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We consider the Schrödinger-type operator H = (−Δ)2 + V 2, where the nonnegative potential V
belongs to the reverse Hölder class Bq1 for q1 ≥ n/2, n ≥ 5. The Lp estimates of the operator ∇4H−1

related to H are obtained when V ∈ Bq1 and 1 < p ≤ q1/2. We also obtain the weak-type estimates
of the operator ∇4H−1 under the same condition of V .
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1. Introduction

In recent years, there has been considerable activity in the study of Schrödinger operators
(see [1–4]). In this paper, we consider the Schrödinger-type operator

H = (−Δ)2 + V 2 on R
n, n ≥ 5, (1.1)

where the potential V belongs to Bq1 for q1 ≥ n/2. We are interested in the Lp boundedness of
the operator∇4H−1, where the potential V satisfies weaker condition than that in [5, Theorem
1, (2)]. The estimates of some other operators related to Schrödinger-type operators can be
found in [2, 5].

Note that a nonnegative locally Lq integrable function V on R
n is said to belong to

Bq (1 < q < ∞) if there exists C > 0 such that the reverse Hölder inequality

(
1
|B|

∫
B

V (x)qdx

)1/q

≤ C

(
1
|B|

∫
B

V (x)dx

)
(1.2)

holds for every ball B in R
n.
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It follows from [3] that the Bq class has a property of “self-improvement”, that is, if
V ∈ Bq, then V ∈ Bq+ε for some ε > 0.

We now give the main results for the operator ∇4H−1 in this paper.

Theorem 1.1. Suppose V ∈ Bq1 , q1 ≥ n/2. Then for 1 < p ≤ q1/2 there exists a positive constant Cp

such that

∥∥∇4H−1f
∥∥
Lp(Rn) ≤ Cp‖f‖Lp(Rn). (1.3)

By the proof of Theorem 1.1, we obtain the following weak-type estimate.

Theorem 1.2. Suppose V ∈ Bq1 , q1 ≥ n/2. Then for 1 < p ≤ q1/2 there exists a positive constant C1

such that

∣∣{x ∈ R
n :

∣∣∇4H−1f(x)
∣∣ ≥ λ

}∣∣ ≤ C1

λ
‖f‖L1(Rn). (1.4)

Under a stronger condition on the potential V , Sugano [5] has obtained the following
proposition.

Proposition 1.3. Suppose V ∈ Bn/2 and there exists a constant C such that V (x) ≤ Cm(x, V )2.
Then for 1 < p < ∞ there exists a positive constant Cp such that

∥∥∇4H−1f
∥∥
Lp(Rn) ≤ Cp‖f‖Lp(Rn). (1.5)

As a direct consequence of our Lp estimates, we have the following corollary.

Corollary 1.4. Suppose V ∈ Bq1 for q1 ≥ n/2. Assume that (−Δ)2u + V 2u = f in R
n. Then

∥∥∇4u
∥∥
Lp(Rn) ≤ Cp‖f‖Lp(Rn) for 1 < p ≤ q1

2
. (1.6)

Throughout this paper, unless otherwise indicated, we will use C to denote constants,
which are not necessarily the same at each occurrence. By A∼B, we mean that there exist
constants C > 0 and c > 0 such that c ≤ A/B ≤ C.

2. The auxiliary function m(x, V ) and estimates of fundamental solution

In this section, we firstly recall the definition of the auxiliary function m(x, V ) and some
lemmas about the auxiliary function m(x, V ) which have been proven in [3].

Lemma 2.1. If V ∈ Bq, q > 1, then the measure V (x)dx satisfies the doubling condition, that is,
there exists C > 0 such that

∫
B(x,2r)

V (y)dy ≤ C

∫
B(x,r)

V (y)dy (2.1)

holds for all balls B(x, r) in R
n.
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Lemma 2.2. For 0 < r < R < ∞ and V ∈ Bq1 for q1 ≥ n/2, there exists C > 0 such that

1
rn−2

∫
B(x,r)

V (y)dy ≤ C

(
r

R

)2−n/q1 1
Rn−2

∫
B(x,R)

V (y)dy. (2.2)

Assume that V ∈ Bq1 , q1 ≥ n/2. The auxiliary function m(x, V ) is defined by

1
m(x, V )

=̇ sup
r>0

{
r :

1
rn−2

∫
B(x,r)

V (y)dy ≤ 1
}
, x ∈ R

n. (2.3)

Lemma 2.3. If r = 1/m(x, V ), then

1
rn−2

∫
B(x,r)

V (y)dy = 1. (2.4)

Moreover,

1
rn−2

∫
B(x,r)

V (y)dy ∼ 1, iff r ∼ 1
m(x, V )

. (2.5)

Lemma 2.4. There exists l0 > 0 such that for any x and y in R
n,

1
C

(
1 +m(x, V )|x − y|)−l0 ≤ m(x, V )

m(y, V )
≤ C

(
1 +m(x, V )|x − y|)l0/(l0+1). (2.6)

In particular,m(x, V )∼m(y, V ), if |x − y| < C/m(x, V ).

