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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. We also denote by K the class of functions
f ∈ A that are convex in U.

Given two functions f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑

n=2

bnz
n, (1.2)

the Hadamard product (or convolution) f∗g is defined by

(f∗g)(z) = z +
∞∑

n=2

anbnz
n (z ∈ U). (1.3)
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By using the Hadamard product, Ruscheweyh [1] defined

Dαf(z) =
z

(1 − z)α+1
∗f(z) (α ≥ −1). (1.4)

From the definition of (1.4), we observe that

Dnf(z) =
z
(
zn−1f(z)

)(n)

n!
, (1.5)

when n = α ∈ N0 = N ∪ {0} = {0, 1, 2, . . . }. The symbol Dnf(z) (n ∈ N0) was called the
nth-order Ruscheweyh derivative of f by Al-Amiri [2]. We also note that D0f(z) = f(z) and
D1f(z) = zf ′(z).

Definition 1.1. Suppose that f ∈ A. Then the function f is said to be a member of the class
Hn(α, λ, b) if it satisfies

∣∣∣∣∣
λ(n + 1)

(
Dn+1f(z)/z

)
+
[
1 − λ(n + 1)

](
Dnf(z)/z

) − 1

λ(n + 1)
(
Dn+1f(z)/z

)
+
[
1 − λ(n + 1)

](
Dnf(z)/z

)
+ 2b(1 − α) − 1

∣∣∣∣∣ < 1

(
z ∈ U; 0 ≤ α < 1; λ ≥ 0; b ∈ C \ {0}; n ∈ N0

)
.

(1.6)

By specializing α, λ, b, and n, one can obtain various subclasses studied by many authors (see,
e.g., [3–11]).

Definition 1.2. Let g be analytic and univalent in U. If f is analytic in U, f(0) = g(0), and
f(U) ⊂ g(U), then one says that f is subordinate to g in U, and we write f ≺ g or f(z) ≺ g(z).
One also says that g is superordinate to f in U.

Definition 1.3. An infinite sequence {bk}∞k=1 of complex numbers will be called a subordinating
factor sequence if for every univalent function f in K, one has

∞∑

k=1

bkakz
k ≺ f(z) (z ∈ U; a1 = 1). (1.7)

Lemma 1.4 (see [12]). The sequence {bk}∞k=1 is a subordinating factor sequence if and only if

Re

{
1 + 2

∞∑

k=1

bkz
k

}
> 0 (z ∈ U). (1.8)

Now, we prove the following lemma which gives a sufficient condition for functions
belonging to the classHn(α, λ, b).
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Lemma 1.5. If the function f which is defined by (1.1) satisfies the following condition:
∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)

∣∣ak

∣∣ ≤ (1 − α)|b| (
0 ≤ α < 1; λ ≥ 0; b ∈ C \ {0}; n ∈ N0

)
, (1.9)

where

C(n, k) =
k∏

j=2

(j + n − 1)
(k − 1)!

(k = 2, 3, . . . ), (1.10)

then f ∈ Hn(α, λ, b).

Proof. Suppose that the inequality (1.9) holds. Using the identity

z
(
Dnf(z)

)′ = (n + 1)Dn+1f(z) − nDnf(z), (1.11)

we have for z ∈ U,
∣∣∣∣(1 − λ)

Dnf(z)
z

+ λ
(
Dnf(z)

)′ − 1
∣∣∣∣ −

∣∣∣∣2b(1 − α) + (1 − λ)
Dnf(z)

z
+ λ

(
Dnf(z)

)′ − 1
∣∣∣∣

=

∣∣∣∣∣

∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)akz

k−1
∣∣∣∣∣ −

∣∣∣∣∣2b(1 − α) +
∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)akz

k−1
∣∣∣∣∣

≤
∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)

∣∣ak

∣∣|z|k−1

−
{
2|b|(1 − α) −

∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)

∣∣ak

∣∣|z|k−1
}

≤ 2

{ ∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)

∣∣ak

∣∣ − |b|(1 − α)

}
≤ 0,

(1.12)

which shows that f belongs toHn(α, λ, b).

