Research Article

A Connection between $C^{\infty}\left(\mathbb{T}^{n}\right)$ and $\mathscr{S}\left(\mathbb{R}^{n}\right)$
Guangzhou Luo and Peide Liu
Received 25 April 2007; Accepted 8 May 2007
Recommended by Misha Rudnev

We interpret $C^{\infty}\left(\mathbb{T}^{n}\right)$ as a quotient space of $\mathscr{Y}\left(\mathbb{R}^{n}\right)$.
Copyright © 2007 G. Luo and P. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In measure-theoretic sense, the n-torus \mathbb{T}^{n} is the cube $[0,1]^{n}$ with Lebesgue measure. A function f in $C^{\infty}\left(\mathbb{R}^{n}\right)$ is said to be in $C^{\infty}\left(\mathbb{T}^{n}\right)$ if $f(x+m)=f(x)$ for all $x \in \mathbb{R}^{n}$ and $m \in \mathbb{Z}^{n} . \mathscr{Y}\left(\mathbb{R}^{n}\right)$ denotes the space of rapidly decreasing functions.

Given $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we denote its Fourier transform by

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Given $f \in L^{1}\left(\mathbb{T}^{n}\right)$, we denote its Fourier coefficients by

$$
\begin{equation*}
\tilde{f}(m)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i m \cdot x} d x, \quad m \in \mathbb{Z}^{n} \tag{2}
\end{equation*}
$$

We have $\sup _{m \in \mathbb{Z}^{n}}|\tilde{f}(m)| \leq\|f\|_{L^{1}\left(\mathbb{T}^{n}\right)}$.
Lemma 1. Suppose that f, \hat{f} are in $L^{1}\left(\mathbb{R}^{n}\right)$, then it can be assumed that f and \hat{f} are both continuous since they can be expressed in terms of each other via Fourier inversion. If they satisfy

$$
\begin{equation*}
|f(x)|+|\hat{f}(x)| \leq C(1+|x|)^{-n-\delta} \tag{3}
\end{equation*}
$$

2 International Journal of Mathematics and Mathematical Sciences
for some $C, \delta>0$, then

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{n}} \hat{f}(m) e^{2 \pi i m \cdot x}=\sum_{m \in \mathbb{Z}^{n}} f(x+m), \tag{4}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$, and in particular,

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{n}} \hat{f}(m)=\sum_{m \in \mathbb{Z}^{n}} f(m) . \tag{5}
\end{equation*}
$$

(See [1, Theorem 3.1.17].)
Lemma 2. Let $s \in Z$ with $s \geq 0$, suppose that f is in $C^{s}\left(\mathbb{T}^{n}\right)$, then

$$
\begin{equation*}
|\tilde{f}(m)| \leq c_{n, s} \frac{\max \left(\|f\|_{L^{1}\left(\mathbb{T}^{n}\right)}, \sup _{|\alpha|=s} \mid \widetilde{\left.\partial^{\alpha} f(m) \mid\right)}\right.}{(1+|m|)^{s}}, \tag{6}
\end{equation*}
$$

for some constant $c_{n, s}$.
(See [1, Corollary 3.2.10].)
We are in the position to get the following theorem.
Theorem 3. If ϕ is in $\mathscr{S}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
g(x)=\sum_{m \in \mathbb{Z}^{n}} \phi(x+m) \tag{7}
\end{equation*}
$$

then $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$. Conversely, for every $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$, there exists $\phi \in \mathscr{Y}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
g(x)=\sum_{m \in \mathbb{Z}^{n}} \phi(x+m) . \tag{8}
\end{equation*}
$$

Proof. The proof of the first part is trivial.
Now assume that $g \in C^{\infty}\left(\mathbb{T}^{n}\right)$ and set

$$
\begin{equation*}
G(x)=\sum_{m \in \mathbb{Z}^{n}} \tilde{g}(m) \mathscr{X}_{B(m, \lambda)}(x), \tag{9}
\end{equation*}
$$

where $B(m, \lambda)=\left\{x \in \mathbb{R}^{n}:|x-m|<\lambda\right\}, 0<\lambda<2 / 5$, and $\mathscr{X}_{B(m, \lambda)}$ denotes the characteristic function of $B(m, \lambda)$.