Lemma 2.5. There exists l1 > 0 such that

∫
B(x,R)

V (y)
|x − y|n−2dy ≤ C

Rn−2

∫
B(x,R)

V (y)dy ≤ C
(
1 + Rm(x, V )

)l1 . (2.7)

Lemma 2.6. There exists C > 0, c > 0, and l0 > 0 such that, for any x, y ∈ R
n,

c
{
1 + |x − y|m(y, V )

}1/(l0+1) ≤ 1 + |x − y|m(x, V )

≤ C
{
1 + |x − y|m(y, V )

}l0+1. (2.8)

Refer to [3] for the proof of the above lemmas.
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The next lemma has been obtained by Tao and Wang in [6].

Lemma 2.7. Let q > s ≥ 0, q ≥ max{1, sn/α}, α > 0, and kbe sufficiently large, then there are
positive constants k0, C, and Ck such that

∫
|x−y|<r

V (y)s

|x − y|n−α dy ≤ Crα−2s
{
1 + rm(x, V )

}sk0 ,
∫

Rn

V (y)s{
1 +m(x, V )|x − y|}k|x − y|n−α

dy ≤ Ckm(x, V )2s−α
(2.9)

for any r > 0, x ∈ R
n, and V ∈ Bq.

In order to prove Theorem 1.1, we need to give the estimates of the fundamental
solution of H. Zhong has established the estimates of the fundamental solution of H in [2]
when V (x) is a nonnegative polynomial. Recently, Sugano [5] has obtained the polynomial
decay estimates of the fundamental solution of H under a weaker condition on V in the
following theorem.

Theorem 2.8. Assume V ∈ Bn/2 and let ΓH(x, y) be the fundamental solution ofH. For any positive
integerN, there exists a constant CN such that

0 ≤ ΓH(x, y) ≤ CN(
1 +m(x, V )|x − y|)N

1
|x − y|n−4 . (2.10)

3. Proof of the main results

In this section, we will prove Theorems 1.1 and 1.2.

Theorem 3.1. Suppose V ∈ Bq1 , q1 ≥ n/2. Then for 1 < p ≤ q1/2 there exists a positive constant Cp

such that

∥∥V 2H−1f
∥∥
Lp(Rn) ≤ Cp‖f‖Lp(Rn). (3.1)

Proof. Let f ∈ Lp(Rn) and

u(x) =
∫

Rn

ΓH(x, y)f(y)dy. (3.2)

We need to show that

∥∥V 2u
∥∥
Lp(Rn) ≤ C‖f‖Lp(Rn). (3.3)
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Write

u(x) =
∫
|x−y|<r

Γ(x, y)f(y)dy +
∫
|x−y|≥r

Γ(x, y)f(y)dy

= u1(x) + u2(x),

(3.4)

where r = 1/m(x, V ).
Because of the self-improvement of the Bq1 class, V ∈ Bq0 for some q0 > q1, we have

∣∣u1(x)
∣∣ ≤ C

∫
|x−y|<r

|f(y)|
|x − y|n−4dy

≤ C

(∫
|x−y|<r

∣∣f(y)∣∣q0/2dy
)2/q0(∫

|x−y|<r
|x − y|−(n−4)q′dy

)1/q′

= Cr4−2n/q0
(∫

|x−y|<r

∣∣f(y)∣∣q0/2dy
)2/q0

,

(3.5)

where 1/q′ + 2/q0 = 1.
Thus,

∫
Rn

∣∣V 2(y)u1(y)
∣∣q0/2dy

≤ C

∫
Rn

(∫
|x−y|<r

∣∣f(y)∣∣q0/2dy
)
V (x)q0m(x, V )n−2q0dx

= C

∫
Rn

∣∣f(y)∣∣q0/2
(∫

|x−y|<1/m(x,V )
V (x)q0m(x, V )n−2q0dx

)
dy.

