lemaire [2, 3] in 1978 and 1988. Biharmonic maps, which generalized harmonic
maps, were first studied by Jiang [4, 5] in 1986. In this decade, there has been progress in
biharmonic maps made by Caddeo et al. [6, 7], Loubeau and Oniciuc [8], Montaldo and
Oniciuc [9], Chiang andWolak [10], Chiang and Sun [11, 12], Chang et al. [13], Wang [14, 15],
and so forth.

Wave maps are harmonic maps on Minkowski spaces, and their equations are the
second-order hyperbolic systems of partial differential equations, which are related to
Einstein’s equations and Yang-Mills fields. In recent years, there have been many new
developments involving local well-posedness and global-well posedness of wave maps into
Riemannian manifolds achieved by Klainerman and Machedon [16, 17], Shatah and Struwe
[18, 19], Tao [20, 21], Tataru [22, 23], and so forth. Furthermore, Nahmod et al. [24] also
studied wave maps from R×Rm into (compact) Lie groups or Riemannian symmetric spaces,
that is, gauged wave maps when m ≥ 4, and established global existence and uniqueness,
provided that the initial data are small. Moreover, Chiang and Yang [25] , Chiang and Wolak
[26] have investigated exponential wave maps and transversal wave maps.
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Bi-Yang-Mills fields, which generalize Yang-Mills fields, have been introduced by
Ichiyama et al. [27] recently. The following connection between bi-Yang Mills fields and
biwave equations motivates one to study biwave maps.

Let P be a principal fiber bundle over a manifold M with structure group G and
canonical projection π , and let G be the Lie algebra of G. A connection A can be considered
as a G-valued 1-formA = Aμ(x)dxμ locally. The curvature of the connectionA is given by the
2-form F = Fμνdx

μdxν with

Fμν = ∂μAν − ∂νAμ +
[
Aμ,Aν

]
. (1.1)

The bi-Yang-Mills Lagrangian is defined

L2(A) =
1
2

∫

M

‖δF‖2dvM, (1.2)

where δ is the adjoint operator of the exterior differentiation d on the space of E-valued
smooth forms on M (E = End(P), the endormorphisms of P). Then the Euler-Lagrange
equation describing the critical point of (1.2) has the form

(δd + F)δF = 0, (1.3)

which is the bi-Yang-Mills system. In particular, letting M = R × R2 and G = SO(2), the
group of orthogonal transformations on R2, we have that Aμ(x) is a 2 × 2 skew symmetric
matrix A

ij
μ . The appropriate equivariant ansatz has the form

A
ij
μ (x) =

(
δi
μx

j − δ
j
μx

i
)
h(t, |x|), (1.4)

where h : M → R is a spatially radial function. Setting u = r2h and r = |x|, the bi-Yang-Mills
system (1.3) becomes the following equation for u(t, r):

utttt − urrrr − 3
r
urrr +

2
r2
urr − 2

r3
ur = k(t, r), (1.5)

which is a linear nonhomogeneous biwave equation, where k(t, r) is a function of t and r.
Biwave maps are biharmonic maps on Minkowski spaces. It is interesting to study

biwave maps since their equations are the fourth-order hyperbolic systems of partial
differential equations, which generalize wave maps. This is the first attempt to study biwave
maps and their relationship with wave maps. There are interesting and difficult problems
involving local well posedness and global well posedness of biwave maps into Riemannian
manifolds or Lie groups (or Riemannian symmetric spaces), that is, gauged biwave maps for
future exploration.

In Section 2, we compute the first variation of the bi-energy functional of a biharmonic
map using tensor technique, which is different but much easier than Jiang’s [4] original
computation. In Section 3, we prove in Theorem 3.3 that if f : Rm,1 → N1 is a biwave map
and f1 : N1 → N2 is a totally geodesic map, then f1 ◦f : Rm,1 → N2 is a biwave map. Then we can
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apply this theorem to provide many biwave maps (see Example 3.4). We also can construct
biwave nonwave maps as follow: Leth : Ω ⊂ Rm,1 → Sn(1/

√
2) be a wave map on a compact

domain and let i : Sn(1/
√
2) → Sn+1(1) be an inclusion map. The map f = i ◦ h : Ω → Sn+1(1) is

a biwave nonwave map if and only if h has constant energy density, compare with Theorem 3.5.
Afterwards, we show that if f : Ω → N is a biwave map on a compact domain into a Riemannian
manifold satisfying

