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1. Introduction

Let Fc be the Fourier cosine transform [1]

(
Fc f

)
(x)=

√
2
π

∫∞

0
cos xy f (y)dy, (1.1)

and let Fs be the Fourier sine transform [1]

(
Fs f

)
(x)=

√
2
π

∫∞

0
sin xy f (y)dy. (1.2)

In 1941, Churchill introduced the convolution of two functions f and g for the Fourier
cosine transform

(
f ∗
Fc
g
)

(x)= 1√
2π

∫∞

0
f (y)

[
g(x+ y) + g

(|x− y|)]dy, x > 0, (1.3)

and proved the following factorization equality [2]:

Fc
(
f ∗
Fc
g
)

(y)= (Fc f
)
(y)
(
Fcg
)
(y). (1.4)
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Using the factorization property (1.4), one can easily solve the integral equation with the
Toeplitz-plus-Hankel kernel

f (x) +
∫∞

0

[
k1(x+ y) + k2

(|x− y|)] f (y)dy = g(x) (1.5)

in case the Toeplitz kernel k2(x) and the Hankel kernel k1(x) are the same [3, 4]. The
general case is still open.

The convolution of two functions f and g with the weight function γ(y) = sin y for
the Fourier sine transform was introduced by Kakichev in [5]

(
f

γ∗
Fs
g
)

(x)= 1
2
√

2π

∫∞

0
f (u)

[
sign(x+u− 1)g

(|x+u− 1|)+sign(x−u+1)g
(|x−u+ 1|)

− g(x+u+ 1)− sign(x−u− 1)g
(|x−u− 1|)]du, x > 0,

(1.6)

where the following factorization property has been established:

Fs
(
f

γ∗
Fs
g
)

(y)= sin y
(
Fs f

)
(y)
(
Fsg
)
(y). (1.7)

Further properties of this convolution have been studied in [6].
Churchill was also the first author who introduced the generalized convolution for two

different integral transforms. Namely, in 1941, he defined the generalized convolution of
two functions f and g for the Fourier sine and cosine transforms

(
f ∗

1
g
)

(x)= 1√
2π

∫∞

0
f (u)

[
g
(|x−u|)− g(x+u)

]
du, x > 0, (1.8)

and proved the following factorization identity [7]:

Fs
(
f ∗

1
g
)
(y)= (Fs f

)
(y)·(Fcg

)
(y). (1.9)

It is easy to see that the integral equation with the Toeplitz-plus-Hankel kernel (1.5) can
be written in the form

f (x) +
√

2π
(
f ∗
Fc
h1

)
(x) +

√
2π
(
f ∗

1
h2

)
(x)= g(x), (1.10)

where h1 = (1/2)(k1 + k2) and h2 = (1/2)(k2− k1). So studying generalized convolutions
may shed light on how to solve the integral equation with the Toeplitz-plus-Hankel kernel
(1.5) in closed form.

In 1998, Kakichev and Thao proposed a constructive method for defining a generalized
convolution for three arbitrary integral transforms (see [8]). For example, for the Fourier
cosine and Fourier sine transforms, the following convolution has been introduced in [9]:

(
f ∗

2
g
)

(x)= 1√
2π

∫∞

0
f (u)

[
sign(u− x)g

(|u− x|)+ g(u+ x)
]
du, x > 0. (1.11)
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For this convolution, the following factorization equality holds [9]:

Fc
(
f ∗

2
g
)

(y)= (Fs f
)
(y)
(
Fsg
)
(y). (1.12)

Another generalized convolution with a weight function γ(y) = sin y for the Fourier
cosine and sine transforms has been studied in [10]

(
f

γ∗
2
g
)

(x)= 1
2
√

2π

∫∞

0
f (u)

[
g
(|x+u− 1|)+ g

(|x−u+ 1|)

− g(x+u+ 1)− g
(|x−u− 1|)]du, x > 0.

