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1. Introduction

Chandra [1] was first to extend Prössdorf’s [2] result to find the degree of approximation
of a continuous function using the Nörlund transform. Later on, Mohapatra and Chandra
[3] obtained a number of interesting results on the degree of approximation in the Hölder
metric using matrix transforms, which generalize all the previous results based on Cesàro and
Nörlund transforms. In 1992, Singh [4] introducedHω-space in place ofHα-space and obtained
several results on the degree of approximation of functions and deducedmany previous results
based onHα-spaces. In 1996, Das et al. [5] usedH(α,p)-space in place ofHα-space and obtained
degree of approximation of functions and generalized the results of Mohapatra and Chandra
[3]. In 2000, Mittal and Rhoades [6] also obtained the degree of approximation of functions
in a normed space and generalized the results of Singh [4] by removing the hypothesis of
monotonicity of the rows of the matrix. Singh and Soni [7], and Mittal et al. [8] used the
technique of approximation of functions in measuring the errors in the input signals and the
processed output signals.
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2. Definitions and notations

Let the transforms

A:

λn =
n∑

k=1

anksk, (2.1)

B:

τn =
n∑

k=1

bnksk, (2.2)

be two regular methods of summability. Then, the A transform of the B transform of a sequence
{sn} is given by

tn =
n∑

p=1

anpτp =
n∑

p=1

n∑

k=1

anpbpksk, (2.3)

the sequence {sn} is said to be summable tn to the sum s, if

Lim
n→∞

tn = s. (2.4)

Let s(t) ∈ C2π be a 2π-periodic analog signal whose Fourier trigonometric expansion be given
by

s(t)∼ 1
2
a0 +

∞∑

n=1

(
an cosnt + bn sinnt

) ≡
∞∑

n=0

An(t), (2.5)

and let {sn(t)} be the sequence of partial sums of (2.5).
Let the (E, 1) and (C, 1) transforms for the sequence {sn} be defined by

E1
n =

1
2n

n∑

k=0

(
n
k

)
sk(t), (2.6)

σn =
1

n + 1

n∑

k=0

sk(t), (2.7)

respectively.
The product (C, 1)(E, 1)-transform is expressed as the (C, 1)-transform of (E, 1)-

transform of {sn} and is given by sequence-to-sequence transformation (see, e.g., [9]):

tn(s; t) =
1

n + 1

n∑

k=0

E1
k. (2.8)

The sequence {sn} is said to be summable (C, 1)(E, 1) to the sum s, if

Lim
n→∞

tn(s; t) = s. (2.9)
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2.1. Regularity condition of (C, 1)(E, 1)-method

tn(s; t) =
1

n + 1

n∑

k=0

E1
k =

1
n + 1

n∑

k=0

{
1
2k

k∑

υ=0

(
k
υ

)
sk

}
=

∞∑

k=0

Cn,ksk, (2.10)

where

Cn,k =

⎧
⎪⎪⎨

⎪⎪⎩

1
n + 1

2−k
k∑

υ=0

(
k

υ

)
, k ≤ n

0, k > n.

(2.11)

Now,

(i)
∑∞

k=0 |Cn,k| =
∑n

k=0|(1/(n + 1))2−k
∑k

υ=0( k
υ )| = 1,

(ii) Cn,k = (1/(n + 1))(1) → 0, as n → ∞, for fixed k,

(iii)
∑∞

k=0Cn,k = 1,

thus, (C, 1)(E, 1)-method is regular.
Singh [4] defined the spaceHω by

Hω =
{
s(t) ∈ C2π :