−|τ�f |2t +
m∑

i=1

|τ�f |2xi − R′α
βγμ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

τ�(f)
μ ≥ 0, (1.6)

then f is a wave map (cf. Theorem 3.6). This theorem is different than the theorem obtained
by Jiang [4]: if f is a biharmonic map from a compact manifold into a Riemannian manifold with
nonpositive curvature, then f is a harmonic map. In Section 4, we verify that if f is a stable biwave
map into a Riemannian manifold with positive constant sectional curvature satisfying the conservation
law, then f is a wave map (cf. Theorem 4.5 ). We also prove that if h : Ω → Sn(1/

√
2) is a wave

map on a compact domain with constant energy density, then f = i ◦ h : Ω → Sn+1(1) is an unstable
biwave map (cf. Theorem 4.7).

2. Biharmonic Maps

A biharmonic map f : (Mm, gij) → (Nn, hαβ) from an m-dimensional Riemannian manifold
M into an n-dimensional Riemannian manifold N is the critical point of the bi-energy
functional

E2
(
f
)
=

1
2

∫

M

∥∥∥(d + d∗)2f
∥∥∥
2
dv =

1
2

∫

M

∥∥(d∗d)f
∥∥2
dv =

1
2

∫

M

∥∥τ(f)
∥∥2
dv, (2.1)

where dv is the volume form on M.

Notations

d∗ is the adjoint of d and τ(f) = trace(Ddf) = (Ddf)(ei, ei) = (Deidf)(ei) is the tension
field. Here D is the Riemannian connection on T ∗M ⊗ f−1TN induced by the Levi-Civita
connections on M and N, and {ei} is the local frame at a point of M. The tension field has
components

τ(f)α = gijfα
i|j = gij

(
fα
ij − Γkijf

α
k + Γ′αβγf

β

i f
γ

j

)
, (2.2a)

where Γkij and Γ′γ
αβ

are the Christoffel symbols on M and N, respectively.
In order to compute the Euler-Lagrange equation of the bi-energy functional, we

consider a one-parameter family of maps {ft} ∈ C∞(M × I,N) from a compact manifold M
(without boundary) into a Riemannian manifold N. Here ft(x) is the endpoint of a segment
starting at f(x)(=f0(x)), determined in length and direction by the vector field ḟ(x) along
f(x). For a nonclosed manifoldM, we assume that the compact support of ḟ(x) is contained
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in the interior of M (we need this assumption when we compute τ(f) by applying the
divergence theorem). Then we have

d

dt
E2

(
ft
)|t=0 = Ė2

(
f
)
=
∫

M

(Dtτf, τf)t=0dv. (2.3)

Let ξ = ∂ft/∂t. The components ofDtτf are fα
i|j|t = (∂fα

i|j/∂t) + Γ′αμγf
μ

i|j ξ
γ .We can use the

curvature formula onM × I → N and get

fα
i|j|t = fα

i|t|j + R′α
βγμf

β

i f
γ

j ξ
μ, (2.4)

where R′ is the Riemannian curvature of N. But fα
i|t = fα

t|i = ξα|i , therefore, Dtτf has compo-

nents ξα|i|j + R′α
βγμf

β

i f
γ

j ξ
μ.We can rewrite (2.3) as

d

dt
E2

(
ft
)|t=0 =

∫

M

(
Jf
(
τf

)
, τf

)
dv, (2.5)

where

Jαf (ξ) = gijξα|i|j + gijR′α
βγμf

β

i f
γ

j ξ
μ = Δξα + R′α(df, df

)
ξ (2.6)

is a linear equation for ξ(= τ(f)), and Δ(ξ) = D∗D(ξ) is an operator from f−1TN to f−1TN.
Solutions of Jf(ξ) = 0 are called Jacobi fields. Hence, we obtain the following definition from
(2.3), (2.5), and (2.6).

