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1. Introduction

For solving the inverse problems, in particular, for identification of systems with known
structure, the quasilinearization method (QM) is a standard tool. Designed by Bellman
et al. [1], this method was later applied to different kinds of identification problems (cf.
[2] or [3] for references). We were interested in application of QM to solve the parameter
identification problem for the BSP-kinetics in the human liver [4–7]. One of the possible
descriptions of this kinetics can be given by the nonlinear system of ordinary differential
equations

Ẋ(t)=−c1X
(
K1−Y

)
,

Ẏ(t)= c1X
(
K1−Y

)− c2Y
(
K2−Z

)
,

Ż(t)= c2Y
(
K2−Z

)− c3Z,

(1.1)

whereX(t),Y(t),Z(t) mean the amount of BSP in the blood, in the membranes of hepatic
cells, inside the cells at the time t, respectively, and α = (c1,c2,c3,K1,K2)� is a vector of
unknown positive parameters [6]. Suppose a “single injection” in which the amount I
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Table 1.1. The amount of BSP in the blood.

Time (min) ti 0 3 5 10 20 30 43

BSP (mg) ri = X(ti) 250 221 184 141 98 80 64

Table 1.2. The amount of BSP in the bile.

Time (min) s j 0 5 10 15 20 25 30

BSP (mg) ej =V(s j) 0 0.2 2.5 6 10.5 15.8 21.7

Time (min) s j 35 40 45 50 60 70 80

BSP (mg) ej =V(s j) 28 34.8 41.8 49 63.8 78.5 92.7

Time (min) s j 90 100 110 120 130 140 150

BSP (mg) ej =V(s j) 105.7 117 127.1 136.3 144.5 152.1 159.2

(mg) of BSP is injected into the blood at once. This leads to the initial conditions

X(0)= I , Y(0)= Z(0)= 0. (1.2)

In order to uniquely determine the unknown positive parameters α= (K1,K2,c1,c2,c3)�,
we have to know at least two different data sets. From practical point of view, we can ob-
tain data describing the decreasing level of BSP in the blood (Table 1.1) and in Table 1.2,
they are presenting the measurements of BSP in the bile. These data were obtained
through medical experiments by Hrnčı́ř [6].

The first data set corresponds to the function X(t). The second one corresponds to the
function V(t)= I −X(t)−Y(t)−Z(t) describing the level of BSP in the bile.

However, the standard approach like in [2, 3], or recent [8, 9] does not provide the
reasonable outputs corresponding to the nature of parameters, especially if we solve an
identification problem for nonlinear system of ordinary differential equations. (We can
obtain negative values of determinated parameters, see Section 5.) Therefore we propose
a modification of the quasilinearization method (MQM). The algorithm of the modified
QM consists of the steps displayed below. Let us briefly introduce the MQM (see Section 3
for details).

The classical approach used by Bellman (see [2, 3]) is similar to Algorithm 1.1 with
the exception of Step 3 (which requires the computation of the solution of the given dif-
ferential equation in every step of the algorithm) and with the exception of Steps 6 and
7. In the existing sources, like [2, 3, 8, 9], only the linearized differential equation given
in Step 4 is used only. This makes things easier from the viewpoint of computation and
works properly especially for linear systems of differential equations. The development of
computing devices since the eighties of the last century and the software (like the package
Mathematica) allow to do the computations fast even if the given differential equation is
solved approximately in every step of determining a better approximation of the values
of parameters. The problem is that the solution of the differential equation (1.1) for the
certain value of the parameter can be far from the solution of this equation linearized
around the fixed solution x(k) from Step 3. This obstacle is removed by Steps 6 and 7 es-
pecially in the case of nonlinear differential equations. In this way, the final value of the
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Step 1. Consider a nonlinear autonomous initial problem

ẋ = f (x,α), x(0)= c,

where x ∈Rn, α∈RN , and f :Rn+N →Rn is a continuous function. This problem is
equivalent to the Cauchy problem

ẋ = g(x), x(0)= c,

where

x = (x,α)� = (
x1, . . . ,xn,α1, . . . ,αN

)� ∈Rn+N ,

g(x)=
(

f (x,α),0, . . . ,0
︸ ︷︷ ︸

N

)�
,

c= (
c1, . . . ,cn,β1, . . . ,βN

)� ∈Rn+N .

Step 2. Choose the initial approximation α(1), the tolerance ε > 0, and put k = 1.

Step 3. Compute the solution x(k)(t) of the system

ẋ(t)= g(x),

with the initial condition

x(0)=
(
c1, . . . ,cn,α(k)

1 , . . . ,α(k)
N

)
.