∣∣s
(
t1
) − s

(
t2
)∣∣ ≤ Kω

(∣∣t1 − t2
∣∣)}, (2.12)

and the norm ‖ · ‖ω∗ by

‖s‖ω∗ = ‖s‖c + Sup
t1,t2

{
Δω∗

s
(
t1, t2

)}
, (2.13)

where

‖s‖c = Sup
0≤t≤2π

|s(t)|,

Δω∗
s
(
t1, t2

)
=

∣∣s
(
t1
) − s

(
t2
)∣∣

ω∗(∣∣t1 − t2
∣∣) , t1 /= t2,

(2.14)

and choosing Δ0s(t1, t2) = 0, ω(t) and ω∗(t) being increasing signals of t. If ω(|t1 − t2|) ≤
A|t1 − t2|α and ω∗(|t1 − t2|) ≤ K|t1 − t2|β, 0 ≤ β < α ≤ 1, A and K being positive constants,
then the space

Hα =
{
s(t) ∈ C2π :

∣∣s
(
t1
) − s

(
t2
)∣∣ ≤ K

∣∣t1 − t2
∣∣α, 0 < α ≤ 1

}
(2.15)

is Banach space [2] and the metric induced by the norm ‖ · ‖α onHα is said to be Hölder metric.
We write

φt1(t) = s
(
t1 + t

)
+ s
(
t1 − t

) − 2s
(
t1
)
, (2.16)

Kn(t) = sin(n + 1)
t

2

n∑

k=0

(
n
k

)
sin
(
k +

1
2

)
t. (2.17)
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3. Known result

Lal and Yadav [10] established the following theorem to estimate the error between the input
signal s(t) and the signal obtained after passing through the (C, 1)(E, 1)-transform.

Theorem A. If a function s : R → R is 2π-periodic and belonging to class Lipα, 0 < α ≤ 1, then the
degree of approximation by (C, 1)(E, 1) means of its Fourier series is given by

∥∥tn
(
s; t1
) − s

(
t1
)∥∥

∞ =

⎧
⎪⎨

⎪⎩

O
(
n−α), 0 < α < 1

O

(
logn
n

)
, α = 1.

(3.1)

4. Main result

The object of this paper is to generalize the above result under much more general assump-
tions. We will measure the error between the input signal s(t) and the processed output signal
tn(s; t) = (1/(n + 1))

∑n
k=1 E

1
k
(t), by establishing the following theorems.

Theorem 4.1. Let ω(t) defined in (2.12) be such that

∫π

t

ω(u)
u2

du = O
{
H(t)

}
, H(t) ≥ 0, (4.1)

∫ t

0
H(u)du = O

{
tH(t)

}
, as t −→ 0+, (4.2)

then, for 0 ≤ β < η ≤ 1 and s ∈ Hω, we have

∥∥tn
(
s; t1
) − s

∥∥
ω∗ = O

{(
(n + 1)−1H

(
π

n + 1

))1−β/η}
. (4.3)

Theorem 4.2. Let ω(t) defined in (2.12) and for 0 ≤ β < η ≤ 1 and s ∈ Hω, we have

∥∥tn
(
s; t1
) − s

∥∥
ω∗ = O

{(
ω

(
π

n
+ 1
))1−β/η

+
(
(n + 1)−1

n+1∑

k=1

ω

(
1

k + 1

))1−β/η}
. (4.4)

5. Lemmas

We will use following lemmas.

Lemma 5.1. Let φt1(t) be defined in (2.16), then for s ∈ Hω, we have

∣∣φt1(t) − φt2(t)
∣∣ ≤ 4Kω

(∣∣t1 − t2
∣∣), (5.1)

∣∣φt1(t) − φt2(t)
∣∣ ≤ 4Kω

(|t|). (5.2)

It is easy to verify.
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Lemma 5.2. Let Kn(t) be defined in (2.17), then

Kn(t) ≤ C

(
2n+1

t

)
cosn

(
t

2

)
sin(n + 1)

(
t

2

)
, (5.3)

where “C” is an absolute constant, not necessarily the same at each occurrence.

Proof.

Kn(t) =
1

sin(t/2)
I.P.

{ n∑

k=0

(
n
k

)
ei(k+1/2)t

}

=
1

sin(t/2)
I.P.

{
eit/2
(
1 + eit

)n
}

=
1

sin(t/2)
I.P.

