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1. Introduction

Continuous lattices and their generalizations, continuous domains, have been studied for more
than three decades. Continuous lattices are complete lattices where each element is the supre-
mum of elements way below it. For a poset to be a continuous domain, it needs to have sups
of only directed sets in addition to the following two conditions: (i) each element is the sup of
elements way below it, and (ii) for each element, the set of elements way below it is a directed
set. A continuous poset [1] is any poset in which the conditions (i) and (ii) are satisfied. In a
complete lattice, in fact in any sup-semilattice, the condition (ii) above is automatically satis-
fied. In [2], the authors have studied lattices which are not complete but satisfy the conditions
(i) and (ii) above. The purpose of this paper is to study posets which need not be dcpos or
lattices but which satisfy the condition that each element is the sup of elements way below it.
The exact definition will be given in Section 2.

Here we recall some basic definitions and terminology from domain theory; more details
can be found in [1]. For x, y ∈ P, a partially ordered set, we say that x is way below y (written
x � y), if whenever y ≤ sup D, for a directed setD, there exists d ∈ D such that x ≤ d.A contin-
uous poset is a partially ordered set P in which the following two conditions are satisfied. (i) For
each x ∈ P , x = sup {y : y � x}; and (ii) for each x ∈ P , {y : y � x} is a directed set. A contin-
uous poset in which every directed set has a least upper bound (such posets are called dcpos)
is called a continuous domain. A continuous poset which is also a complete lattice is called
a continuous lattice. In a complete lattice, since the second condition above is automatically
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satisfied, one needs to verify only the first condition. In any continuous poset P, the way below
relation has the interpolation property, that is, for x, y ∈ P with x � y, there exists an element
z ∈ P, such that x � z � y. For more information about continuous lattices, and continuous
domains, the standard reference is [1]. A subset S of a poset P is called up-complete if for any
directed subset D of S, for which supD exists in P , supD is contained in S. We use the fol-
lowing notations: ↓ A = {x : x ≤ a for some a ∈ A}; ⇓ A = {x : x � a for some a ∈ A};
and ⇓ x =⇓ {x}. A subset J of a poset P is called a lower set if and only if J =↓ J. Recall that a
subset U of a poset P is Scott open if and only if U is an upper set satisfying the property that
if the supremum of any directed set D is in U, then D itself intersects U. The lower topology
on a poset P has subbasic closed sets of the form ↑ x, x ∈ P. The join of the lower topology and
the Scott topology on P is the Lawson topology and is denoted by λ(P).

2. C-posets

The following simple but crucial result is the motivation for our definition of a C-poset.

Theorem 2.1. Let L be a continuous poset. Then for each x, y ∈ L, with x � y, there exists u ∈ L and
an up-complete lower set J ⊆ P such that u � y, x /∈ J, and ↑ u ∪ J = L.

Proof. Suppose that L is a continuous poset. Let x, y ∈ L with x � y. Then ∃u � x with u � y.
By the interpolation property, ∃v ∈ L such that u � v � x. Clearly v � y. Define J = L \ ⇑ v.
If D is a directed subset of J , then v is not way below any element of D. If v � supD, then
there exists w such that v � w � supD. This implies that ∃d ∈ D such that v � w ≤ d, a
contradiction. This shows that the supremum of D belongs to J, and thus J is up-complete. It
is immediate that u � y, x /∈ J, and ↑ u ∪ J = L.

Definition 2.2. A partially ordered set P is called a C-poset if for any x, y ∈ P,with x � y, ∃u � y
and an up-complete lower set J such that x /∈ J, and ↑ u ∪ J = P.

Example 2.3. (i) If S is an infinite set and if P is the poset of all finite and cofinite subsets of S,
then P is a C-poset. Suppose that A, B are in P such that A � B. Let x ∈ A such that x /∈B. If
we define J = {A : A ∈ P, x /∈A}, and u = {x}, then this J and u satisfy the conditions in the
definition of a C-poset.

(ii) Let X be a T0 space for which the lattice of open sets is a continuous lattice. Here X
is endowed with the specialization order. Let L be a continuous domain with a least element
endowed with the Scott topology. Let P = [X → L] be the set of all Scott continuous functions.
It can be shown that P is a C-poset but not a continuous poset, see [1, page 200].

