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1. Introduction

Let F. be the Fourier cosine transform [

(Eef) (x) = \f [ cosxysnay, (11)

and let F; be the Fourier sine transform [1]

(st)(x)=\/zJ:sinxyf(y)dy. (1.2)

In 1941, Churchill introduced the convolution of two functions f and g for the Fourier
cosine transform

(fgfg)(x) = \/%TTJ’O flgx+y)+g(lx—yl)]dy, x>0, (1.3)

and proved the following factorization equality [2]:

E(f %8)0) = (ES) ) (Eg) ). (1.4)
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Using the factorization property (1.4), one can easily solve the integral equation with the
Toeplitz-plus-Hankel kernel

f<x>+j:[k1<x+ M +ka(lx—yD1f()dy = g(x) (1.5)

in case the Toeplitz kernel k,(x) and the Hankel kernel k;(x) are the same [3, 4]. The
general case is still open.

The convolution of two functions f and g with the weight function y(y) = sin y for
the Fourier sine transform was introduced by Kakichev in [5]

(f%g)(x) = 2\}EJ:f(u)[sign(x+u— g (lx+u—1])+sign(x—u+1)g(lx —u+1])

—glx+u+1)—sign(x—u—1)g(lx—u—11)]du, x>0,
(1.6)

where the following factorization property has been established:

F(f ;yfg) (y) =sin y(Ef) (y) (Fsg) (). (1.7)

Further properties of this convolution have been studied in [6].

Churchill was also the first author who introduced the generalized convolution for two
different integral transforms. Namely, in 1941, he defined the generalized convolution of
two functions f and g for the Fourier sine and cosine transforms

(£ 8) ) == Flalglx—ul) - glx+wldu, x>0, (18)
and proved the following factorization identity [7]:
Fs(ffg)()/):(st)(}’)(ch)(}’) (1.9)

It is easy to see that the integral equation with the Toeplitz-plus-Hankel kernel (1.5) can
be written in the form

FE)+V2m(f ) () +V2m(f 5 he) (x) = g (), (1.10)

where hy = (1/2) (k) + k3) and h, = (1/2)(k, — ky). So studying generalized convolutions
may shed light on how to solve the integral equation with the Toeplitz-plus-Hankel kernel
(1.5) in closed form.

In 1998, Kakichev and Thao proposed a constructive method for defining a generalized
convolution for three arbitrary integral transforms (see [8]). For example, for the Fourier
cosine and Fourier sine transforms, the following convolution has been introduced in [9]:

(f fg)(x) = \/%J’:f(u)[sign(u—x)g(lu—xl) +g(u+x)]du, x>0. (1.11)
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For this convolution, the following factorization equality holds [9]:

Fe(f %8) () = (Ef) () (Fg) (). (1.12)
Another generalized convolution with a weight function y(y) = sin y for the Fourier
cosine and sine transforms has been studied in [10]

<f %’ig)(x) - zjﬁjjf(u)[g(lx+u—1|)+g(|x—u+1\)

(1.13)
—glx+u+1)—g(lx—u—1])]du, x>0.
It satisfies the factorization property [10]
F(f {kg) (y) =sin y(Fsf) () (Feg) (). (1.14)

In any convolution of two functions f and g, if we fix one function, say g, as the kernel,
and allow the other function f vary in a certain function space, we will get an integral
transform f — f*g. The most famous integral transforms constructed by that way are
the Watson transforms that are related to the Mellin convolution and the Mellin trans-
form [11]

Fx)— g(x) = j:kw) Fy)dy. (L15)

Recently, a class of integral transforms that is related to the generalized convolution (1.11)
has been introduced and investigated in [12]. In this paper, we will consider a class of in-
tegral transform which has a connection with the generalized convolution (1.13), namely,
the transforms of the form

2 oo

flx)—g(x) = (1 = %)UO kLf (Ix+y =10 + f(Ix = y+11)
- fty+D - flx-y=1)ldy  (116)
+[ R+ = yDldy], x>0

We show that under certain conditions on the kernels k; and k;, transform (1.16) admits
an inverse of similar form. We find conditions on the kernels k; and k, when transform
(1.16) defines a bounded operator from L,(R;) to Ly(Ry) (1<p <2, pl+g7 ' =1).
Moreover, Watson- and Plancherel-type theorems for transforms (1.16) in L,(R) are
also obtained.