(1.13)

It satisfies the factorization property [10]

Fc
(
f

γ∗
2
g
)

(y)= sin y
(
Fs f

)
(y)
(
Fcg
)
(y). (1.14)

In any convolution of two functions f and g, if we fix one function, say g, as the kernel,
and allow the other function f vary in a certain function space, we will get an integral
transform f �→ f∗g. The most famous integral transforms constructed by that way are
the Watson transforms that are related to the Mellin convolution and the Mellin trans-
form [11]

f (x) �−→ g(x)=
∫∞

0
k(xy) f (y)dy. (1.15)

Recently, a class of integral transforms that is related to the generalized convolution (1.11)
has been introduced and investigated in [12]. In this paper, we will consider a class of in-
tegral transform which has a connection with the generalized convolution (1.13), namely,
the transforms of the form

f (x) �−→ g(x)=
(

1− d2

dx2

){∫∞

0
k1(y)

[
f
(|x+ y− 1|)+ f

(|x− y + 1|)

− f (x+ y + 1)− f
(|x− y− 1|)]dy

+
∫∞

0
k2(y)

[
f (x+ y) + f

(|x− y|)]dy
}

, x > 0.

(1.16)

We show that under certain conditions on the kernels k1 and k2, transform (1.16) admits
an inverse of similar form. We find conditions on the kernels k1 and k2 when transform
(1.16) defines a bounded operator from Lp(R+) to Lq(R+) (1 ≤ p ≤ 2, p−1 + q−1 = 1).
Moreover, Watson- and Plancherel-type theorems for transforms (1.16) in L2(R+) are
also obtained.

2. A Watson-type theorem

Lemma 2.1. Let f ,g ∈ L2(R+). Then for any x > 0, the following identity holds:
∫∞

0
f (u)

[
g
(|x+u− 1|)+ g

(|x−u+ 1|)− g
(
x+u+ 1

)− g
(|x−u− 1|)]du

= 2
√

2πFc
(

sin y
(
Fs f

)
(y)
(
Fcg
)
(y)
)
(x).

(2.1)
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Proof. Let f1 be the odd extension of f from R+ to R and g1 the even extension of g from
R+ to R. Then let F f1 is an odd function while Fg1 is an even function, where F is the
Fourier integral transform

(F f )(x)= 1√
2π

∫

R
e−ixy f (y)dy. (2.2)

On R+, we have F f1 =−iFs f and Fg1 = Fcg.
The Parseval identity for the Fourier integral transform yields

∫∞

0
f (u)

[
g
(|x+u− 1|)+ g

(|x−u+ 1|)− g(x+u+ 1)− g
(|x−u− 1|)]du

=
∫∞

0
f (u)g1(x−u+ 1)du−

∫∞

0
f (u)g(x+u+ 1)du

−
∫∞

0
f (u)g(x−u− 1)du+

∫∞

0
f (u)g1(x+u− 1)du

=
∫∞

−∞
f1(u)g1(x−u+ 1)du−

∫∞

−∞
f1(u)g1(x−u− 1)du

=
∫∞

−∞

(
F f1
)
(u)
(
Fg1
)
(u)ei(x+1)udu−

∫∞

−∞

(
F f1
)
(u)
(
Fg1
)
(u)ei(x−1)udu

=
∫∞

−∞

(
F f1
)
(y)
(
Fg1
)
(y)
(

cos(x+ 1)y + i sin(x+ 1)y
)
dy

−
∫∞

−∞

(
F f1
)
(y)
(
Fg1
)
(y)
(

cos(x− 1)y + i sin(x− 1)y
)
dy.