(iii) Let Pi, i ∈ I be a collection of C-posets with 0 and 1. Then the product of Pis is a C-
poset. If (xi) � (yi), then there exists j ∈ I such that xj � yj. Since Pj is a C-poset, there exists
a ∈ Pj such that a � yj and an up-complete lower setK of Pj such that xj /∈ K and Pj =↑ a∪K.
Define u = (ui), where ui = 0 if i /= j and uj = a. Also define J =↓ S, where S = {(xi) : xi = 1 if
i /= j and xj ∈ K}. It is easy to see that the above u and J satisfy the conditions in the definition
of a C-poset.

The next theorem establishes that C-posets do satisfy the approximation property, that
is, each element is the supremum of elements way below it.

Theorem 2.4. If P is a C-poset, then for each x ∈ P , x = sup {z : z � x} = sup ⇓ x.
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Proof. We need to prove this only for x /= 0. If x /= 0, then there exists y ∈ P such that x � y.
Therefore, by the definition of a C-poset, there exists u � y, and an up-complete lower set J
such that x /∈ J, and ↑ u ∪ J = P . We will show that u � x. Suppose thatD is a directed set in P
such that supD ≥ x. IfD∩ ↑ u = ∅, thenD ⊆ J and since J is up-complete, supD ∈ J. Since J is
a lower set, this forces x ∈ J, a contradiction. This shows that u � x. Thus the set {z : z � x} is
nonempty, and x is an upper bound of it. Let w be any upper bound of that set. We will show
that x ≤ w. Indeed, if x � w, then ∃u′ � w and an up-complete lower set J ′ such that x /∈ J ′,
and ↑ u′ ∪ J ′ = P. But then u′ � x, which contradicts the assumption that w is an upper bound
of the set {z : z � x}. Therefore x ≤ w. This completes the proof of the theorem.

Corollary 2.5. If a C-poset is a sup-semilattice, then it is a continuous poset; if a C-poset is a complete
lattice, then it is a continuous lattice.

Theorem 2.6. Let P be a C-poset, and let {xi,k : i ∈ I, k ∈ K(i)} be a nonempty family of elements of
P such that {xi,k : k ∈ K(i)} is a directed set for all i ∈ I. Then the following identity holds whenever
the specified sups and infs exist:

∧

i∈I

∨

K(i)

xi,k =
∨

f∈M

∧

i∈I
xi,f(i), (2.1)

whereM is the set of all choice functions f : I → ⋃
i∈IK(i) with f(i) ∈ K(i) for all i

Proof. Since the right hand side is always less than or equal to the left-hand side, we need to
prove only the reverse inequality. By Theorem 2.4, it is enough to show that whenever x �∧

i∈I
∨

K(i)xi,k, we have x � ∨
f∈M

∧
i∈Ixi,f(i).

Suppose that x � ∧
i∈I

∨
K(i)xi,k. Then, x � ∨

K(i)xi,k, for all i ∈ I. Therefore, by the
definition of the way below relation, we can choose a g(i) ∈ K(i) with x ≤ xi,g(i) for all i ∈ I.
This implies that x ≤ ∧

i∈Ixi,g(i), and hence x is less than or equal to the right hand side of the
identity. This completes the proof of the theorem.

Let g : P → Q, and let d : Q → P be monotone functions between posets. The pair
(g, d) is called a Galois connection if for x ∈ P, and y ∈ Q, g(x) ≥ y if and only if x ≥
d(y). Here g is called an upper adjoint, and d is called a lower adjoint. A monotone function
g : P → Q between posets is called an upper adjoint if there exists a (necessarily unique)
monotone function d : Q → P such that (g, d) is a Galois connection. Basic properties of Galois
connections can be found in [1].

Definition 2.7. A function from a C-poset to another C-poset is called a homomorphism if it is an
upper adjoint which preserves sups of directed sets. A subposet S of a C-poset P is called a
subalgebra if the inclusion map i : S → P is a homomorphism.

Theorem 2.8. (a) Let P be a C-poset and let Q be any poset. If f : P → Q is a surjective homomor-
phism, then Q is a C-poset.

(b) If P is a C-poset and if S is a subalgebra of P, then S is a C-poset.