According to Lemma 2, for all positive integers N, we have

$$
\begin{align*}
|\widetilde{g}(m)| & \leq c_{n, N} \frac{\max \left(\|g\|_{L^{1}\left(\mathbb{T}^{n}\right)}, \sup _{|\alpha|=N}\left|\widetilde{\partial}^{\alpha} g(m)\right|\right)}{(1+|m|)^{N}} \tag{10}\\
& \leq c_{n, N} \frac{\max \left(\|g\|_{L^{1}\left(\mathbb{T}^{n}\right)}, \sup _{|\alpha|=N}\left\|\partial^{\alpha} g\right\|_{L^{1}\left(\mathbb{T}^{n}\right)}\right)}{(1+|m|)^{N}} \tag{11}
\end{align*}
$$

So, it is easily seen that $G(x) \in L^{1}\left(\mathbb{R}^{n}\right)$.

Set

$$
k(x)= \begin{cases}c e^{1 /\left(|x|^{2}-1\right)}, & |x| \leq 1 \tag{12}\\ 0, & |x|>1\end{cases}
$$

where c is a constant such that $\int_{\mathbb{R}^{n}} k(x) d x=1$.
For $\varepsilon>0$, set $k_{\varepsilon}(x)=\varepsilon^{-n} k\left(\varepsilon^{-1} x\right)$, and denote

$$
\begin{equation*}
G_{1}(x)=\left(G * k_{\lambda / 4}\right)(x) . \tag{13}
\end{equation*}
$$

Then by the property of convolution, $G_{1} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\partial^{\alpha} G_{1}=G * \partial^{\alpha} k_{\lambda / 4}$.
Also, since $\partial^{\gamma} k_{\lambda / 4}(y)$ is continuous and supported in $B(0, \lambda / 4)$. So for any multi-index γ and nonnegative integer N,

$$
\begin{align*}
(1+ & |x|)^{N}\left|\partial^{y} G_{1}(x)\right| \\
& =(1+|x|)^{N}\left|\int_{\mathbb{R}^{n}} G(x-y) \partial^{y} k_{\lambda / 4}(y) d y\right| \\
& \leq C(1+|x|)^{N} \sup _{y \in B(0, \lambda / 4)}|G(x-y)| \tag{14}\\
& \leq C(1+|m|)^{N}|\tilde{g}(m)|,
\end{align*}
$$

here m is the only point with integer coordinates that is in $B(x, 5 \lambda / 4)$ (if there is one such m, otherwise $(1+|x|)^{N}\left|\partial^{\gamma} G_{1}(x)\right|$ is 0$)$. C depends only on γ and N. So by (11), G_{1} is in $\mathscr{S}\left(\mathbb{R}^{n}\right)$.

And

$$
\begin{equation*}
G_{1}(m)=\int_{B(0, \lambda / 4)} G(m-y) k_{\lambda / 4}(y) d y=G(m) \int_{B(0, \lambda / 4)} k_{\lambda / 4}(y) d y=G(m)=\tilde{g}(m) . \tag{15}
\end{equation*}
$$

Suppose that ϕ is the function in $\mathscr{S}\left(\mathbb{R}^{n}\right)$ such that $\hat{\phi}=G_{1}$. Clearly, ϕ and G_{1} satisfy the conditions of Lemma 1, and so we have

$$
\begin{equation*}
g(x)=\sum_{m \in \mathbb{Z}^{n}} \tilde{g}(m) e^{2 \pi i m \cdot x}=\sum_{m \in \mathbb{Z}^{n}} G_{1}(m) e^{2 \pi i m \cdot x}=\sum_{m \in \mathbb{Z}^{n}} \phi(x+m) . \tag{16}
\end{equation*}
$$

$C^{\infty}\left(\mathbb{T}^{n}\right)$ is generally topologized by the family of seminorms

$$
\begin{equation*}
\rho_{\alpha}(f)=\sup _{x}\left|\partial^{\alpha} f(x)\right| \tag{17}
\end{equation*}
$$

where α ranges over all multi-indices. In this topology, $\phi_{j} \rightarrow \phi$ means

$$
\begin{equation*}
\sup _{x}\left|\partial^{\alpha} \phi_{j}(x)-\partial^{\alpha} \phi(x)\right| \longrightarrow 0 \tag{18}
\end{equation*}
$$

for all multi-indices $\alpha . C^{\infty}\left(\mathbb{T}^{n}\right)$ is a Fréchet space and it can be regarded as a quotient space of $\left.\mathscr{(} \mathbb{R}^{n}\right)$ up to isomorphism of topological vector spaces.

4 International Journal of Mathematics and Mathematical Sciences

Theorem 4. Set

$$
\begin{equation*}
H=\left\{\phi \in \mathscr{Y}\left(\mathbb{R}^{n}\right): \sum_{m \in \mathbb{Z}^{n}} \phi(x+m) \equiv 0\right\} \tag{19}
\end{equation*}
$$

 tween the quotient space $\mathscr{S}\left(\mathbb{R}^{n}\right) / H$ and $C^{\infty}\left(\mathbb{T}^{n}\right)$ which is a homomorphism.