Let H∗
n(α, λ, b) denote the class of functions f in A whose Taylor-Maclaurin coefficients

ak satisfy the condition (1.9).
We note that

H∗
n(α, λ, b) ⊆ Hn(α, λ, b). (1.13)

Example 1.6. (i) For 0 ≤ α < 1, λ > 0, b ∈ C \ {0}, and n ∈ N0, the following function defined by:

f0(z) = z +
2b(1 − α)

(n + 1)(λ + 1)
z23F2

(
1, 2, 1 +

1
λ
; 2 +

1
λ
, n + 2; z

)
(z ∈ U), (1.14)

is in the class Hn(α, λ, b).
(ii) For 0 ≤ α < 1, λ > 0, b ∈ C \ {0}, and n ∈ N0, the following functions defined by:

f1(z) = z ± (1 − α)|b|
(λ + 1)(n + 1)

z2 (z ∈ U),

f2(z) = z ± (1 − α)|b|
(2λ + 1)(n + 1)(n + 2)

z3 (z ∈ U),

f3(z) = z ± 1
(λ + 1)(n + 1)

z2 ± 2
[
(1 − α)|b| − 1

]

(2λ + 1)(n + 1)(n + 2)
z3 (z ∈ U)

(1.15)

are in the class H∗
n(α, λ, b).
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In this paper, we obtain a sharp subordination result associated with the class H∗
n(α,

λ, b) by using the same techniques as in [13] (see also [14–16]). Some applications of the main
result which give important results of analytic functions are also investigated.

2. Main theorem

Theorem 2.1. Let f ∈ H∗
n(α, λ, b). Then

(λ + 1)(n + 1)
2
[
(λ + 1)(n + 1) + |b|(1 − α)

](f∗g)(z) ≺ g(z) (z ∈ U) (2.1)

for every function g in K, and

Re f(z) > −(λ + 1)(n + 1) + |b|(1 − α)
(λ + 1)(n + 1)

. (2.2)

The constant (λ + 1)(n + 1)/2[(λ + 1)(n + 1) + |b|(1 − α)] cannot be replaced by a larger one.

Proof. Let f ∈ H∗
n(α, λ, b) and let

g(z) = z +
∞∑

k=2

ckz
k (2.3)

be any function in the class K. Then we readily have

(λ + 1)(n + 1)
2
[
(λ + 1)(n + 1) + |b|(1 − α)

](f∗g)(z) = (λ + 1)(n + 1)
2
[
(λ + 1)(n + 1) + |b|(1 − α)

]
(
z +

∞∑

k=2

akckz
k

)
.

(2.4)

Thus, by Definition 1.2, the subordination result (2.1)will hold true if the sequence

{
(λ + 1)(n + 1)ak

2
[
(λ + 1)(n + 1) + |b|(1 − α)

]
}∞

k=1

(2.5)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1.4, this is equivalent to the
following inequality:

Re

{
1 +

∞∑

k=1

(λ + 1)(n + 1)
[
(λ + 1)(n + 1) + |b|(1 − α)

]akz
k

}
> 0 (z ∈ U). (2.6)

Now, since

[
1 + λ(k − 1)

]
C(n, k)

(
λ ≥ 0, n ∈ N0

)
(2.7)
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is an increasing function of k, we have

Re

{
1 +

∞∑

k=1

(λ + 1)(n + 1)
[
(λ + 1)(n + 1) + |b|(1 − α)

]akz
k

}

= Re

{
1 +

(λ + 1)(n + 1)
[
(λ + 1)(n + 1) + |b|(1 − α)

]z

+
1

[
(λ + 1)(n + 1) + |b|(1 − α)

]
∞∑

k=2

(λ + 1)(n + 1)akz
k

}

> 1 − (λ + 1)(n + 1)
[
(λ + 1)(n + 1) + |b|(1 − α)

]r

− 1
[
(λ + 1)(n + 1) + |b|(1 − α)

]
∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)

∣∣ak

∣∣rk

> 1 − (λ + 1)(n + 1)
[
(λ + 1)(n + 1) + |b|(1 − α)

]r − |b|(1 − α)
[
(λ + 1)(n + 1) + |b|(1 − α)

]r > 0
(|z| = r

)
.