(2.3)

On the other hand, note that (F f1)(y)(Fg1)(y)cos(x+ 1)y, (F f1)(y)(Fg1)(y)cos(x− 1)y
are odd functions in y. Hence, their integrals over R vanish, and therefore,

∫∞

0
f (u)

[
g
(|x+u− 1|)+ g

(|x−u+ 1|)− g(x+u+ 1)− g
(|x−u− 1|)]du

=
∫∞

−∞

(
F f1
)
(y)
(
Fg1
)
(y)i sin(x+ 1)ydy−

∫∞

−∞

(
F f1
)
(y)
(
Fg1
)
(y)i sin(x− 1)ydy

= 2i
∫∞

−∞

(
F f1
)
(y)
(
Fg1
)
(y)sin y cos(xy)dy

= 2
√

2πFc
(

sin y
(
Fs f

)
(y)
(
Fcg
)
(y)
)
(x).

(2.4)
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This completes the proof. We assumed that all the integrals over R are interpreted as
Cauchy principal value integrals, if necessary. �

Theorem 2.2. Let k1,k2 ∈ L2(R+). Then

∣
∣2sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
∣
∣= 1√

2π
(
1 + y2

) , (2.5)

is a necessary and sufficient condition to ensure that the integral transform f �→ g

g(x) :=
(

1− d2

dx2

){∫∞

0
k1(y)

[
f
(|x+ y− 1|)+ f

(|x− y + 1|)− f (x+ y + 1)

− f
(|x−y−1|)]dy+

∫∞

0
k2(y)

[
f (x+y)+ f

(|x−y|)]dy
}

(2.6)

is unitary on L2(R+) and the inverse transformation has the form

f (x)=
(

1− d2

dx2

){∫∞

0
k1 (y)

[
g
(|x+ y− 1|)+ g

(|x− y + 1|)− g(x+ y + 1)

− g
(|x−y− 1|)]dy+

∫∞

0
k2 (y)

[
g(x+y)+g

(|x−y|)]dy
}
.

(2.7)

Proof
Necessity. Suppose that k1 and k2 satisfy condition (2.5). It is well known that (1 + y2)h(y)
∈ L2(R), if and only if (Fh)(x), (d/dx)(Fh)(x) and (d2/dx2)(Fh)(x)∈ L2(R) ([11, Theo-
rem 68, page 92]). Moreover,

d2

dx2
(Fh)(x)=−F(y2h(y)

)
(x). (2.8)

In particular, if h is an even or odd function such that (1 + y2)h(y) ∈ L2(R+), then the
following equalities hold:

(
1− d2

dx2

)
(
Fch
)
(x)= Fc

((
1 + y2)h(y)

)
(x),

(
1− d2

dx2

)
(
Fsh
)
(x)= Fs

((
1 + y2)h(y)

)
(x).

(2.9)

Using the factorization equalities for convolutions (1.3), (1.6), we have

g(x)=
(

1− d2

dx2

)
Fc
(
2
√

2π sin y
(
Fsk1

)
(y)
(
Fc f

)
(y) +

√
2π
(
Fck2

)
(y)
(
Fc f

)
(y)
)
(x)

= Fc
(√

2π
(
1 + y2)(2 sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
)(
Fc f

)
(y)
)
(x).

(2.10)
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By virtue of the Parseval equalities for the Fourier cosine and sine transforms ‖ f ‖L2(R+) =
‖Fc f ‖L2(R+) = ‖Fs f ‖L2(R+) and noting that k1 and k2 satisfy condition (2.5), we have

‖g‖L2(R+) =
∥
∥
∥
√

2π
(
1 + y2)(2sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
)(
Fc f

)
(y)
∥
∥
∥
L2(R+)

= ∥∥Fc f
∥
∥
L2(R+) = ‖ f ‖L2(R+).

(2.11)

It follows that the transformation (2.6) is unitary.