Proof. It is easy to see that H is closed in $\mathscr{S}\left(\mathbb{R}^{n}\right)$.
Define $\Lambda: \mathscr{S}\left(\mathbb{R}^{n}\right) / H \rightarrow C^{\infty}\left(\mathbb{T}^{n}\right)$ by

$$
\begin{equation*}
\Lambda(\phi+H)=\sum_{m \in \mathbb{Z}^{n}} \phi(x+m) . \tag{20}
\end{equation*}
$$

It is obvious that Λ is well defined, linear, one-to-one, and onto. It remains to prove that Λ is continuous and open.

If d is an invariant metric on $\mathscr{(\mathbb { R } ^ { n }) \text { compatible with its topology, then }}$

$$
\begin{equation*}
\rho(\phi+H, \varphi+H)=\inf \{d(\phi-\varphi, \psi): \psi \in H\} \tag{21}
\end{equation*}
$$

defines an invariant metric on $\mathscr{S}\left(\mathbb{R}^{n}\right) / H$ which is compatible with the quotient topology.
Suppose $\phi_{j}+H \rightarrow \phi+H(j \rightarrow \infty)$ in the quotient topology of $\mathscr{S}\left(\mathbb{R}^{n}\right) / H$, we have

$$
\begin{equation*}
\rho\left(\phi_{j}+H, \phi+H\right)=\inf \left\{d\left(\phi_{j}-\phi, \psi\right): \psi \in H\right\} \longrightarrow 0, \quad(j \longrightarrow \infty) . \tag{22}
\end{equation*}
$$

For each j, there is $\psi_{j} \in H$ such that

$$
\begin{equation*}
d\left(\phi_{j}-\phi, \psi_{j}\right) \leq 2 \inf \left\{d\left(\phi_{j}-\phi, \psi\right): \psi \in H\right\} \tag{23}
\end{equation*}
$$

So,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} d\left(\phi_{j}-\psi_{j}, \phi\right)=\lim _{j \rightarrow \infty} d\left(\phi_{j}-\phi, \psi_{j}\right)=0 \tag{24}
\end{equation*}
$$

That is, $\phi_{j}-\psi_{j} \rightarrow \phi(j \rightarrow \infty)$ in $\mathscr{S}\left(\mathbb{R}^{n}\right)$. Hence, it is easy to see that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sum_{m \in \mathbb{Z}^{n}}\left(\phi_{j}(x+m)+\psi_{j}(x+m)\right)=\lim _{j \rightarrow \infty} \sum_{m \in \mathbb{Z}^{n}} \phi_{j}(x+m)=\sum_{m \in \mathbb{Z}^{n}} \phi(x+m) \tag{25}
\end{equation*}
$$

in the topology of $C^{\infty}\left(\mathbb{T}^{n}\right)$.
That is,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \Lambda\left(\phi_{j}+H\right)=\Lambda(\phi+H) \tag{26}
\end{equation*}
$$

so Λ is continuous.
Since both $\mathscr{S}\left(\mathbb{R}^{n}\right) / H$ and $C^{\infty}\left(\mathbb{T}^{n}\right)$ are F-spaces, Λ is also open, by the open mapping theorem. This completes the proof.

The elements of the dual space $\mathscr{D}^{\prime}\left(\mathbb{T}^{n}\right)$ of $C^{\infty}\left(\mathbb{T}^{n}\right)$ are called distributions on \mathbb{T}^{n}. The above result may shed some light on the relation between $\mathscr{D}^{\prime}\left(\mathbb{T}^{n}\right)$ and $\mathscr{G}^{\prime}\left(\mathbb{R}^{n}\right)$, the space of
tempered distributions on \mathbb{R}^{n}. For example, for every $u \in \mathscr{D}^{\prime}\left(\mathbb{T}^{n}\right), u \circ \Lambda \circ \pi$ is in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, where $\pi(\phi)=\phi+H$ is the quotient mapping from $\mathscr{S}\left(\mathbb{R}^{n}\right)$ to $\mathscr{S}\left(\mathbb{R}^{n}\right) / H$. Hence, $\mathscr{D}^{\prime}\left(\mathbb{T}^{n}\right)$ can be imbedded into $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ in a natural way.

References

[1] L. Grafakos, Classical and Modern Fourier Analysis, China Machine Press, Beijing, China, 2005.
Guangzhou Luo: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Department of Mathematics, Hubei Normal University, Huangshi 435002, Hubei, China Email address: lovelykittym@163.com

Peide Liu: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Email address: pdliu@whu.edu.cn