(2.8)

This proves the inequality (2.6), and hence also the subordination result (2.1) asserted by
Theorem 2.1. The inequality (2.2) follows from (2.1) by taking

g(z) =
z

1 − z
∈ K. (2.9)

Next, we consider the function

f1(z) = z − |b|(1 − α)
(λ + 1)(n + 1)

z2
(
0 ≤ α < 1; λ ≥ 0; b ∈ C \ {0}; n ∈ N0

)
(2.10)

which is a member of the classH∗
n(α, λ, b). Then by using (2.1), we have

(λ + 1)(n + 1)
2
[
(λ + 1)(n + 1) + |b|(1 − α)

]f1(z) ≺ z

1 − z
(z ∈ U). (2.11)

It can be easily verified for the function f1(z) defined by (2.10) that

inf
z∈U

{
Re

(
(λ + 1)(n + 1)

2
[
(λ + 1)(n + 1) + |b|(1 − α)

]f1(z)
)}

= −1
2

(z ∈ U) (2.12)

which completes the proof of Theorem 2.1.

3. Some applications

Taking n = 0 in Theorem 2.1, we obtain the following.

Corollary 3.1. If the function f defined by (1.1) satisfies

∞∑

k=2

[
1 + λ(k − 1)

]∣∣ak

∣∣ ≤ m
(
λ ≥ 0, m > 0

)
(3.1)
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then for every function g in K, one has

(λ + 1)
2(λ +m + 1)

(f∗g)(z) ≺ g(z), (z ∈ U),

Re f(z) > −
(
1 +

m

λ + 1

)
.

(3.2)

The constant (λ + 1)/2(λ +m + 1) cannot be replaced by larger one.

Putting λ = 0 in Theorem 2.1, we have the following corollary.

Corollary 3.2. If the function f defined by (1.1) satisfies

∞∑

k=2

C(n, k)
∣∣ak

∣∣ ≤ m, m > 0, n ∈ N0, (3.3)

where C(n, k) is defined by (1.10), then for every function g in K, one has

(n + 1)
2(n +m + 1)

(f∗g)(z) ≺ g(z) (z ∈ U),

Re f(z) > −
(
1 +

m

n + 1

)
.

(3.4)

The constant (n + 1)/2(n +m + 1) cannot be replaced by larger one.

Next, letting λ = 1 and n = 0, in Theorem 2.1, we obtain the following corollary.

Corollary 3.3. If the function f satisfies

∞∑

k=2

k
∣∣ak

∣∣ ≤ m (m > 0), (3.5)

then for every function g in K, one has

1
(m + 2)

(f∗g)(z) ≺ g(z) (z ∈ U),

Re f(z) > −
(
1 +

m

2

)
.

(3.6)

The constant 1/(m + 2) cannot be replaced by a larger one.

Remark 3.4. Putting λ = 1, m = 1, and n = 0, in Theorem 2.1, we obtain the result due to Singh
[17].

Also, by taking λ = 0 and n = 0, in Theorem 2.1, we have the following.

Corollary 3.5. If the function f satisfies

∞∑

k=2

∣∣ak

∣∣ ≤ m (m > 0), (3.7)
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then for every function g in K, one has

1
2(m + 1)

(f∗g)(z) ≺ g(z) (z ∈ U),

Re f(z) > −(1 +m).
(3.8)

The constant 1/2(m + 1) cannot be replaced by a larger one.

It is clearly from the proof of Theorem 2.1 that the function f(z) = z−mz2 (m > 0, z ∈ U)
is the extremal function of Corollary 3.5. Also, the following example gives a nonpolynomial
extremal function for the same corollary.

Example 3.6. Let the function h be defined by

h(z) =
(m + 1)z

(m + 1) +mz
(m > 0, z ∈ U), (3.9)

the above function is analytic in U and it is equivalent to

h(z) = z +
∞∑

k=2

( −m
m + 1

)k−1
zk. (3.10)

Then we have

∞∑

k=2

∣∣∣∣∣

( −m
m + 1

)k−1∣∣∣∣∣ = m. (3.11)

Therefore, the Taylor-Maclaurin coefficients of the function h satisfy the condition in
Corollary 3.5. Moreover, it can be easily verified that

inf
z∈U

Reh(z) = h(−1) = −(m + 1). (3.12)

Then, the constant −(m + 1) cannot be replaced by a larger one. Therefore, the function h is the
extremal function of Corollary 3.5.
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