Proof. (a) Suppose that g is the lower adjoint of f. Let y2 � y1 inQ. Pick x1 ∈ P with f(x1) = y1.
Since g is a lower adjoint of f , y2 � f(x1) implies g(y2) � x1. Then there exist u ∈ P and an
up-complete lower set J such that u � x1, g(y2) /∈ J, and P =↑ u ∪ J. Define I := g−1(J), and
v := f(u). Since the lower adjoint g preserves sups, I is up-complete, and y2 /∈ I. If x ∈ J, then
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f(x) ≤ f(x) implies gf(x) ≤ x, which implies gf(x) ∈ J. Thus f(x) ∈ g−1(J) = I. If x /∈ J, then
u ≤ x which implies f(u) ≤ f(x). Thus ↑ f(u) ∪ I = Q. This completes the proof that Q is a
C-poset.

(b) Let i : S → P be the inclusion map and let d be its lower adjoint. Let x, y ∈ S such
that x � y. Then there exists u ∈ P, and an up-complete lower set J ⊆ P, such that u � y,
x /∈ J, and P =↑ u ∪ J. Since u � y = i(y), d(u) � y. Define I := i−1(J). Since i preserves sups
of directed sets, I is an up-complete lower set, and x /∈ I. For t ∈ S, t /∈ J, implies i(t) = t /∈ J,
which implies that u ≤ t. Thus d(u) ≤ d(t) = t. Therefore, ↑ Sd(u) ∪ I = S. This completes the
proof that S is a subalgebra.

Notice that the proof of (a) above did not use the assumption that f preserves the sups
of directed sets.

Definition 2.9. Let P be a C-poset. A subposet B of P is called a basis of P if given any x, y ∈ P
with x � y, there exist b ∈ B and an up-complete lower set J ⊆ P such that b � y, x /∈ J , and
↑ b ∪ J = P .

Theorem 2.10. If B is a basis of a C-poset P, then for each x ∈ P , x = sup {b : b ∈ B, b � x}.

Proof. Weneed to prove this only for x /= 0. If x /= 0, then there exists y ∈ P such that x � y. Then,
by the definition of the basis, there exists b ∈ B such that b � y, and an up-complete lower set
J such that x /∈ J, and ↑ b ∪ J = P. It follows immediately that b � x. Thus, {b : b ∈ B, b � x}
is nonempty and x is an upper bound of it. Suppose that v is any upper bound of the same
set. If x � v, then there exist b′ ∈ B and an up-complete lower set J ′ such that x /∈ J ′, and
↑ u′ ∪ J ′ = P. As shown above b′ � x which contradicts the assumption that v is an upper
bound of {b : b ∈ B, b � x}. Thus x ≤ u. This completes the proof.

Proposition 2.11. (1) Let P, Q be C-posets with B as a basis of P . If g : P → Q is a surjective
homomorphism, then g(B) is a basis of Q.

(2) If S is a subalgebra of a C-poset P, and if B is a basis of P, then d(B) is a basis of S, where d
is the lower adjoint of the inclusion map.

Proof. (1) Let d be the lower adjoint of g. Suppose that y1, y2 ∈ Q such that y2 � y1. Let x1 ∈ P,
such that g(x1) = y1. Since y2 � g(x1), d(y2) � x1. Since B is a basis of the C-poset P, there
exist b ∈ B and an up-complete lower set J ⊆ P such that b � x1, d(y2) /∈ J, and ↑ b ∪ J = P.
Let I = d−1(J) and c = f(b). Since the lower adjoint preserves sups, I is an up-complete lower
set, and y2 /∈ I. If x ∈ J , f(x) ≤ f(x) implies df(x) ≤ x. This implies that df(x) ∈ J, and hence
f(x) ∈ d−1(J) = I. If x /∈ J, then b ≤ x, which implies f(b) = c ≤ f(x). Thus ↑ c ∪ I = Q. This
completes the proof.

The proof of (2) is similar and hence omitted.
Though algebraic lattices were studied for several decades before the introduction

of continuous lattices, algebraic lattices, and their generalizations, algebraic domains, have
played an important role in domain theory. Algebraic domains are continuous domains in
which every element is the sup of compact elements (an element x is compact if x � x) below
it, in which the set of compact elements below every element is a directed set. We generalize
this notion to posets which are not necessarily dcpos in which the set of compact elements
below any element is not necessarily directed. The following result is the motivation for our
definition.
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Theorem 2.12. If L is an algebraic poset, then for x, y ∈ L, with x � y, there exist u ∈ L and an
up-complete lower set J ⊆ L, such that u � y, x /∈ J , ↑ u ∪ J = L, and ↑ u ∩ J = ∅.