2. A Watson-type theorem
LemMa 2.1. Let f,g € Ly(Ry). Then for any x > 0, the following identity holds:

J:f(u)[g(|x+u— ) +g(lx—u+1]) —glx+u+1) —g(lx—u—1])]du
= 2V2nF (sin y(F,f)(y)(F.g) () (x).

(2.1)
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Proof. Let f; be the odd extension of f from R, to R and g; the even extension of g from

Ry to R. Then let F f; is an odd function while Fg, is an even function, where F is the
Fourier integral transform

(FN)) == e f . (22)

On R, we have F f| = —iF;f and Fg, = F.g.
The Parseval identity for the Fourier integral transform yields

J:f(u)[g(|x+u— ) +g(lx—u+1l) —glx+u+1)—g(lx—u—1/)]du
=rf(u)g1(x—u+1)du— wa(u)g(x+u+ du
0 0
—I:f(u)g(x—u— 1)du+J:f(u)g1(x+u— 1)du

00

= J,wﬁ(u)gl (x—u+1)du— Jc:ofl(u)gl (x—u—1)du (2.3)

(oY)

B J: (Ffi) () (Fgr) (w)e'™* V" du - le (Ffi)(u)(Fg1) (w)e™Vudy

= [ R E2) 0 (coste Dy-+isinGer 1y)dy

- [T RO Eg) (1) (coste— Dy +isinGe— 1y)dy.

On the other hand, note that (F f1)(y)(Fgi)(y)cos(x+ 1)y, (Ffi)(y)(Fg1)(y)cos(x — 1)y
are odd functions in y. Hence, their integrals over R vanish, and therefore,

J:f(u)[g(|x+u—1|)+g(|x—u+1|) —gctu+1)—g(lx—u—11)]du

- J:} (Ffi)(y)(Fg1)(y)isin(x+1)ydy — Jio (FA)(»)(Fg1)(y)isin(x—1)ydy

2i[ " (Ef) () (sin yeostepdy

2V27F(sin y(Fof ) (y) (Feg) () (x).

(2.4)
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This completes the proof. We assumed that all the integrals over R are interpreted as
Cauchy principal value integrals, if necessary. O

THEOREM 2.2. Let ki,ky € L,(Ry). Then

|2sin y(Fski) (y) + (Feka) (p) | = \/7(1 (2.5)

2m(1+y2)’

is a necessary and sufficient condition to ensure that the integral transform f — g

si= (1= ) [ RO sy =10+ F =y £ 1) - flasy+1)

~ F(x=y=1DJdy+ [ ke fGyef(x-yDldy}
(2.6)

is unitary on Ly(R,.) and the inverse transformation has the form

2 0
fu):(l—g%){fokﬂyﬂgﬂx+y—lD+g0x—y+ID—gW+y+1)

~glx—y = 1Dldy+ | ke O)lgle gy 1dy |
(2.7)

Proof
Necessity. Suppose that k; and k; satisfy condition (2.5). It is well known that (1 + y?)h(y)
€ L,(R), if and only if (Fh)(x), (d/dx)(Fh)(x) and (d*/dx?)(Fh)(x) € Ly(R) ([11, Theo-
rem 68, page 92]). Moreover,

2

TS (FR() = ~F(?h() (). 28)
In particular, if & is an even or odd function such that (1+ y?)h(y) € L,(R,), then the
following equalities hold:

d2
(1- 25 ) EW @) = E((147)h0) @)
(2.9)
dz
(1- 22 ) (BRI = E((14+5)h() 0.

dx?
Using the factorization equalities for convolutions (1.3), (1.6), we have

2
£ = (1= 2 Eeavmsin y (B ) () (Bef) () + Y27 () () (Eef) () ()

= F.(v2m(1+y?) (2sin y(Fk1) (y) + (Foka) (1)) (Ff) (1)) (x).
(2.10)
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By virtue of the Parseval equalities for the Fourier cosine and sine transforms || fl1,,) =
IF: fll,®,) = IIFsfllL,(r,) and noting that k; and k; satisfy condition (2.5), we have

Il = [|[V2R(1+3) (2sin y(Fki) () + (Fol2) ) (B D,
=|FefllL, ) = 1 f oz,

It follows that the transformation (2.6) is unitary.
On the other hand, in view of condition (2.5), +27(1 + y*)(2sin y(F; ki)(y)

