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1. Introduction

The index of a metric plays significant roles in differential geometry as it generates variety
of vector fields such as space-like, time-like, and light-like fileds. With the help of these
vector fields, we establish interesting properties on (€)-Sasakian manifolds, which was
introduced by Bejancu and Duggal [1] and further investigated by Xufeng and Xiaoli
[2]. Since Sasakian manifolds with indefinite metrics play crucial roles in physics [3],
hence the study of these manifolds becomes the central theme in present scenario. Here
the next section is concerned with the basic results of Riemannian curvature tensor of
(€)-Sasakian manifolds. In Section 3, these results will be used to obtain the equivalent
relations among ¢-sectional curvature, totally real sectional curvature, and totally real
bisectional curvature. In [1], authors defined the (€)-Sasakian manifold as follows.

Let M be a real (2n + 1)-dimensional differentiable manifold endowed with an almost
contact structure (¢,7,&), where ¢ is a tensor field of type (1,1), 7 is a 1-form, and & is a
vector field on M satisfying

X = -X+n(X)E &) =1. (1.1)

It follows that

n(@X)=0, ¢(&) =0, rank¢=2n; (1.2)
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then M is called an almost contact manifold. If there exists a semi-Riemannian metric g
satisfying

gX,$Y) = g(X,Y) —en(X)n(Y) VX,Y € x(X), (13)

where € = +1, then (¢,%,§,¢) is called an (€) almost contact metric structure and M is
known as an (€) almost contact manifold.
For an (€) almost contact manifold we also have

n(X)=eg(X,&) VXexX),

1.4
€=g(£9), Y
hence & is never a light-like vector field on M, and according to the casual character of
&, we have two classes of (€)-Sasakian manifolds. When € = —1 and the index of g is an
odd number (v = 2s+ 1), then M is a time-like Sasakian manifold and M is a space-like
Sasakian manifold when € = —1 and v = 2s. For € = 1 and v = 0, we obtain usual Sasakian
manifold and for € = 1 and v = 1, M is a Lorentz-Sasakian manifold.
If dn(X,Y) = g(¢X,Y), then M is said to have (€)-contact metric structure (¢,%,¢,g).
If, moreover, this structure is normal, that is, if

(X, Y] +¢*[X, Y]~ 91X, Y]~ $[X, Y] = —2dn(X, V), (15)

then the (€)-contact metric structure is called an (€)-Sasakian structure, and manifold
endowed with this structure is called an (€)-Sasakian manifold.

Now, let 0 be a plane section in tangent space T),(M) at a point p of M, and let it be
spanned by vectors X and Y, then the sectional curvature of ¢ is given by

R(X,Y,X,Y)

K(X,Y) = -

(1.6)

A plane {X, Y}, where X and Y are orthonormal to & and satisfy ¢({X,Y}) L {X,Y},
is called totally real section, and sectional curvature associated with this section is called
a totally real sectional curvature. The totally real bisectional curvature B(X,Y) is defined
as

B(X,Y) = R(X,¢X,Y,¢Y), (1.7)
where 7(X) = n(Y) = g(X,Y) = g(X,¢Y) = 0.
A plane section {X,¢X}, where X is orthonormal to &, is called ¢-section, and the

curvature associated with this is called ¢-sectional curvature which is denoted by H(X),
where

H(X) = K(X,$X) = R(X,$X, X, $X). (1.8)
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If a Sasakian manifold M has constant ¢-sectional curvature ¢, then it is called a Sasakian
space form and denoted by M?"*1(c).