Step 4. Evaluate the solution y(k+1)(t) of the linearized equation in a particular form

y(k+1)(t)= p(k+1)(t) +
N∑

j=1

βjh( j,k+1)(t).

Step 5. Determine the minimum β∗ of the penalty function Ψk+1(β) := Υ(y(k+1)) and set
α(k+1) := β∗.

Step 6. Choose ζk > 0, that is, the maximum allowed distance between the parameters α(k+1) and
α(k).

Step 7. If the deviation S(x(k+1)) < S(x(k)) and
(a) ‖α(k+1)−α(k)‖ ≤ ζk , then go to Step 3;
(b) ‖α(k+1)−α(k)‖ > ζk , then suitably change the value α(k+1) (see Lemma 3.5 for details).

Step 8. Set k := k+ 1 and repeat Steps 3, 4, 5, 6, 7(a), respectively, Step 7(b) until the condition

0≤ S
(
x(k)

)− S
(
x(k+1)

)
< ε

is satisfied.

Step 9. If S(x(k+1)) > S(x(k)), then go back to Step 2 and start the algorithm with a better choice
α(1).

Algorithm 1.1
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parameters is reached (according to the criteria for stopping the computatuion given in
Steps 8-9).

The organization of this paper is as follows. In Section 2 we give a basic notations and
definitions. In Section 3 we describe the modification of quasilinearization method in de-
tail, and in Section 4 we give the convergence theorem. Section 5 includes the numerical
results.

2. Notations and definitions

Let Rm be a vector space with the scalar product

(u,v) := u�v =
m∑

i=1

uivi, (2.1)

u= (u1, . . . ,um)� ∈Rm, v = (v1, . . . ,vm)� ∈Rm. The associated norm is

‖u‖ := (u,u)1/2. (2.2)

Let A= (ai j), i, j = 1, . . . ,m, be an m×m matrix. Then the matrix norm is given by

‖A‖ :=
( m∑

i, j=1

∣
∣ai j

∣
∣2
)1/2

. (2.3)

The matrix A is called positive definite if there is a constant K > 0 such that

(u,Au)≥ K‖u‖2 (2.4)

for every u∈Rm.

Lemma 2.1. Let γ̃ = (γ1, . . . ,γm)� ∈Rm. Let M be an m×m symmetric matrix of the form

M = Γ+E, (2.5)

where Γ= γ̃γ̃� = (Γ1, . . . ,Γm), Γi ∈Rm for all i= 1, . . . ,m, and E is the m×m identity ma-
trix. Then the matrix M is positive definite.

Proof. Denote

Mkk =
(
M1, . . . ,Mk

)=

⎛

⎜
⎜
⎜
⎝

m11 ··· m1k
...

. . .
...

mk1 ··· mkk

⎞

⎟
⎟
⎟
⎠
. (2.6)

We can write the matrix Mkk in the form

Mkk =
(
Γ1 + e1, . . . ,Γk + ek

)
, (2.7)
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where ei = (0, . . . ,0,1,0, . . . ,0)� is the k-dimensional vector with 1 on the ith position,
i= 1, . . . ,k. The minor detMkk of the matrix M can be evaluated as follows:

detMkk = det
(
Γ1 + e1, . . . ,Γk + ek

)= ···

= detE+
k∑

l=1

det
(
e1, . . . ,el−1,Γl,el+1, . . . ,ek

)
+

2k−k−1∑

j=1

detQj ,
(2.8)

where Qj are the matrices with at least two columns Γr ,Γs. These k-dimensional vectors
Γr ,Γs are not linearly independent since

Γi = γiγ̃ = γi
(
γ1, . . . ,γk

)�
, γi ∈R, (2.9)

for all i= 1, . . . ,k. Therefore,

detMkk = detE+
k∑

l=1

det(e1, . . . ,el−1,Γl,el+1, . . . ,ek)= 1 +
k∑

l=1

γ2
l , (2.10)

and the matrix M is positive definite by Sylvester criterion [10, page 248]. �

Lemma 2.2. Let M be an m1×m1 symetric positive definite matrix of the form (2.5). Let E
be m2×m2 identity matrix. Let m=m1 +m2. Then the block diagonal m×m matrix

Md =
⎛

⎝M 0

0 E

⎞

⎠ (2.11)

is positive definite too.

The proof is clear.

Lemma 2.3. Let L2
m[0,T] be the space of vector functions h(t)= (h1(t), . . . ,hm(t))� with the

scalar product

(h,g)=
∫ T

0

(
h(t),g(t)

)
Rmdt. (2.12)

Let the matrix Md have the form (2.11). Then

〈h,g〉 =
∫ T

0

(
h(t)

)�
Mdg(t)dt (2.13)

is a scalar product on L2
m[0,T] too.