+ (F: k2)(y)) is bounded, hence 27(1 + y*)(2sin y(Fs k1)(y) + (Fc k2)(y))(Fg)(y) €
L,(R,). We have

g(x) = Fo(V2r(1+y?) (2sin y(Fek1) () + (Fck2) () (Fe f) () (%)
= (Feg)(y) = V2r(1+y*) (2sin y(Feki) (y) + (Fek2) (0)) (Ff)(p)  (2.12)
= (Ff)(y) = V2r(1+y*) (2sin y(Fc ki ) (9) + (Fe k2 ) () (Feg) ().
Using formula (2.9), we obtain
f(0) = Fe(V2m(1+y%) (2sin y(Fo ki ) (p) + (Fo k2 ) (7)) (Feg) () (x)
= (1 25 ) el sin yRka () (i) () + V2 () () () ()

(2.11)

dx2
(1——)“ ki (g (lx+y—11+g(lx—y+11) -glx+y+1)
—glv=y=10ldy+ [ ke (lgtes g 1=y Iy}
(2.13)

Therefore, the transformation (2.6) is unitary on L,(R;) and the inverse transformation
has the form (2.7).

Sufficiency. If transform (2.6) is unitary, then the Parseval identities for the Fourier cosine
and sine transforms yield

gl = |[V27(1+ ) (2sin y(Ea) (7) + (Feko) (0)) (Fef) ()|
= [Fefll o) = 1f lLaro)-

The middle equality is possible if and only if k; and k; satisfy condition (2.5). This com-
pletes the proof of the theorem. O

Ly(R+) (2.14)

Let hy,hy € L(R,) satisfy

1
| (Esh1) () (Esha) ()| = (42 (Lrsin? )’ (2.15)
and let k;, k; be defined by
ey () = ﬁ(h1 éi b)),  ka(x) = \/%(hl o) (). (2.16)
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Then ki,k, € L,(R;) and from (1.7) and (1.12), we have

|2sin y(Feki) (y) + (Fcko) () |

1
' ——sin’ y(F;h )(y)(Fshz)(y)+E(Fshl)(y)(FshZ)(y) (2.17)

1 . L
= '\/77[(1+sm2 y) (Fshi) (y) (Fsha) (y) | = m

Thus k; and k; satisfy condition (2.5).

3. A Plancherel-type theorem
In order to examine the Plancherel-type theorem, we will need the following lemma.

LemMa 3.1. Let f and g be L,(R,.) functions, then

J:f(y)[g(lxw— 1) +g(lx—y+11) —glx+y+1) —g(lx—y—11)]dy

= J:g(y)[f(x+y+1)+sign(x—y+1)f(|x—y+1|)

—sign(x—y—1f(Ix—y—1]) —sign(x+y—1)f(Ix+y—11)]dy,
(3.1)

[ s0later ) +glx=y1dy = [ gt + £ (15 yD)]1dy. (3.2)

Proof. Again, let f; be the odd extension of f from R, to R and g;(x) = g(|x|) the even
extension of g from R, to R. By the Parseval equality, we have
J FMlgllx+y—11)+g(lx—y+11) —glx+y+1)—g(lx—y—1]) ]dy
J f)g(lx+y—11) dy-i—J Ffg(lx—y+1l)dy
j f)glx+y+1)dy — J fng(lx—y—11)dy
[ Aty -y + j fi(y)gi = y+ iy
+[ Aoy Dy [ Aty Dy

00

:J w (Ffl><u>(Fg1)<u>e”"‘*”“d”—f (Ffi)(u)(Fg1) (u)e"™*Vdu



8 International Journal of Mathematics and Mathematical Sciences

= [ afitc-yrndy— [ a)fite-y-1dy
- [ ity dy+ [ @ity Dy
- [ e WA=y -dy= [ @ity - dy

= J:g(y)[f(x+y+1)+sign(x—y+1)f(|x_y+1|)

—sign(x—y—1)f(Ix—y—1]) —sign(x+y—1)f(lx+y—1])]dy.
(3.3)

Then formula (3.1) holds. Formula (3.2) follows easily from formula (1.4)

J:f(y) [g(x+y)+g(lx—y)|dy = V2rF[(F.f)(y)(F.g) (»)](x)
= V27F [ (F.g) (7)) (Fef) (1)](x) (3.4)
- J:g(y)[f(ﬁy)+f(|x—y|)]dy-