Definition 2.13. A C-poset is called an A-poset if the condition of Theorem 2.12 is satisfied.

Proposition 2.14. A C-poset P is an A-poset if and only if the set of all compact elements of P is a basis
of P.

3. Topology on C-posets

The wealth of topological structures in continuous domains and the interplay between the
topological and algebraic properties of continuous domains are well documented [1]. In this
section, we look at C-posets endowed with the Lawson topology.

Theorem 3.1. A C-poset endowed with the Lawson topology is a pospace and hence Hausdorff. An
A-poset endowed with the Lawson topology is totally order-disconnected.

Proof. Let P be a C-poset. Suppose that x, y ∈ P such that x � y. Then, there exist u ∈ P, and an
up-complete lower set J such that u � y, x /∈ J, and ↑ u∪ J = P. LetU = P \ J, and V = P \ ↑ u.
Then U is a Lawson open-upper set, and V is a Lawson open lower set. Clearly x ∈ U and
y ∈ V.MoreoverU∩V = (P \ J)∩ (P \ ↑ u) = P \ (J ∪ ↑ u) = ∅. This shows that P is a pospace.

If P is an A-poset, then for x, y ∈ P , x � y implies the existence of u ∈ P and an up-
complete lower set J as in the previous paragraphwith the additional condition that ↑ u∩J = ∅.
This means that ↑ u is both closed and open. This completes the proof of the theorem.

An inf-semilattice P is called meet continuous if for all directed subsets D of P for which
supD exists, and for all x ∈ P , x supD = supxD.

Proposition 3.2. If a C-poset P is also an inf-semilattice, then P is meet-continuous.

Proof. Let D be a directed subset of P such that supD exists, and let x ∈ P. We need to show
only that x sup D ≤ supxD since the reverse inequality is always true. Suppose that x sup
D � supxD. Then there exist u � supxD and an up-complete lower set J such that x sup
D/∈ J and ↑ u ∪ J = P. Since J is a lower set, this means that x /∈ J, and supD/∈ J. Then x ∈ ↑ u,
and since J is up-complete, ∃d ∈ D such that d ∈ ↑ u. Thus for this d, xd ∈ ↑ u which
contradicts u � supxD. This completes the proof.

Proposition 3.3. Let P be a C-poset which is also an inf-semilattice. Then the inf-operation is a contin-
uous function (L × L, λ(L × L)) → (L, λ(L)).

Proof. First, consider V = ∧−1(P \ ↑ x) = {(y, z) : x � y ∧ z}. We will show that V is open. If
(y, z) ∈ V, then x � y ∧ z. Therefore, there exist a u � y ∧ z and an up-complete lower set J
such that x /∈ J, and ↑ u ∪ J = P. Let S = (P × P) \ ↑ (u, u). Then clearly S is open in P × P and
(y, z) ∈ S. We will show that S ⊆ V. If (t, r) ∈ S, then either u � t or u � r. Therefore, u � t ∧ r,
which implies that t ∧ r ∈ J. If x ≤ t ∧ r, then, since J is a lower set, x ∈ J, a contradiction. Thus
x � t ∧ r which means that S ⊆ V.

Let O be any Scott open subset of P, and consider U = ∧−1(O). We will show that U =
{(y, z) : y ∧ z ∈ O} is a Scott open subset of P × P. Suppose that D is a directed subset of P × P
such that supD = (a, b) ∈ U. Then, a∧ b ∈ O. LetD1 = {d1 : ∃d2 such that (d1, d2) ∈ D}, and let
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D2 = {d2 : ∃d1 such that (d1, d2) ∈ D}. Then D1 and D2 are directed sets such that supD1 = a,
and supD2 = b. Since P is meet-continuous by Proposition 3.2, a ∧ b = supD1 ∧ supD2 =
sup (D1D2) ∈ O. SinceD1D2 is a directed set and since O is Scott-open, there exist d1 ∈ D1 and
d2 ∈ D2 such that d1 ∧ d2 ∈ O, which implies that (d1, d2) ∈ U. This completes the proof of the
proposition.
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