The proof follows easily by Lemma 2.2.

Remark 2.4. There are norms of m-dimensional vector function h(t),

‖h‖2 = (h,h), (2.14)
∥
∥|h|∥∥2 = 〈h,h〉, (2.15)

associated with the scalar products (2.12), (2.13). Obviously, they are equivalent.
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Lemma 2.5. LetCm[0,T] be the normed space of continuousm-dimensional vector functions
with the norm

‖h‖C = max
t∈[0,T]

∥
∥h(t)

∥
∥
Rm . (2.16)

If the sequence of functions {hn(t)}∞n=1 is uniformly convergent to the function h(t) in the
space Cm[0,T], that is, limn→∞‖hn−h‖C = 0, then

lim
n→∞

∥
∥hn−h

∥
∥= 0, (2.17)

where the norm ‖h‖ is defined by (2.14).

Proof. We can write

∥
∥hn−h

∥
∥2 = (

hn−h,hn−h
)

=
∫ �

0

(
hn(t)−h(t),hn(t)−h(t)

)
Rmdt

≤
∫ �

0
max
t∈[0,T]

(
hn(t)−h(t),hn(t)−h(t)

)
Rmdt

=
∫ �

0
max
t∈[0,T]

∥
∥hn−h

∥
∥2
Rmdt =

∫ �

0

∥
∥hn−h

∥
∥2
Cdt

= T
∥
∥hn−h

∥
∥2
C.

(2.18)

Hence

√
T
∥
∥hn−h

∥
∥
C ≥

∥
∥hn−h

∥
∥. (2.19)

From this inequality, the assertion of Lemma 2.5 follows. �

Let D ⊂Rm be a convex set. The function S : D→R is called a strictly convex function if
there is a constant χ > 0 such that for every u,v ∈D and for every α∈ [0,1], the inequality

S
(
αu+ (1−α)v

)≤ αS(u) + (1−α)S(v)−α(1−α)χ‖u− v‖2 (2.20)

is satisfied. The constant χ is called the constant of the strict convexity of the function S on
the set D.

Lemma 2.6. Let D ⊂Rm be a convex closed set. Let S(u) have the form

S(u)= u�Au+ b�u+ c, (2.21)

where A is a positive definite m×m matrix, b ∈Rm, and c ∈R. Then S is a strictly convex
function.

The proof is clear.
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3. Modification of the quasilinearization method

Let Q ⊂ Rn be a closed convex set of the variables x = (x1, . . . ,xn)� and let D ⊂ Rn be a
closed convex set of the parameters α= (α1, . . . ,αN )�. Let f : Q×D→Rn have continuous
bounded partial derivatives up to the second order. Consider a nonlinear autonomous
system of ordinary differential equations with the initial condition

ẋ(t)= f (x,α),

x(0)= c.
(3.1)

In order to avoid considering two different types of vectors, we will suppose that the
vector α satisfies the differential equation

α̇(t)= 0 (3.2)

with the initial condition

α(0)= β, (3.3)

where β = (β1, . . . ,βN )�. Define a new vector x by

x = (x,α)� = (
x1, . . . ,xn,α1, . . . ,αN

)� ∈Rn+N , (3.4)

and a vector c (corresponding to the initial condition) by

c= (c,β)� = (
c1, . . . ,cn,β1, . . . ,βN

)� ∈Rn+N . (3.5)

The vector x(t) satisfies the nonlinear differential equation

ẋ(t)= g(x), (3.6)

where g(x)= ( f (x,α),0, . . . ,0
︸ ︷︷ ︸

N

)�, with the initial condition

x(0)= c. (3.7)

The aim is to find the unknown parameters α such that the solution of the initial
problem (3.1) fits in some sense with a given tolerance ε > 0 to the measured data or to
the continuous function which approximates these data, respectively.

Assume that the approximating fuction r(t)= (r1(t), . . . ,rn(t))� corresponding to the
measured data is given and let e(t) be an approximating function appropriate to a certain
linear combination of the components of the solution of (3.1) which is again measured
during the experiment (in our case, r(t) ≈ (X(t),Y(t),Z(t))�, e(t) ≈ V(t)). In this con-
text, let us point out that in practice, the values of r(t) and e(t) are measured in discrete
instants of time, {t1, . . . , tL} and {s1, . . . ,sM}, L,M ∈ N, and the functions r(t), e(t) have
to be produced from given measured values. The procedure how to do this is in fact a
matter of taste and intuition. It seems to be reasonable to get the functions r(t) and e(t)
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using spline interpolation. Our motivation is the Cauchy problem given by (1.1), (1.2)
described in the intoduction.