(3.6)

Now, let R = 1/m(y, V ). Then

∫
|x−y|<1/m(x,V )

V (x)q0m(x, V )n−2q0dx ≤ CR2q0−n
∫
|x−y|<CR

V (x)q0dx

≤ CR2q0

(
R−n

∫
|x−y|<CR

V (x)dx

)q0

= C

(
1

Rn−2

∫
|x−y|<CR

V (x)dx

)q0

≤ C,

(3.7)

where we used (1.2), Lemmas 2.3 and 2.4.
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Hence, we have proved that for some q0 > q1 ≥ n/2,

∫
Rn

∣∣V 2(x)u1(x)
∣∣q0/2dx ≤ C

∫
Rn

∣∣f(x)∣∣q0/2dx. (3.8)

By choosing s = 2, α = 4, and r = 1/m(x, V ) in Lemma 2.7, we immediately have

∫
|x−y|<1/m(x,V )

V 2(x)
|x − y|n−4dx ≤ 4k0 . (3.9)

Thus,

∫
Rn

∣∣V 2(x)u1(x)
∣∣dx ≤ C

∫
Rn

∣∣f(y)∣∣
(∫

|x−y|<1/m(x,V )

V 2(x)
|x − y|n−4dx

)
dy

≤ Ck0

∫
Rn

∣∣f(y)∣∣dy.
(3.10)

Therefore, by using interpolation we have

∥∥V 2u1
∥∥
Lp1 (Rn) ≤ C‖f‖Lp1 (Rn) for 1 ≤ p1 ≤

q0
2
. (3.11)

Then we deal with u2.
For 1 < p ≤ q0/2, by the Hölder inequality,

∣∣u2(x)
∣∣ ≤ C

∫
|x−y|≥r

|f(y)|dy(
1 + |x − y|m(x, V )

)N |x − y|n−4

≤ C

(∫
|x−y|≥r

|f(y)|pdy(
1 + |x − y|m(x, V )

)N |x − y|n−4

)1/p

×
(∫

|x−y|≥r

dy(
1 + |x − y|m(x, V )

)N |x − y|n−4

)1/p′

= Cr4/p
′
(∫

|x−y|≥r

|f(y)|pdy(
1 + |x − y|m(x, V )

)N |x − y|n−4

)1/p

,

(3.12)

where r = 1/m(x, V ) and we apply the second inequality for s = 0 and α = 4 in Lemma 2.7 to
the last step.
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Thus, for 1 ≤ p ≤ q0/2,

∫
Rn

∣∣V 2(x)u2(x)
∣∣pdx

≤ C

∫
Rn

∣∣f(y)∣∣p
(∫

|x−y|≥1/m(x,V )

∣∣V (x)
∣∣2pdx

m(x, V )4p−4
(
1 + |x − y|m(x, V )

)N |x − y|n−4

)
dy.

(3.13)

Fix y ∈ R
n and let R = 1/m(y, V ). By Lemmas 2.4, 2.6, and 2.7,

∫
|x−y|≥1/m(x,V )

∣∣V (x)
∣∣2pdx

m(x, V )4p−4
(
1 + |x − y|m(x, V )

)N |x − y|n−4

≤ C

∫
|x−y|≥1/m(x,V )

∣∣V (x)
∣∣2pdx

R4−4p(1 + |x − y|R−1)N1 |x − y|n−4
(
N1 =

N − 4(p − 1)l0
l0 + 1

)

≤ Ck
1

R4−4pm(y, V )4p−4

≤ C

(3.14)

if we choose N large enough.
From this, we have

∫
Rn

∣∣V 2(x)u2(x)
∣∣pdx ≤

∫
Rn

∣∣f(x)∣∣pdx for 1 ≤ p ≤ q0
2
. (3.15)

Thus the theorem is proved.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose V ∈ Bq1 for some q1 ≥ n/2. By Theorem 3.1, we have

∥∥V 2((−Δ)2 + V 2)−1f∥∥Lp(Rn) ≤ C‖f‖Lp(Rn) for 1 ≤ p ≤ q1
2
. (3.16)

It follows that

∥∥(−Δ)2
(
(−Δ)2 + V 2)−1f∥∥Lp(Rn) ≤ C‖f‖Lp(Rn) for 1 ≤ p ≤ q1

2
. (3.17)

Because ∇4(−Δ)−2 is a Calderón-Zygmund operator, for 1 < p ≤ q1/2, we have

∥∥∇4((−Δ)2 + V 2)−1f∥∥Lp(Rn) ≤ Cp

∥∥(−Δ)2
(
(−Δ)2 + V 2)−1f∥∥Lp(Rn) ≤ Cp‖f‖Lp(Rn). (3.18)
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Proof of Theorem 1.2. Note that ∇4(−Δ)−2 satisfies

∣∣{x ∈ R
n :

∣∣∇4(−Δ)−2f(x)
∣∣ ≥ λ

}∣∣ ≤ C1

λ
‖f‖L1(Rn). (3.19)

Thus, by the proof of Theorem 1.1,

∣∣{x ∈ R
n :

∣∣∇4((−Δ)2 + V 2)
−1
f(x)

∣∣ ≥ λ
}∣∣ ≤ C1

λ

∥∥(−Δ)2
(
(−Δ)2 + V 2)−1f∥∥L1(Rn)

≤ C1

λ
‖f‖L1(Rn).

(3.20)
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