The lemma has been proved. O

THEOREM 3.2. Let ky, ky be functions satisfying condition (2.5) and suppose that K, (x) =
(1 —d?/dx?)k,(x) and Ky (x) = (1 — d*/dx?)k,(x) are locally bounded. Let f € L,(R) and
for each positive integer N, put

gn(x) =I:K1(y)[fN(|x+y— 1)+ fN(lx—y+11) = fNx+y+1)

= 75 =y =101y + [ KDL+ £ (5= y D1,
(3.5)

where fN = f.x o) the restriction of f over (0,N). Then
(1) gy € Ly(Ry) and as N— oo, gn converges in Ly(R..) norm to a function g € L,(R;.)

with IgllLw,) = I fllL,®.)»
(2) put gN = g.x o then

) = f: K[ (Ixty— 1) +g¥(x—y+11) — ¥ (et y+1)

¥ (x—y- 1|)]dy+j: K (D[N (x+ )+ gV (1x— y1)1dy
(3.6)

belongs to Ly(R+) and converges in L,(R) norm to f as N—oo.
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Remark 3.3. Because of the definitions of fN and gV, these integrals are over finite inter-
vals and therefore converge.

Proof. Applying the identities (3.1) and (3.2) in Lemma 3.1, we have

gn(x) = I:Kl(y)[fN(lxwLy—1|)+fN(|x—y+1|)—fN(x+y+1)—fN(Ix—y— 11)]dy
+[ KN @+ Y - D)1y

= J:fN()/)[Kl(x+y+1)+sign(x—y+1)K1(\x_y+1|)

—sign(x—y—-1K; (lx—y—1])—sign(x+y— 1K, (Ix+y—1])]dy
+[ P kG )+ K- D) 1dy

= (1 - dd—;){J:fN(u)[kl(x+u+1)+sign(x—u+1)k1(|x—u+1|)
—sign(x —u— Dk (|Ix—u—1])
—sign(x+u— Dk (Ix+u—1])]du
+J:fN(y)[kl(x+y)+k1(|x—y|)]dy}.
(3.7)

It is legitimate to interchange the order of integration and differentiation since the inte-
grals are actually over finite intervals. By applying Lemma 3.1 one more time, we obtain

a0 = (1= [T sy = 1)+ (- y 1)
— Nty = Nlx-y-1Dldy  (38)
+[ RN+ N -y ]

From this and in view of Theorem 2.2, we conclude that gy € L>(R;). Let g be the trans-
form of f under the transformation (2.6). Then Theorem 2.2 guarantees that g € L,(R;),
lgll,r,) = Il fllLy(r,)> and the reciprocal formula (2.7) holds. For g — gn, we have

=200 = (1= RGP ey =10+ (7= ) ey 1)
(= M)ty = (f = ) (= y = 1) ldy

+[ RO = M@+ (= 7=y Iay].
(3.9)
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Again by Theorem 2.2, (g — gn)(x) € L(R4) and

llg —enlli,w,) = IIf _fNHLz(nm- (3.10)

And since || f — fN|l1,(r,)—0 as N—oo then gy converses in L,(R,) norm to g € L>(R).
Similarly, one can obtain the second part of the theorem. O

THEOREM 3.4. Let ky and k, be functions satisfying condition (2.5) and suppose that K, (x)
and Ky(x) defined as in the previous theorem are bounded on R.. Let 1 < p <2 and q be its
conjugate exponent 1/p +1/q = 1. Then the transformation f — g, where g is defined by

g(x) = lim {J:Kl(y)[fN(|x+y— )+ N(x—y+11) = fNx+y+1)

N—-oo

—fN(Ix—y—1I)]dy+J:Kz(y)[fN(x+y)+fN(lx—yl)]dy},
(3.11)

is a bounded operator from L,(R,) into Ly(R.). Here the limit is understood in Ly(R;)
norm.

Proof. From the boundedness of K; and Kj, it is clear that transformation (3.11) is a
bounded operator from L;(R;) into L (R4).

On the other hand, Theorem 3.2 shows that transformation (3.11) defines a bounded
operator from L(R;) into L,(Ry). Hence, Riesz’s interpolation theorem implies that
(3.11) is a bounded operator from L,(R;), 1 < p <2, into Ly(R, ), where g is the conju-
gate exponent of p. O
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