The weighted deviation, Γ : Cn[0,T] → R, of a given function z(t) ∈ Cn[0,T] from
the approximating functions r(t) and e(t) can be expressed, in sense of the least-square
method, in the form

Γ(z)=
n∑

l=1

(∫ �

0

(
zl(t)− rl(t)

)2
dt
)

+
∫ �

0

((

γ+
n∑

l=1

γlzl(t)

)

− e(t)

)2

dt, (3.8)

where γ,γl are given real weighting constants (in our case, γ = X(0)= I and γl =−1 for
l = 1,2,3).

Lemma 3.1. Let Cn[0,T] be the space of continuous vector functions z(t) with the norm
(2.16), for m= n. Let Γ(z) have the form (3.8). Then Γ(z) is continuous from Cn[0,T] to R.

The proof follows easily by Lemma 2.5 and Remark 2.4.

Let x(k)(t)= (x(k)
1 (t), . . . ,x(k)

n (t),α(k)
1 , . . . ,α(k)

N )� (kth iteration) be a solution to (3.6) on
the interval [0,T] with the initial condition (3.7) for c = (c1, . . . ,cn,α(k)

1 , . . . ,α(k)
N )�. The

solution of the equivalent system (3.1) for α= α(k) = (α(k)
1 , . . . ,α(k)

N )� is x(k) = (x(k)
1 (t), . . . ,

x(k)
n (t))�. The deviation between the solution x(k)(t) and measured data has the form

(3.8), that is,

S
(
x(k))=

n∑

l=1

(∫ �

0

(
x(k)
l (t)− rl(t)

)2
dt
)

+
∫ �

0

((

γ+
n∑

l=1

γlx
(k)
l (t)

)

− e(t)

)2

dt. (3.9)

We would like to find a new vector of parameters β = α(k+1) so that

S
(
x(k+1)) < S

(
x(k)). (3.10)

The dependence of x(k)(t), respectively, x(k)(t) on the parameters β (β = α(k)) is not
clear, therefore we approximate x(k)(t) by the solution y(k+1)(t) of a linearized system

ẏ(t)= g
(

x(k)(t)
)

+ J
(

x(k)(t)
)(

y(t)− x(k)(t)
)
, (3.11)

where J(x) is the Jacobian matrix of g(x).
Equation (3.11) is a linear system of n+N differential equations and its general solu-

tion y(t) with

y j(0)=
⎧
⎪⎨

⎪⎩

cj for j = 1, . . . ,n,

βj−n for j = n+ 1, . . . ,n+N ,
(3.12)

can be represented in the form

y(t)= y(k+1)(t)= p(k+1)(t) +
N∑

j=1

βjh( j,k+1)(t). (3.13)
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Here the function p(k+1)(t) is the (particular) solution of the nonhomogeneous equation

ṗ(t)= g
(

x(k)(t)
)

+ J
(

x(k)(t)
)(

p(t)− x(k)(t)
)

(3.14)

which fulfills the initial condition

p(0)= (
c1, . . . ,cn,0, . . . ,0

)�
, (3.15)

the (n + N)-column vectors h( j,k+1)(t), j = 1, . . . ,N , are solutions of the homogeneous
system

ḣ( j,k+1)(t)= J
(

x(k)(t)
)

h( j,k+1)(t) (3.16)

with

h
( j,k+1)
i (0)=

⎧
⎪⎪⎨

⎪⎪⎩

0 for i �= n+ j,

1 for i= n+ j, i= 1, . . . ,n+N.

(3.17)

Let

H(k+1)(t) := (
h(1,k+1)(t), . . . ,h(N ,k+1)(t)

)
(3.18)

be the (n+N)×N matrix with the columns equal to the solutions of (3.16), (3.17). Then
the solution (3.13) can be written in the form

y(k+1)(t)= p(k+1)(t) + H(k+1)(t)β, (3.19)

where β = (β1, . . . ,βN )�.