Definition 2.1. f : M → N is a biharmonic map if and only if the bitension field

τ2(f)
α = Jf(τf)

α = Δτ(f)α + R′α
(
df, df

)
τ
(
f
)

= gij
(
fα
ij − Γkijf

α
k + Γ′αβγf

β

i f
γ

j

)
+ gijR′α

βγμf
β

i f
γ

j τ(f)
μ = 0,

(2.7)

that is, the tension field τ(f), is a Jacobi field.
If τ(f) = 0, then τ2(f) = 0. Thus, harmonic maps are obviously biharmonic. Bihar-

monic maps satisfy the fourth-order elliptic systems of PDEs, which generalize harmonic
maps. Our computation for the first variation of the bi-energy functional presented here using
tensor technique is different but much easier than Jiang’s [4] original computation (it took
him four pages).

Caddeo et al. [7] showed that a biharmonic curve on a surface of nonpositive Gaussian
curvature is a geodesic (i.e., is harmonic) and gave examples of biharmonic nonharmonic
curves on spheres, ellipses, unduloids, and nodoids.

Theorem 2.2 (see [4]). Let f : Mm → Sm+1(1) be an isometric embedding of an m-dimensional
compact Riemannian manifold M into an (m + 1)-dimensional unit sphere Sm+1(1) with nonzero
constant mean curvature. The map f is biharmonic if and only if ‖B(f)‖2 = m, where B(f) is the
second fundamental form of f.
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Example 2.3. In Sm+1(1), the compact hypersurfaces, whose Gauss maps are isometric embed-
dings, are the Clifford surfaces [28]:

Mm
k (1) = Sk

(
1√
2

)
× Sm−k

(
1√
2

)
, 0 ≤ k ≤ m. (2.8)

Let f : Mm
k
(1) → Sm+1(1) be a standard embedding such that k /=m/2. Because ‖B(f)‖2 =

k +m − k = m and τ(f) = k − (m − k) = 2k −m/= 0, f is a biharmonic nonharmonic map by
Theorem 2.2.

3. Biwave Maps

Let Rm,1 be anm+1 dimensional Minkowski space R×Rm with the metric (gij) = (−1, 1, . . . , 1)
and the coordinates x0 = t, x1, x2, . . . , xm and let (N,hαβ) be an n-dimensional Riemannian
manifold. A wave map is a harmonic map on the Minkowski space Rm,1 with the energy
functional

E
(
f
)
=

1
2

∫

Rm,1

(
−∣∣ft

∣∣2 +
∣∣∇xf

∣∣2
)
dt dx =

1
2

∫

Rm,1
hαβ

(

−fα
t f

β
t +

m∑

i=1

fα
i f

β

i

)

dt dxi. (3.1)

The Euler-Lagrange equation describing the critical point of (3.1) is

τα�
(
f
)
= �fα + Γ′αβγ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

= 0, (3.2)

where � = −(∂2/∂t2) +Δx is the wave operator on Rm,1 and Γ′αβγ are the Christoffel symbols of
N. f is a wave map iff the wave field τα�(f) (i.e., the tension field on a Minkowski space)
vanishes. The wave map equation is invariant with respect to the dimensionless scaling
f(t, x) → f(ct, cx), c ∈ R. But, the energy is scale invariant in dimension m = 2.

If f : Rm,1 → N is a smooth map from a Minkowski space Rm,1 into a Riemannian
manifold N, then the bi-energy functional is, from (2.1),

E2
(
f
)
=

1
2

∫

Rm,1

∥∥∥(d + d∗)2f
∥∥∥
2
dt dx

=
1
2

∫

Rm,1

∥∥d∗df
∥∥2

dt dx =
1
2

∫

Rm,1

∥∥τ�
(
f
)∥∥2

dt dx.

(3.3)

The Euler-Lagrange equation describing the critical point of (3.3), from (2.5), is

(τ2)�
(
f
)
= Jf

(
τ�f

)
= Δτ�

(
f
)
+ R′(df, df

)
τ�

(
f
)
= 0. (3.4)
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Definition 3.1. f : Rm,1 → N from aMinkowski space into a Riemannianmanifold is a biwave
map if and only if the biwave field (i.e., the bitension field on a Minkowski space),

(τ2)�(f)
α = Jf(τ�f)

α = Δτ�(f)
α + R′α(df, df

)
τ�

(
f
)

= �τ�(f)
α + Γ′αμγ

(

−τ�(f)
μ
t τ�(f)

γ
t +

m∑

i=1

τ�(f)
μ

i τ�(f)
γ

i

)

+ R′α
βγμ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

τ�(f)
μ = 0,

(3.5)

that is, the wave field τ�(f), is a Jacobi field on the Minkowski space.
Biwave maps satisfy the fourth-order hyperbolic systems of PDEs, which generalize

wave maps. If τ�(f) = 0, then (τ2)�(f) = 0. Waves maps are obviously biwave maps, but
biwave maps are not necessarily wave maps.