{
2ncosn

(
t

2

)
ei(n+1)t/2

}

≤ C

(
2n+1

t

)
cosn

(
t

2

)
sin(n + 1)

(
t

n

)
.

(5.4)

Lemma 5.3.
n∑

k=0

(
1
t

)
cosk

(
t

2

)
sin(k + 1)

(
t

2

)
≤
(
C

t2

)(
1 − cos(n + 1)

(
t

2

)
cosn+1

(
t

2

))
. (5.5)

Proof.

n∑

k=0

(
1
t

)
cosk

(
t

2

)
sin(k + 1)

(
t

2

)

=
n∑

k=0

(
1
t

)
I.P.

{
ei(k+1)t/2cosk

(
t

2

)}

=
(
1
t

)
I.P.

{
eit/2
(
1 − ei(n+1)t/2cosn+1(t/2)

1 − eit/2 cos(t/2)

)}

≤
(
C

t2

)
I.P.

{
i − i cos(n + 1)

(
t

2

)
cosn+1

(
t

2

)
+ sin(n + 1)

(
t

2

)
cosn+1

(
t

2

)}

=
(
C

t2

)(
1 − cos(n + 1)

(
t

2

)
cosn+1

(
t

2

))
.

(5.6)

Lemma 5.4 (see [9]). For 0 ≤ t ≤ 1/n + 1, then

1 − cos(n + 1)
(
t

2

)
cosn+1

(
t

2

)
= O
{
(n + 1)2t2

}
. (5.7)

Lemma 5.5 (see [6]). If ω(t) satisfies conditions (4.1) and (4.2), then
∫u

0
t−1ω(t)dt = O

(
uH(u)

)
, u −→ 0+. (5.8)
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6. Proof of Theorem 4.1

Proof of Theorem 4.1. Following Zygmund [11], we have

sn
(
t1
) − s =

1
2π

∫π

0

φt1(t)
sin(t/2)

sin
(
n +

1
2

)
t dt. (6.1)

From (2.6) and (2.16), we have

E1
n

(
t1
) − s =

2−n

2π

∫π

0
φt1(t)Kn(t)dt. (6.2)

Using Lemma 5.2, we have

E1
n

(
t1
) − s ≤ C

2−(n+1)

π

∫π

0

φt1(t)
t

2n+1cosn
(
t

2

)
sin(n + 1)

(
t

2

)
dt. (6.3)

Now from (2.8), the (C, 1)-transform of (E, 1)-transform is given by

∣∣tn
(
s; t1
) − s

∣∣ ≤ C

n + 1

∫π

0

∣∣φt1(t)
∣∣

t

∣∣∣∣∣

n∑

k=0

cosk
(
t

2

)
sin(k + 1)

(
t

2

)∣∣∣∣∣dt. (6.4)

Setting

En

(
t1
)
=
∣∣tn
(
s; t1
) − s

(
t1
)∣∣ ≤ C

n + 1

∫π

0

∣∣φt1(t)
∣∣

t

∣∣∣∣∣

n∑

k=0

cosk
(
t

2

)
sin(k + 1)

(
t

2

)∣∣∣∣∣dt,

En(t1, t2) =
∣∣En(t1) − En(t2)

∣∣ ≤ C

n + 1

∫π

0

∣∣φt1(t) − φt2(t)
∣∣

t

∣∣∣∣∣

n∑

k=0

cosk
(
t

2

)
sin(k + 1)

(
t

2

)∣∣∣∣∣dt

= O

(
1

n + 1

)(∫π/n+1

0
+
∫π

π/n+1

)
= I1 + I2, say,

(6.5)

now using (4.1), (4.2), (5.2), and Lemma 5.5, we get

I1 = O(1)
1

n + 1

∫π/n+1

0
t−1ω(t)dt = O

{
(n + 1)−1H

(
π

n + 1

)}
. (6.6)

Again using (5.2), (4.1), and Lemma 5.3, we have

I2 = O(1)
1

n + 1

∫π

π/n+1
t−2ω(t)

∣∣∣∣1 − cos(n + 1)
(
t

2

)
cosn+1

(
t

2

)∣∣∣∣dt

= O(1)
1

n + 1

∫π

π/n+1
t−2ω(t)dt

= O

{
(n + 1)−1H

(
π

n + 1

)}
.