Lemma 3.2. Let t ∈ [0,T]. Let x(k)(t) be the solution to (3.6), (3.7) for x(k)(0)= (c1, . . . ,cn,

α(k)
1 , . . . ,α(k)

N )� and let y(k+1)(t) be the solution to (3.11) with the initial conditions (3.12). If,
moreover, β = α(k), then

y(k+1)(t)= x(k)(t) (3.20)

for t ∈ [0,T]. This means that

x(k)(t)= p(k+1)(t) + H(k+1)(t)α(k). (3.21)

For the proof, see [4, Lemma 4.1, page 235].
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From the equality (3.13), we can see immediately that the dependence of y(k+1)(t) on
the parameters βj , j = 1, . . . ,N , is affine. The parameters βj , j = 1, . . . ,N , are free and they
can be used for minimizing the function Υ : Cn+N [0,T]→R,

Υ
(

y(k+1))=
∫ �

0

(
y(k+1)(t)− r(t)

)�(
y(k+1)(t)− r(t)

)
dt

+
∫ �

0

(

γ+
n∑

l=1

γly
(k+1)
l (t)− e(t)

)2

dt,

(3.22)

where r(t)= (r1(t), . . . ,rn(t),y(k+1)
n+1 (t), . . . ,y(k+1)

n+N (t))�, γ̂ = (γ1, . . . ,γn,0, . . . ,0)� ∈Rn+N .
It is easy to see that Υ(z1, . . . ,zn+N )= Γ(z1, . . . ,zn) for all z1, . . . ,zn+N ∈ C[0,T].
Since the function Υ(y(k+1)) depends on β, we can look at the function Υ(y(k+1)) as a

function of parameters β = (β1, . . . ,βN )�. Let

Ψk+1(β) := Υ
(

y(k+1)) (3.23)

be the function from RN to R.
It is easy to show that the function Ψk+1(β) is a quadratic polynomial in the variables

β1, . . . ,βN , that is,

Ψk+1(β)= β�Ak+1β+ b�k+1β+ ck+1, (3.24)

where the coefficients Ak+1,b�k+1,ck+1 are as follows:

Ak+1 =
∫ �

0

(
H(k+1)(t)

)�(
γ̂γ̂� +E

)
H(k+1)(t)dt (3.25)

is an N ×N matrix, E is (n+N)× (n+N) unity matrix,

b�k+1 = 2
∫ �

0

((
p(k+1)(t)− r(t)

)�
+
(

p(k+1)(t)
)�
γ̂γ̂�

+
(
e(t)− γ

)
γ̂�

)
H(k+1)(t)dt

(3.26)

is an N-dimensional row vector, and

ck+1 =
∫ �

0

(
γ− e(t)

)(
γ− e(t) + 2γ̂�p(k+1)(t)

)
+
(

p(k+1)(t)
)�
γ̂γ̂�p(k+1)(t)

+
(

r(t)−p(k+1)(t)
)�(

r(t)−p(k+1)(t)
)
dt

(3.27)

is a real constant.
The quadratic polynomial (3.24) is continuously differentiable in the variable β =

(β1, . . . ,βN )�, where for the derivatives, we have

S′k+1(β)= 2β�Ak+1 + b�k+1,

S′′k+1(β)= 2Ak+1,
(3.28)
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and the higher derivatives are zero because S′′k+1 is an N ×N constant matrix. The matrix
Ak+1 has the form

Ak+1 =

⎛

⎜
⎜
⎜
⎝

〈
h(1,k+1),h(1,k+1)

〉 ··· 〈
h(N ,k+1),h(1,k+1)

〉

...
. . .

...
〈

h(1,k+1),h(N ,k+1)
〉 ··· 〈

h(N ,k+1),h(N ,k+1)
〉

⎞

⎟
⎟
⎟
⎠
. (3.29)

The elements of the matrix Ak+1 are scalar products on the space Cn+N [0,T] given by
(2.13) with the (n+N)× (n+N) symmetric block diagonal matrix

Md = Γ+E = γ̂γ̂� +E. (3.30)

In the following lemma, we give the necessary condition for positive definiteness of the
matrix Ak+1.

Lemma 3.3. Let h( j,k+1)(t), j = 1, . . . ,N , be the solutions of (3.16), (3.17). Then the matrix
Ak+1 is positive definite.

Proof. Matrix Ak+1 is the Gramm matrix which is real and symmetric. Since the vectors
h( j,k+1)(t) are linearly independent, we have detAk+1 �= 0. Let λj , j = 1, . . . ,N , be the eigen-
value of the matrix Ak+1 and let u( j) be the corresponding eigenvector, ‖u( j)‖ �= 0. Then
λj ∈R and

0 <
(
u( j),u( j))= (

u( j))�Ak+1u
( j) = (

u( j))�λju
( j) = λj

N∑

i=1

(
u

( j)
i

)2
. (3.31)

This inequality implies that all eigenvalues are positive. There are orthogonal matrix Ok+1

and diagonal matrix Dk+1 = diag(λ1, . . . ,λN ) so that

Ak+1 =Ok+1Dk+1O
�
k+1. (3.32)

Let β = (β1, . . . ,βN )� ∈RN , ‖β‖ �= 0. Then

(
β,Ak+1β

)= (
O−1

k+1β,Dk+1O
−1
k+1β

)≥min
j
λ j
(
O−1

k+1β,O−1
k+1β

)

=min
j
λ j(β,β)=min

j
λ j‖β‖2.