Example 3.2. Let u : Rm,1 → R be a function defined on a Minkowski space satisfying the
following conditions:

�2u(t, x) = �(�u) = utttt − 2uttxx + uxxxx = 0, (t, x) ∈ (0,∞) × Rm,

u = u0, ut = u1, u = u0,
∂

∂t
u =

∂u

∂t
= u1, (t, x) ∈ {t = 0} × Rm,

(3.6)

where the initial data u0 and u1 are given. Since this is a fourth-order homogeneous linear
biwave equation with constant coefficients, it is well known that u(t, x) can be solved by
[18, 29].

Let f : Rm,1 → N1 be a smooth map from a Minkowski space Rm,1 into a Riemannian
manifoldN1 and let f1 : N1 → N2 be a smooth map between two Riemannian manifoldsN1

and N2. Then the composition f1 ◦ f : Rm,1 → N2 is a smooth map. Since Rm,1 is a semi-
Riemannian manifold (i.e., a pseudo-Riemannian manifold), we can define a Levi-Civita

connection on Rm,1 by O’Neill [30]. Let D, D′, D, D
′
, D

”
, D̂, D̂′, D̂” be the connections

on Rm,1, TN1, f
−1N1, f−1

1 TN2, (f1 ◦ f)−1TN2, T ∗Rm,1 ⊗ f−1TN1, T ∗N1 ⊗ f−1
1 TN2, T ∗Rm,1 ⊗

(f1 ◦ f)−1TN2, respectively, and let RN2(, ), Rf−1
1 TN2(, ) be the curvatures on TN2, f

−1
1 TN2,

respectively. We first have the following two formulas:

D̂”
Xd

(
f1 ◦ f

)
(Y ) =

(
D̂′

df(X)df1
)
df(Y ) + df1 ◦DXdf(Y ), (3.7a)

for X,Y ∈ Rm,1, and

RN2
(
df1

(
X′), df1

(
Y ′))df1

(
Z′) = Rf−1

1 TN2
(
X′, Y ′)df1

(
Z′), (3.7b)

for X′, Y ′, Z′ ∈ Γ(TN1).

Theorem 3.3. If f : Rm,1 → N1 is a biwave map and f1 : N1 → N2 is totally geodesic between two
Riemannian manifolds N1 and N2, then the composition f1 ◦ f : Rm,1 → N2 is a biwave map.
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Proof. Let x0 = t, x1, . . . , xm be the coordinates of a point p in Rm,1 and let e0 = ∂/∂t, e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) be the frame at p. We know from [4]

that D
” ∗D”

= D
”
ekD

”
ek −D

”
Dek

ek . Since f1 is totally geodesic, we have τ�(f1 ◦ f) = df1 ◦ τ�(f)
by applying the chain rule of the wave field to f1 ◦ f as [1]. Then we get

D
” ∗D”

τ�

(
f1 ◦ f

)
= D

” ∗D”(
df1 ◦ τ�

(
f
))

= D
”
ekD

”
ek

(
df1 ◦ τ�

(
f
)) −D

”
Dek

ek

(
df1 ◦ τ�

(
f
))
.

(3.8)

Recalling that τ�(f) = D̂ej df(ej), we derive from (3.7a) that

D
”
ek

(
df1 ◦ τ�

(
f
))

= D
”
ek

(
df1 ◦ D̂ejdf

(
ej
))

=
(
D̂′

D̂ej
df(ek)

df1

)(
D̂ej df

(
ej
))

+ df1 ◦Dek

(
D̂ej df

(
ej
))

= df1 ◦Dekτ�
(
f
)
,

(3.9)

since f1 is totally geodesic. Therefore, we have

D
”
ekD

”
ek

(
df1 ◦ τ�

(
f
))

= D
”
ek

(
df1 ◦Dekτ

(
f
))

= df1 ◦DekDekτ�
(
f
)
,

D
”
Dek

ek

(
df1 ◦ τ

(
f
))

= df1 ◦DDek
ekτ�

(
f
)
.