On the other hand, in view of condition (2.5),
√

2π(1 + y2)(2sin y(Fs k1)(y)

+ (Fc k2)(y)) is bounded, hence
√

2π(1 + y2)(2sin y(Fs k1)(y) + (Fc k2)(y))(Fcg)(y) ∈
L2(R+). We have

g(x)= Fc
(√

2π
(
1 + y2)(2sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
)(
Fc f

)
(y)
)
(x)

⇐⇒ (Fcg
)
(y)= √

2π
(
1 + y2)(2 sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
)(
Fc f

)
(y)

⇐⇒ (Fc f
)
(y)=√2π

(
1 + y2)(2 sin y

(
Fs k1

)
(y) +

(
Fc k2

)
(y)
)(
Fcg
)
(y).

(2.12)

Using formula (2.9), we obtain

f (x)= Fc
(√

2π
(
1 + y2)(2sin y

(
Fs k1

)
(y) +

(
Fc k2

)
(y))

(
Fcg
)
(y)
)
(x)

=
(

1− d2

dx2

)
Fc
(
2
√

2π sin yFsk1(y)
(
Fcg
)
(y) +

√
2π
(
Fck2

)
(y)
(
Fcg
)
(y)
)

=
(

1− d2

dx2

){∫∞

0
k1 (y)

[
g
(|x+y−1|)+g

(|x−y+1|)−g(x+ y + 1)

− g
(|x−y−1|)]dy+

∫∞

0
k2 (y)

[
g(x+y)+g

(|x−y|)]dy
}
.

(2.13)

Therefore, the transformation (2.6) is unitary on L2(R+) and the inverse transformation
has the form (2.7).
Sufficiency. If transform (2.6) is unitary, then the Parseval identities for the Fourier cosine
and sine transforms yield

‖g‖L2(R+) =
∥
∥
∥
√

2π
(
1 + y2)(2sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
)(
Fc f

)
(y)
∥
∥
∥
L2(R+)

= ∥∥Fc f
∥
∥
L2(R+) = ‖ f ‖L2(R+).

(2.14)

The middle equality is possible if and only if k1 and k2 satisfy condition (2.5). This com-
pletes the proof of the theorem. �

Let h1,h2 ∈ L2(R+) satisfy

∣
∣(Fsh1

)
(y)
(
Fsh2

)
(y)
∣
∣= 1

(
1 + y2

)(
1 + sin2 y

) , (2.15)

and let k1, k2 be defined by

k1(x)= 1
2
√

2π

(
h1

γ∗
Fs
h2
)
(x), k2(x)= 1√

2π

(
h1∗

2
h2
)
(x). (2.16)
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Then k1,k2 ∈ L2(R+) and from (1.7) and (1.12), we have

∣
∣2sin y

(
Fsk1

)
(y) +

(
Fck2

)
(y)
∣
∣

=
∣
∣
∣
∣

1√
2π

sin2 y
(
Fsh1

)
(y)
(
Fsh2

)
(y) +

1√
2π

(
Fsh1

)
(y)
(
Fsh2

)
(y)
∣
∣
∣
∣

=
∣
∣
∣
∣

1√
2π

(
1 + sin2 y

)(
Fsh1

)
(y)
(
Fsh2

)
(y)
∣
∣
∣
∣=

1√
2π
(
1 + y2

) .

(2.17)

Thus k1 and k2 satisfy condition (2.5).

3. A Plancherel-type theorem

In order to examine the Plancherel-type theorem, we will need the following lemma.

Lemma 3.1. Let f and g be L2(R+) functions, then

∫∞

0
f (y)

[
g
(|x+ y− 1|)+ g

(|x− y + 1|)− g(x+ y + 1)− g
(|x− y− 1|)]dy

=
∫∞

0
g(y)

[
f (x+ y + 1) + sign(x− y + 1) f

(|x− y + 1|)

− sign(x− y− 1) f
(|x− y− 1|)− sign(x+ y− 1) f

(|x+ y− 1|)]dy,
(3.1)

∫∞

0
f (y)

[
g(x+ y) + g

(|x− y|)]dy =
∫∞

0
g(y)

[
f (x+ y) + f

(|x− y|)]dy. (3.2)