(3.33)

�

In the next lemma, we give a set and its property in which we look for the minimum
of the function (3.24).

Lemma 3.4. Let Sk+1(β) have the form (3.24). Denote Vk := S(x(k)), where x(k) is a solution
of (3.1) for α= αk. Define

Mαk := {
β | β ∈D,Ψk+1(β)≤Vk

}
. (3.34)

Then Mαk is a convex set for all k = 1,2, . . . .
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Proof. Let β1,β2 ∈Mαk , a∈ (0,1). Denote A=Ak+1, b = bk+1 a c = ck+1. Then

Ψk+1
(
aβ1 + (1− a)β2

)= (
aβ1 + (1− a)β2

)�
A
(
aβ1 + (1− a)β2

)
+ b

(
aβ1 + (1− a)β2

)
+ c

=a2β�1 Aβ1 +2a(1− a)β�1 Aβ2 +(1− a)2β�2 Aβ2 +abβ1 +(1− a)bβ2+c

= aβ�1 Aβ1 + abβ1 + ac+ (1− a)β�2 Aβ2 + (1− a)bβ2 + (1− a)c

+ 2a(1− a)β�1 Aβ2− a(1− a)β�1 Aβ1− a(1− a)β�2 Aβ2

≤ aVk + (1− a)Vk − a(1− a)
(
β1−β2

)�
A
(
β1−β2

)≤Vk.
(3.35)

The last inequality holds since A is positive definite. �

The necessary conditions for determining the local extreme on the set Mαk are given
by the equations

∂Ψk+1(β)
∂βj

= 0, j = 1, . . . ,N. (3.36)

Let us denote the solution of (3.36) by β∗ = (β∗1 , . . . ,β∗N )�. Since the matrix Ak+1 is pos-
itive definite by Lemma 3.3 and the function Ψk+1(β) is the strictly convex function by
Lemma 2.6, β∗ is the unique point of minimum (see [11, page 186]). Put

α(k+1) := β∗ = (
β∗1 , . . . ,β∗N

)�
. (3.37)

In this way, we obtain new initial condition

x(k+1)(0)= (
c,α(k+1))� (3.38)

for the solution x(k+1)(t) of (3.6). Computing this solution, we get the solution x(k+1) of
the equivalent system (3.1) for α= α(k+1). Determine the deviation (3.9). If the inequality
(3.10), that is,

S
(
x(k+1)) < S

(
x(k)), (3.39)

holds and the distance between α(k) and α(k+1) is small, that is,

∥
∥α(k+1)−α(k)

∥
∥≤ ζk, (3.40)

for a given ζk small, then we can repeat the whole process of enumeration until the con-
dition

0≤ S
(
x(k))− S

(
x(k+1)) < ε, (3.41)

where ε > 0 is a given tolerance, is satisfied.
If the inequality (3.10) is fulfilled, but

∥
∥α(k+1)−α(k)

∥
∥≥ ζk, (3.42)
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we have to modify the value of the parameter α(k+1). The modification is based on the
following lemma.

Lemma 3.5. Let Mαk have the form (3.34) (cf. Lemma 3.4). Then for arbitrary ζk > 0, there
is a parameter α(k+1) ∈Mαk such that

∥
∥α(k+1)−α(k)

∥
∥≤ ζk. (3.43)

Proof. Let β∗ ∈Mαk be an argument of minima of Ψk+1(β). Since Mαk is a convex set, we
can look for the parameter α(k+1) in the form

α(k+1) = (1− a)α(k) + aβ∗, (3.44)

where a ∈ (0,1). The object is to find a proper value a such that the vector α(k+1) has to
satisfy the inequality (3.43). We would like to have

∥
∥α(k+1)−α(k)

∥
∥= ∥

∥(1− a)α(k) + aβ∗ −α(k)
∥
∥= a

∥
∥β∗ −α(k)

∥
∥≤ ζk. (3.45)

Hence, we have to choose a such that a≤ ζk/‖β∗ −α(k)‖. �

We are able to shift the parameter α(k+1) to α(k) such that the distance between α(k+1)

and α(k) is arbitrarily small, in particular less than a given tolerance ζk.
If S(x(k+1)) > S(x(k)) (the value of deviation has increased), we have to stop the whole

process of computation and to start with a better choice of the initial approximation α(1).
If S(x(k+1)) = S(x(k)) holds, we get the required values of parameters α = α(k) and the

algorithm cannot produce better parameter values (for a given α(1)) and we are finished.
In the following lemmas, we describe the changes of the distance between the functions

x(k)(t), x(t) and between x(k)(t), y(k+1)(t).