(3.10)

Substituting (3.10) into (3.8), we arrive at

D
” ∗D”

τ�
(
f1 ◦ f

)
= df1 ◦D

∗
Dτ�

(
f
)
, (3.11)

where D
∗
D = DekDek −DDek

ek .
On the other hand, we have by (3.7b)

RN2
(
d
(
f1 ◦ f

)
(ei), τ�

(
f1 ◦ f

))
d
(
f1 ◦ f

)
(ei)

= Rf−1
1 TN2

(
df(ei), τ�

(
f
))
df1

(
df(ei)

)
= df1 ◦ RN1

(
df(ei), τ�

(
f
))
df(ei).

(3.12)

We obtain from (3.11) and (3.12)

D
” ∗D”(

f1 ◦ f
)
+ RN2

(
d
(
f1 ◦ f

)
(ei), τ�

(
f1 ◦ f

))
d
(
f1 ◦ f

)
(ei)

= df1 ◦
[
D

∗
Dτ�

(
f
)
+ RN1

(
df(ei), τ�

(
f
))
df(ei)

]
,

(3.13)

that is, (τ2)�(f1 ◦ f) = df1 ◦ (τ2)�(f). Hence, if f is a biwave map and f1 is totally geodesic,
then f1 ◦ f is a biwave map. Note that the total geodesicity of f1 cannot be weakened into a
harmonic or biharmonic map.



8 International Journal of Mathematics and Mathematical Sciences

Example 3.4. Let N1 be a submanifold of N. Are the biwave maps into N1 also biwave maps
into N? The answer is affirmative iff N1 is a totally geodesic submanifold of N, that is, N1

geodesics are N geodesics. N1 is a geodesic γ(t) = (γ1, . . . , γn) : R → N ⊂ Rn with |γ̇(t)| = 1
iff γ̇ is parallel, that is, D∂/∂tγ̇ = 0 iff γ̈ ⊥ TγN. For a map u : Rm,1 → R, letting f = γ ◦ u =
(f1, . . . , fn) : Rm,1 → N ⊂ Rn, we have by (3.13) the following:

(τ2)�
(
f
)
= dγ ◦ (τ2)�(u) = dγ ◦ �2u, (3.14)

since γ is a geodesic. Hence, f = γ ◦ u is a biwave map if and only if u solves the fourth-order
homogeneous linear biwave equation �2u = 0 as in Example 3.2. It follows from Theorem 3.3
that there are many biwave maps f : Rm,1 → N provided by geodesics of N.

We also can construct examples of biwave nonwave maps from some wave maps with
constant energy using Theorem 3.5. Let

Sn

(
1√
2

)
= Sn

(
1√
2

)
×
{

1√
2

}
=
{(

x1, x2, . . . , xn+1,
1√
2

)
| x2

1 + · · · + x2
n+1 =

1
2

}
(3.15)

be a hypersphere of Sn+1(1). Then Sn(1/
√
2) is a biharmonic nonminimal submanifold of

Sn+1(1) by Theorem 2.2 and Example 2.3. Let ζ = (x1, . . . , xn+1,−1/
√
2) be a unit section of the

normal bundle of Sn(1/
√
2) in Sn+1(1). Then the second fundamental form of the inclusion

i : Sn(1/
√
2) → Sn+1(1) is B(X,Y ) = Ddi(X,Y ) = −(X,Y )ζ. By computation, the tension field

of i is τ(i) = −nζ, and the bitension field is τ2(i) = 0.

Theorem 3.5. Let h : Ω → Sn(1/
√
2) be a nonconstant wave map on a compact space-time domain

Ω ⊂ Rm,1 and let i : Sn(1/
√
2) → Sn+1(1) be an inclusion. The map f = i ◦ h : Rm,1 → Sn+1(1) is a

biwave nonwave map if and only if h has constant energy density e(h) = (1/2)|dh|2.