(6.7)
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Now from (5.1), Lemmas 5.3 and 5.4, we have

I1 = O(1)
1

n + 1

∫π/n+1

0

ω
(∣∣t1 − t2

∣∣)

t2

∣∣∣∣1 − cos(n + 1)
(
t

2

)
cosn+1

(
t

2

)∣∣∣∣dt

= O(1)
ω
(∣∣t1 − t2

∣∣)

n + 1

∫π/n+1

0
t−2(n + 1)2t2dt

= O
{
ω
(∣∣t1 − t2

∣∣)},

(6.8)

I2 = O(1)
ω
(∣∣t1 − t2

∣∣)

n + 1

∫π

π/(n+1)
t−2dt

= O
{
ω
(∣∣t1 − t2

∣∣)}.

(6.9)

Now noting that

Ir = I
1−β/η
r I

β/η
r , r = 1, 2, (6.10)

we have, from (6.6) and (6.8),

I1 = O

{
(
ω
(∣∣t1 − t2

∣∣))β/η
(
(n + 1)−1H

(
π

n + 1

))1−β/η}
, (6.11)

and from (6.7) and (6.9), we have

I2 = O

{
(
ω
(∣∣t1 − t2

∣∣))β/η
(
(n + 1)−1H

(
π

n + 1

))1−β/η}
. (6.12)

Thus, from (2.13), (6.11) and (6.12), we have

sup
t1,t2

Δω∗∣∣En

(
t1, t2

)∣∣ = sup
t1,t2

∣∣En(t1) − En(t2)
∣∣

ω∗(|t1 − t2|)

= O

{
(
ω
(∣∣t1 − t2

∣∣))β/η(ω∗(∣∣t1 − t2
∣∣))−1

(
(n + 1)−1H

(
π

n + 1

))1−β/η}
.

(6.13)

It is to be noted from (6.6) and (6.7),

∥∥En

(
t1
)∥∥

c = max
0≤t1≤2π

∣∣tn
(
s; t1
) − s

∣∣ = O

{
(n + 1)−1H

(
π

n + 1

)}
. (6.14)

Combining (6.13) and (6.14), we get

∥∥tn
(
s; t1
) − s

∥∥
ω∗ = O

{(
(n + 1)−1H

(
π

n + 1

))1−β/η}
. (6.15)

This completes the proof of Theorem 4.1.

Proof of Theorem 4.2. Follows analogously as the proof of Theorem 4.1 with slight changes, so
we omit details.
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7. Applications

The following results can easily be derived from the Theorem 4.1. If we put ω∗(|t1 − t2|) ≤
K|t1 − t2|β, ω(|t1 − t2|) ≤ A|t1 − t2|α and replace η by α and set

H(u) =

⎧
⎪⎨

⎪⎩

uα−1, 0 < α < 1

log
(
1
u

)
, α = 1,

(7.1)

then we get Corollary 7.1.

Corollary 7.1. If s ∈ Hα, 0 ≤ β < α ≤ 1, then

∥∥tn
(
s; t1
) − s

∥∥
β =

⎧
⎪⎪⎨

⎪⎪⎩

O(n + 1)β−α, 0 < α < 1

O

(
log(n + 1)
(n + 1)

)1−β
, α = 1.

(7.2)

If we put β = 0, then from above corollary, we have Corollary 7.2.

Corollary 7.2. If s ∈ Lipα, 0 < α ≤ 1, then

∥∥tn
(
s; t1
) − s

∥∥ =

⎧
⎪⎨

⎪⎩

O
(
n−α), 0 < α < 1

O

(
log n

n

)
, α = 1.

(7.3)

Hence Theorem 3 is particular case of Theorem 4.1.
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