Lemma 3.6. Let x(k)(t), x(t) be the solutions of (3.6), with the initial condition x(k)(0) =
(c,α(k))�, x(0)= (c,α)�. Then for any ζ > 0, there is ζk > 0 such that

∥
∥x(k)− x

∥
∥
C ≤ ζ , (3.46)

whenever
∥
∥α(k)−α

∥
∥≤ ζk. (3.47)

Proof. The proposition follows from the continuous dependence of the solution x(t) of
(3.6) on the initial conditions [12, page 94]. �

Corollary 3.7. Let the function S(z) have the form (3.8). Let x(k)(t), x(t) be the solutions
of (3.6), with the initial conditions x(k)(0)= (c,α(k))�, x(0)= (c,α)�. Let x(k)(t), x(t) be the
corresponding solutions of (3.1). Then, for every ε > 0, there is ζk > 0 such that if

∥
∥α(k)−α

∥
∥≤ ζk, (3.48)

then
∣
∣S

(
x(k))− S(x)

∣
∣≤ ε. (3.49)
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Proof. The assertion follows from Lemma 3.6 realizing the continuity of S(z) (see Lemma
3.1). �

Lemma 3.8. Let t ∈ [0,T] and k = 1,2, . . . . Let x(k)(t) be the solution of (3.6) with the
initial condition x(k)(0) = (c,α(k))�. Let y(k+1)(t) be the solution of (3.11) for y(k+1)(0) =
(c,α(k+1))�. Then, for every ωk > 0, there is ζk > 0 such that if

∥
∥α(k+1)−α(k)

∥
∥≤ ζk, (3.50)

then

∥
∥y(k+1)− x(k)

∥
∥
C ≤ ωk. (3.51)

Proof. The difference y(k+1)(t)− x(k)(t) satisfies the differential equation

d

dt

(
y(k+1)(t)− x(k)(t)

)= J
(

x(k)(t)
)(

y(k+1)(t)− x(k)(t)
)
. (3.52)

Integrating both sides from 0 to s∈ [0,T], we get

y(k+1)(s)− x(k)(s)= y(k+1)(0)− x(k)(0) +
∫ s

0
J
(

x(k)(t)
)(

y(k+1)(t)− x(k)(t)
)
dt. (3.53)

Hence

∥
∥y(k+1)− x(k)

∥
∥≤ ∥

∥y(k+1)(0)− x(k)(0)
∥
∥+

∫ s

0

∥
∥J
(

x(k))(y(k+1)− x(k))∥∥dt. (3.54)

Using the fact that

∥
∥y(k+1)(0)− x(k)(0)

∥
∥= ∥

∥α(k+1)−α(k)
∥
∥, (3.55)

we have by the Gronwall lemma that

∥
∥y(k+1)− x(k)

∥
∥≤ ∥

∥α(k+1)−α(k)
∥
∥exp

(∫ s

0

∥
∥J
(

x(k))∥∥dt
)
. (3.56)

Since the vector function x(k)(t) is bounded on the interval [0,T]� s, we have
∫ s

0

∥
∥J
(

x(k))∥∥dt ≤ LT <∞, (3.57)

where L is a Lipschitz constant of the function g(x). Consequently,

∥
∥y(k+1)− x(k)

∥
∥≤ ∥

∥α(k+1)−α(k)
∥
∥eLT . (3.58)

Hence, our assertion holds with any ζk ∈ (0,ωke−LT). �

Remark 3.9. Let x(k)(t), y(k+1)(t) be the same as in Lemma 3.8. We can express

α(k+1) = α(k) +Δα(k+1). (3.59)
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Then, using (3.13), (3.59), (3.21), we have

y(k+1)(t)= p(k+1)(t) + H(k+1)(t)α(k+1)

= p(k)(t) + H(k+1)(t)
(
α(k) +Δα(k+1))

= x(k)(t) + H(k+1)(t)Δα(k+1).

(3.60)

In addition, we have

α(k+1) = α(k) +Δα(k+1) = α(1) +
k∑

i=1

Δα(i+1). (3.61)

4. Convergence of the method

We did not manage to formulate the sufficient conditions for convergence of the sequence
{α(k)}∞k=1 generated by the modified quasilinearization method (MQM) for arbitrary ini-
tial approximation α(1). Nevertheless, the method, if it is successful, constructs a conver-
gent sequence of parameters {α(k)}∞k=1.