Proof. Let x0 = t, x1, . . . , xm be the coordinate of a point p in Ω ⊂ Rm,1 and let e0 = ∂/∂t, e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) be the frame at p. Recall that ζ is the
unit section of the normal bundle. By applying the chain rule of the wave field to f = i ◦ h,
we have

τ�
(
f
)
= di(τ�(h)) + trace Ddi(dh, dh) = −2e(h)ζ, (3.16)

since h is a wave map. We can derive the following at the point p by straightforward
calculation:

D∗Dτ�
(
f
)
= −Df

eiD
f
eiτ�

(
f
)
= −Df

eiD
f
ei(−2e(h)ζ)

= 2(eieie(h))ζ − 2e(h)(dh(ei), dh(ei))ζ + 4df[(eie(h))ei]

+ 2e(h)Ddh(ei, ei),

RSn+1(
df(ei), τ�

(
f
))
df(ei) = −(dh(ei), dh(ei))τ

(
f
)
= 2(dh(ei), dh(ei))e(h)ζ.

(3.17)
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Therefore, we obtain

τ2�
(
f
)
= −2(Δe(h))ζ + 4df

(
grad e(h)

)
. (3.18)

Suppose that f = i ◦ h : Ω → Sn(1/
√
2) × {1/√2} → Sn+1(1) is a biwave nonwave map

(τ�(f)/= 0). As the ζ-part of τ2�(f), Δe(h) vanishes, which implies that e(h) is constant since
Ω is compact. The converse is obvious.

Let x0 = t, x1, . . . , xm be the coordinates of a point in a compact space-time domain
Ω ⊂ Rm,1 and e0 = ∂/∂t, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) be the
frame at the point. Suppose that f : Ω → N is a biwave map from a compact domain Ω
into a Riemannian manifold N such that the compact supports of ∂f/∂xi and Dei∂f/∂xi are
contained in the interior of Ω.

Theorem 3.6. If f : Ω → N is a biwave map from a compact domain into a Riemannian manifold
such that

−∣∣τ�f
∣∣2
t +

m∑

i=1

∣∣τ�f
∣∣2
xi − R′α

βγμ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

τ�(f)
μ ≥ 0, (3.19)

then f is a wave map.

Proof. Since f is a biwave map, we have by (3.4)

(τ2)�
(
f
)
= Δτ�

(
f
)
+ R′(df, df

)
τ�

(
f
)
. (3.20)

Recall that x0 = t, x1, . . . , xm are the coordinates of a point in Ω ⊂ Rm,1 and e0 = ∂/∂t, e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1). We compute

1
2
Δ
∥∥τ�(f)

∥∥2 =
(
Deiτ�

(
f
)
, Deiτ�

(
f
))

+
(
D∗Dτ�

(
f
)
, τ�

(
f
))

=
m∑

i=0

(
Deiτ�

(
f
)
, Deiτ�

(
f
)) −

(

R′α
βγμ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

τ�(f)
μ, τ�

(
f
)
)

= −∣∣τ�f
∣∣2
t +

m∑

i=1

∣∣τ�f
∣∣2
xi −

(

R′α
βγμ

(

−fβ
t f

γ
t +

m∑

i=1

f
β

i f
γ

i

)

τ�(f)
μ, τ�

(
f
)
)

.

(3.21)

By applying the Bochner’s technique from (3.19) and the assumption that the compact
supports of ∂f/∂xi and Dei∂f/∂xi are contained in the interior of Ω, we know that ‖τ�(f)‖2
is constant, that is, dτ�(f) = 0. If we use the identity

∫

Ω
div

(
df, τ

(
f
))
dz =

∫

Ω

(∣∣τ
(
f
)∣∣2 +

(
df, dτ

(
f
)))

dz, z = (t, x) (3.22)
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and the fact dτ�(f) = 0, then we can conclude that τ�(f) = 0 by applying the divergence
theorem.

Corollary 3.7. If f : Ω → N is a biwave map on a compact domain such that
∑m

i=1 |τ�f |2xi ≥ |τ�f |2t
and R′α

βγμ(−f
β
t f

γ
t +

∑m
i=1 f

β

i f
γ

i )τ�(f)
μ ≤ 0, then f is a wave map.

Proof. The result follows from (3.19) immediately.