Proof. Again, let f1 be the odd extension of f from R+ to R and g1(x)= g(|x|) the even
extension of g from R+ to R. By the Parseval equality, we have

∫∞

0
f (y)

[
g
(|x+ y− 1|)+ g

(|x− y + 1|)− g(x+ y + 1)− g
(|x− y− 1|)]dy

=
∫∞

0
f (y)g

(|x+ y− 1|)dy +
∫∞

0
f (y)g

(|x− y + 1|)dy

−
∫∞

0
f (y)g(x+ y + 1)dy−

∫∞

0
f (y)g

(|x− y− 1|)dy

=−
∫ 0

−∞
f1(y)g1(x− y− 1)dy +

∫∞

0
f1(y)g1(x− y + 1)dy

+
∫ 0

−∞
f1(y)g1(x− y + 1)dy−

∫∞

0
f1(y)g1(x− y− 1)dy

=
∫∞

−∞

(
F f1
)
(u)
(
Fg1
)
(u)ei(x+1)udu−

∫∞

−∞

(
F f1
)
(u)
(
Fg1
)
(u)ei(x−1)udu
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=
∫∞

−∞
g1(y) f1(x− y + 1)dy−

∫∞

−∞
g1(y) f1(x− y− 1)dy

=
∫∞

0
g1(y) f1(x− y + 1)dy +

∫∞

0
g1(y) f1(x+ y + 1)dy

−
∫∞

0
g1(y) f1(x− y− 1)dy−

∫∞

0
g1(y) f1(x+ y− 1)dy

=
∫∞

0
g(y)

[
f (x+ y + 1) + sign(x− y + 1) f

(|x− y + 1|)

− sign(x− y− 1) f
(|x− y− 1|)− sign(x+ y− 1) f

(|x+ y− 1|)]dy.
(3.3)

Then formula (3.1) holds. Formula (3.2) follows easily from formula (1.4)

∫∞

0
f (y)

[
g(x+ y) + g

(|x− y|)]dy =√2πFc
[(
Fc f

)
(y)
(
Fcg
)
(y)
]
(x)

=√2πFc
[(
Fcg
)
(y)
(
Fc f

)
(y)
]
(x)

=
∫∞

0
g(y)

[
f (x+ y) + f

(|x− y|)]dy.

(3.4)

The lemma has been proved. �

Theorem 3.2. Let k1, k2 be functions satisfying condition (2.5) and suppose that K1(x) =
(1−d2/dx2)k1(x) and K2(x)= (1−d2/dx2)k2(x) are locally bounded. Let f ∈ L2(R+) and
for each positive integer N , put

gN (x)=
∫∞

0
K1(y)

[
f N
(|x+ y− 1|)+ f N

(|x− y + 1|)− f N (x+ y + 1)

− f N
(|x− y− 1|)]dy +

∫∞

0
K2(y)

[
f N (x+ y) + f N

(|x− y|)]dy,

(3.5)

where f N = f .χ(0,N), the restriction of f over (0,N). Then
(1) gN ∈ L2(R+) and as N→∞, gN converges in L2(R+) norm to a function g ∈ L2(R+)

with ‖g‖L2(R+) = ‖ f ‖L2(R+);
(2) put gN = g.χ(0,N), then

fN (x)=
∫∞

0
K1 (y)

[
gN
(|x+ y− 1|)+ gN

(|x− y + 1|)− gN (x+ y + 1)

− gN
(|x− y− 1|)]dy +

∫∞

0
K2 (y)[gN(x+ y) + gN

(|x− y|)]dy
(3.6)

belongs to L2(R+) and converges in L2(R+) norm to f as N→∞.
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Remark 3.3. Because of the definitions of f N and gN , these integrals are over finite inter-
vals and therefore converge.