We can choose a sequence {ζk}∞k=1 such that it is decreasing, liminf ζk = 0, and in ad-
dition

∞∑

k=1

ζk <∞. (4.1)

Due to Lemmas 3.4 and 3.5, the parameter α(k+1) ∈Mαk and (3.43) holds. All param-
eters α(k), k = 1,2, . . . , are the points of the convex set D defined by

D := conv

( ∞⋃

k=1

Mαk

)

. (4.2)

Theorem 4.1. Let {ζk}∞k=1 be the decreasing convergent sequence such that ζk > 0 and (4.1)
holds. Let {α(k)}∞k=1 be a sequence generated by MQM. Then {α(k)}∞k=1 is a Cauchy sequence.

Proof. The sum
∑∞

k=1 ζk is a convergent sum which consist of positive real numbers, there-
fore for every ε > 0, there is k0 ∈N such that

∑∞
l=k0

ζl ≤ ε/2. Consequently, there is k0 ≥ k
so that

∥
∥α(k+p)−α(k)

∥
∥≤ ∥

∥α(k+p)−α(k0)
∥
∥+

∥
∥α(k)−α(k0)

∥
∥≤

k+p∑

l=k0

ζl +
k∑

l=k0

ζl ≤ ε

2
+
ε

2
≤ ε. (4.3)

From the facts above, it follows that for every ε > 0, there is natural number k0 such that
for every natural number p and for every k ≥ k0, the inequality

∥
∥α(k+p)−α(k)

∥
∥≤ ε (4.4)

is true. This means that the sequence {α(k)}∞k=1 is a Cauchy sequence. �

Corollary 4.2. The sequence {α(k)}∞k=1 has a limit α(∞).
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The ideal situation is a construction of the sequence α(k) → α(∗) such that S(x(∗))= 0,
where x(∗) is a solution of (3.1) for α= α(∗). From practical point of view, this ideal situa-
tion is very rare, consequently we take up with a sequence for which the condition (3.41)
is satisfied. Using MQM, we receive the best possible approximation α(∞) depending on
an initial choice α(1).

5. Application

In the paper [4], we discussed a simple mathematical model of the human liver. In [5],
we presented three other models describing the BSP-kinetics in the human liver. One of
them is nonlinear system (1.1) with the initial condition (1.2). In order to determine the
positive unknown parameters α= (K1,K2,c1,c2,c3)�, we employ the measured data pre-
sented in Tables 1.1 and 1.2. We interpolate these data by cubic splines SD3(t),SE3(t) for
numerical enumeration. In order to obtain first approximation x(1) of the system (1.1),
we have to make an educated guess of the parameters. We start the evaluation with the
initial approximation

α(1) =
(
K (1)

1 ,K (1)
2 ,c(1)

1 ,c(1)
2 ,c(1)

3

)� = (13,130,0.004,0.13,0.0099)�. (5.1)

The points on Figure 5.1 represent the measurements, see Tables 1.1 and 1.2, in this

figure. The function X(t) = x(1)
1 (t) and V(t) = I − X(t)− Y(t)− Z(t) = γ +

∑n
i=1 γlx

(1)
l

(t), where n = 3, γ = X(0) = I , γl = −1 for l = 1,2,3. In terms of this graph, we see that
the initial approximation is convenient. The value of deviation (3.9) is S(x(1))= 5453.89.
Let us put ε = 0.0575.

If we apply the quasilinearization method described by Bellman, we get

α(2) = (−33.0488,172.407,0.0663514,0.731521,0.00749651)�. (5.2)

This result is not relevant since the parameter K1 characterizing the capacity of the cell’s
membranes should be positive. Repeating the classical quasilinearization for the identifi-
cation problem, we receive a divergent sequence of parameters.
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Using our modification described in Section 3, we obtain

α(700) = (
0.482797,142.108,0.12435,1.21995,0.924285∗ 10−2)�, (5.3)

for the same initial approximation α(1). We stopped the evaluation after 700 iteration
steps since

0≤ S
(
x(699))− S

(
x(700)) < 0.0575, (5.4)

that is, the condition in Step 8 was satisfied.
Our modification was proved on the simple linear mathematical model of the human

liver published in [7]. The advantage of the system describing the simple mathematical
model is a knowledge of the exact analytic solution. Modification of the quasilinearization
method applied to this simple linear model provides identical results as classical Bellman’s
quasilinearization method for the inverse problem.
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