4. Stability of Biwave Maps

Let x0 = t, x1, . . . , xm be the coordinates of a point in a compact space-time domain Ω ⊂ Rm,1

and let e0 = ∂/∂t, e1 = (1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1) be the frame at the point. Suppose
that f : Ω → N is a biwave map from a compact space-time domain Ω into a Riemannian
manifold N such that the compact supports of ∂f/∂xi and Dei∂f/∂xi are contained in the
interior of Ω. Let V ∈ Γ(f−1TN) be a vector field such that ∂f/∂t|t=0 = V . If we apply the
second variation of a biharmonic map in [4] to a biwave map, we can have the following.

Lemma 4.1. If f : Ω → N is a biwave map from a compact domain into a Riemannian manifold,
then

1
2
d2

dt2
E2

(
f
)|t=0 =

∫

Ω

∥∥∥ΔV + RN(df(ei), V )df(ei)
∥∥∥
2
dz

+
∫

Ω
< V,

(
D′

df(ei)
RN

)(
f(ei), τ�

(
f
))
V

+
(
D′

τ�(f)R
N
)(

df(ei), V
)
df(ei) + RN(

τ�
(
f
)
, V

)
τ�

(
f
)

+ 2RN(
df(ei), V

)
Deiτ�

(
f
)
+ 2RN(

df(ei), τ�
(
f
))
DeiV > dz,

(4.1)

where z = (t, x) ∈ R×Rm,D′ is the Riemannian connection on TN, and V is the vector field along f.

Definition 4.2. Let f : Rm,1 → N be a biwave map. If (d2/dt2)E2(f)|t=0 ≥ 0, then f is a stable
biwave map.

If we consider a wave map, that is, τ�(f) = 0 as a biwave map, then by (4.1) we have
(d2/dt2)E2(f)|t=0 ≥ 0 and f is automatically stable.

Definition 4.3. Let f : Rm,1 → (N,h) be a smooth map from a Minkowski space into a
Riemannian manifold (N,h). The stress energy is defined by S(f) = e(f)g −f∗h,where e(f) =
(1/2)|df |2 is the energy function and g =

( −1 0

0 I

)
. The map f satisfies the conservation law if

divS(f) = 0.

Proposition 4.4. Let f : Rm,1 → (N,h) be a smooth map from aMinkowski space into a Riemannian
manifold (N,h). Then

divS
(
f
)
(X) = −〈τ�

(
f
)
, df(X)

〉
, X ∈ Rm,1. (4.2)
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Proof. Let x0 = t, x1, . . . , xm be the coordinates of a point in Rm,1, e0 = ∂/∂t, e1 = (1, 0, . . . , 0),
. . . , em = (0, 0, . . . , 1) and g =

( −1 0

0 I

)
, where I is an m ×mmatrix. We calculate

divS
(
f
)
(X) = DeiS

(
f
)
(ei, X) = Dei

(
1
2
∣∣df

∣∣2
(−1 0

0 I

)

− f∗h

)

(ei, X)

= Dei

(
1
2
|df |2

(−1 0

0 I

))

(ei, X) − (
Deif

∗h
)
(ei, X)

=
(
−
(
D
∂f

∂t
,
∂f

∂t

)
(−1)

)
(e0, X) +

(
D

∂f

∂xi
,
∂f

∂xi

)
I(ei, X) −Dei

(
f∗ei, f∗X

)

=
(
D
∂f

∂t
,
∂f

∂t

)
(e0, X) +

(
D

∂f

∂xi
,
∂f

∂xi

)
(ei, X) − (

Deif∗ei, f∗X
) − (

f∗ei,Deif∗X
)

=
((
DXdf

)
ei, f∗ei

) − (
τ�

(
f
)
, f∗X

) − (
f∗ei,Deif∗X

)
,

(4.3)

where the first term and the third term are canceled out and Deif∗ei = τ�(f).

Theorem 4.5. Let Ω ⊂ Rm,1 be a compact domain and let (N,h) be a Riemannian manifold with
constant sectional curvature K > 0. If f : Ω → N is a stable biwave map satisfying the conservation
law, then f is a wave map.

Proof. Because N has constant sectional curvature, the second term of (4.1) disappears and
(4.1) becomes

1
2
d2

dt2
E2

(
ft
)
∣∣∣∣∣
t=0

=
∫

Ω

∥∥∥ΔV + RN(df(ei), V )df(ei)
∥∥∥
2
dz

+
∫

Ω

〈
V, RN(

τ�
(
f
)
, V

)
τ�

(
f
)
+ 2RN(

df(ei), V
)
Deiτ�

(
f
)

+2RN(
df(ei), τ�

(
f
))
DeiV

〉
dz.