Proof. Applying the identities (3.1) and (3.2) in Lemma 3.1, we have

gn(x)=
∫∞

0
K1(y)

[
f N
(|x+y−1|)+ f N

(|x−y+1|)− f N (x+y+1)− f N
(|x− y− 1|)]dy

+
∫∞

0
K2(y)

[
f N (x+ y) + f N

(|x− y|)]dy

=
∫∞

0
f N (y)

[
K1(x+ y + 1) + sign(x− y + 1)K1

(|x− y + 1|)

− sign(x−y−1)K1
(|x−y−1|)−sign(x+y−1)K1

(|x+y−1|)]dy

+
∫∞

0
f N (y)

[
k1(x+ y) +K1

(|x− y|)]dy

=
(

1− d2

dx2

){∫∞

0
f N (u)

[
k1(x+u+ 1) + sign(x−u+ 1)k1

(|x−u+ 1|)

− sign(x−u− 1)k1
(|x−u− 1|)

− sign(x+u− 1)k1
(|x+u− 1|)]du

+
∫∞

0
f N (y)

[
k1(x+ y) + k1

(|x− y|)]dy
}
.

(3.7)

It is legitimate to interchange the order of integration and differentiation since the inte-
grals are actually over finite intervals. By applying Lemma 3.1 one more time, we obtain

gN (x)=
(

1− d2

dx2

){∫∞

0
k1(y)

[
f N
(|x+ y− 1|)+ f N

(|x− y + 1|)

− f N (x+ y + 1)− f N
(|x− y− 1|)]dy

+
∫∞

0
k2(y)

[
f N (x+ y) + f N

(|x− y|)]dy
}
.

(3.8)

From this and in view of Theorem 2.2, we conclude that gN ∈ L2(R+). Let g be the trans-
form of f under the transformation (2.6). Then Theorem 2.2 guarantees that g ∈ L2(R+),
‖g‖L2(R+) = ‖ f ‖L2(R+), and the reciprocal formula (2.7) holds. For g − gN , we have

(g − gN )(x)=
(

1− d2

dx2

){∫∞

0
k1(y)

[(
f − f N

)(|x+ y− 1|)+
(
f − f N

)(|x− y + 1|)

− ( f − f N
)
(x+ y + 1)− ( f − f N

)(|x− y− 1|)]dy

+
∫∞

0
k2(y)

[(
f − f N

)
(x+ y) +

(
f − f N

)(|x− y|)]dy
}
.

(3.9)
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Again by Theorem 2.2, (g − gN )(x)∈ L2(R+) and

∥
∥g − gN

∥
∥
L2(R+) =

∥
∥ f − f N

∥
∥
L2(R+). (3.10)

And since ‖ f − f N‖L2(R+)→0 as N→∞ then gN converses in L2(R+) norm to g ∈ L2(R+).
Similarly, one can obtain the second part of the theorem. �

Theorem 3.4. Let k1 and k2 be functions satisfying condition (2.5) and suppose that K1(x)
and K2(x) defined as in the previous theorem are bounded on R+. Let 1≤ p ≤ 2 and q be its
conjugate exponent 1/p+ 1/q = 1. Then the transformation f �→ g, where g is defined by

g(x)= lim
N→∞

{∫∞

0
K1(y)

[
f N
(|x+ y− 1|)+ f N

(|x− y + 1|)− f N (x+ y + 1)

− f N
(|x−y−1|)]dy+

∫∞

0
K2(y)

[
f N (x+y)+ f N

(|x−y|)]dy
}

,

(3.11)

is a bounded operator from Lp(R+) into Lq(R+). Here the limit is understood in Lq(R+)
norm.

Proof. From the boundedness of K1 and K2, it is clear that transformation (3.11) is a
bounded operator from L1(R+) into L∞(R+).

On the other hand, Theorem 3.2 shows that transformation (3.11) defines a bounded
operator from L2(R+) into L2(R+). Hence, Riesz’s interpolation theorem implies that
(3.11) is a bounded operator from Lp(R+), 1≤ p ≤ 2, into Lq(R+), where q is the conju-
gate exponent of p. �
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