(4.4)

In particular, let V = τ�(f). Recalling that f is a biwave map and N has constant sectional
curvature K > 0, (4.4) can be reduced to

1
2
d2

dt2
E2

(
f
)
∣∣∣∣∣
t=0

= 4
∫

Ω

〈
RN(

df(ei), τ�
(
f
))
Deiτ�

(
f
)
, τ�

(
f
)〉

dz

= 4K
∫

Ω

[〈
df(ei), Deiτ�

(
f
)〉∥∥τ�(f)

∥∥2

− 〈
df(ei), τ�

(
f
)〉〈

τ�
(
f
)
, Deiτ�

(
f
)〉]

dz.

(4.5)
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Since f satisfies the conservation law, by Definition 4.3, Proposition 4.4, and (4.2)we have

〈
df(ei), τ�

(
f
)〉

= 0,

〈
df(ei), Deiτ�

(
f
)〉

= −〈Deidf(ei), τ�
(
f
)〉

= −∥∥τ�
(
f
)∥∥2

.
(4.6)

Substituting (4.6) into (4.5) and applying the stability of f , we get

1
2
d2

dt2
E2

(
ft
)
∣∣∣∣∣
t=0

= −4K
∫

Ω

∥∥τ�f
∥∥4

dz ≥ 0, (4.7)

which implies that τ�(f) = 0, that is, f : Ω → N is a wave map.

If we apply the Hessian of the bi-energy of a biharmonic map [4] to a biwave map
f : Ω → Sn+1(1), then we have the following.

Lemma 4.6. Let f : Ω → Sn+1(1) be a biwave map. The Hessian of the bi-energy functional E2 of f
is

H(E2)f(X,Y ) =
∫

Ω

(
If(X), Y

)
dz, (4.8)

where

If(X) = Δf
(
ΔfX

)
+ Δf

(
trace

(
X, df ·)df · −∣∣df∣∣2X

)
+ 2

(
dτ�

(
f
)
, df

)
X

+
∣∣τ�

(
f
)∣∣2X − 2 trace

(
X, dτ�

(
f
)·)df − 2 trace

(
τ�

(
f
)
, dX·)df ·

− (
τ�

(
f
)
, X

)
τ�

(
f
)
+ trace

(
df ·,ΔfX

)
df · + trace

(
df, trace

(
X, df ·)df ·)df ·

− 2
∣∣df

∣∣2 trace
(
df ·, X)

df · +2(dX, df
)
τ�

(
f
) − ∣∣df

∣∣2ΔfX +
∣∣df

∣∣4X,

(4.9)

for X,Y ∈ Γ(f−1TSn+1(1)).

Theorem 4.7. Let h : Ω → Sn(1/
√
2) be a wave map on a compact domain with constant energy

and let i : Sn(1/
√
2) → Sn+1(1) be an inclusion map. Then f = i ◦ h : Ω → Sn+1(1) is an unstable

biwave map.

Proof. We have the following identities from Theorem 3.5:

∣∣df
∣∣2 = 2e(h), trace

(
ζ, df ·)df · = 0,

(
dτ�

(
f
)
, df

)
ζ = −4(e(h))2ζ,

∣∣τ�(f)
∣∣2 = 4(e(h))2, trace

(
ζ, dτ�

(
f
))
df · = 0, trace

(
τ
(
f
)
, dζ·)df = 0,

(
τ�

(
f
)
, ζ
)
τ�

(
f
)
= 4(e(h))2ζ, trace

(
df,Δfζ

)
df · =

(
Δfζ

)T
,

(
dζ, df

)
τ�

(
f
)
= −4(e(h))2ζ.

(4.10)
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Then we obtain the following formula from Lemma 4.6 and the previous identities:

(
If(ζ), ζ

)
=
∫

Ω

(∣∣∣Δfζ
∣∣∣
2 − 12e(h)2 − 4e(h)

(
Δfζ, ζ

))
dz, (4.11)

which is strictly negative, where Δfζ = 2e(h)ζ. Hence, f is an unstable biwave map.
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