2. Riemannian curvature tensor

Tueorem 2.1 [1]. An (€) almost contact metric structure (¢,1,€,g) is (€)-Sasakian if and
only if

(VxP)Y =g(X,Y)E—en(Y)X, VX,Y €x(M), (2.1)
where V is the Levi-Civita connection with respect to g. Also one has
VxE = —€¢X, VX e y(M). (2.2)
For an (€)-Sasakian manifold, using (2.1) we have
R, Y)E = (V)X - (X)Y, (23)
where R denotes the Riemannian curvature tensor on M, and also from above we have
RX, )Y = —eg(X,Y)§+3(Y)X. (2.4)
Using (2.1) and (2.2), we have

R(X,Y)$Z = §R(X,Y)Z +€{g(Z.X)Y ~g(Z,$V)X +g(X,Z)$Y —g(Y,Z)¢$X}.
(2.5)

And by using (2.5), we obtain the following set of equations:

R(X,Y)Z = —¢R(X,Y)$Z +€{g(Y,2)X —g(X,2)Y +g($X,2)pY — g(¢Y,Z)$X},
(2.6)

g(RX,Y)$Z,¢W) = g(R(X,Y)Z, W)
+e{g(X,Z)g(Y, W) - g(X,W)g(Y,Z) (2.7)
—8(@Z,X)g(¢W,Y) +g(¢Z,Y)g(¢W,X)},
gRX, $Y)PZ,¢W) = g(R(X, Y)Z, W) +n(W)n(Y)g(X, Z)
—n(W)n(X)g(Y,Z) +n(Z)n(X)g(Y, W) (2.8)
-n(Z)n(Y)g(X, W).
Now, we can write (2.5) as
g(R(X,Y)pZ, W) = g(¢R(X,Y)Z, W)
+e{g(Z,¢X)g(Y, W) - g(Z,¢Y)g(X, W) (2.9)
+8(X,2)g(¢Y, W) — g(Y,Z)g(¢$, W)},
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or
g(RIX,Y)$Z, W) = g(¢R(X,Y)Z, W) — €P(X,Y;Z, W), (2.10)

where
PX,Y;Z,W)=g(Y,Z)g(¢X, W) —g(¢X,Z)g(Y, W)

(2.11)
+8(9Y,Z2)g(X, W) — g(X,Z)g(¢Y, W).

Clearly P(X,Y;Z,W) = —P(Z,W;X,Y),and if {X, Y} is an orthonormal pair orthogonal
to &, and if we set g(¢X,Y) = cos 0,0 < 0 < 7, then

P(X,Y;X,$Y) = —sin’6. (2.12)

If we put D(X) = Q(X,¢X) for any vector X orthogonal to ¢ and Q(X,Y) =¢
(R(X,Y)Y,X) for any vectors X and Y, then we have the following lemma.

Lemma 2.2. For any vectors X and Y orthogonal to &, one obtains

QX,Y) = i{sD(X+ ¢Y)+3D(X —¢Y) - D(X+Y)
32 (2.13)
—D(X —Y)—4D(X) —4D(Y) — 24€P(X, Y; X,¢Y)}.

Proof. For X, Yorthogonal to &, we have

D(X+Y)+D(X - Y) = 2{D(X)+D(Y) +2R(X,¢X, Y, $Y)

+2R(X,¢Y,Y,¢X) +R(X,$Y,X,¢Y) +R(Y,$X,Y,$X)},

(2.14)
and using (2.8), we have
R(¢X,9Y,$X,¢Y) = R(X,Y,X,Y),

R(X,$Y,X,¢Y) = R(Y,$X,Y,$X). (215)

Substituting (2.15) in (2.14), we get

D(X+Y)+D(X - Y) =2{D(X) +D(Y) + 2R(X,$X, Y, $Y)

+2R(X,$Y,Y,$X) +2Q(X,¢Y)}. (210

Replacing Y by ¢Y in (2.16), we get
D(X+¢Y)+D(X — ¢Y) = 2{D(X) + D(Y) — 2R(X, $X,¢Y,Y) o1

—2R(X,Y,$Y,$X)+2Q(X,Y)}.
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Using (2.16) and (2.17), we have

3D(X+¢Y)+3D(X —¢Y)-D(X+Y)-D(X-Y) —4D(X) —4D(Y)
=12Q(X,Y) -4Q(X,9Y) +8R(X,¢X,Y,9Y) + 12R(X, Y, ¢X,9Y) (2.18)
+R(X,9Y,¢X,Y).

Replacing W by ¢X and Z by Y in (2.9), we have
R(X,Y,$X,$Y) = R(X,Y,X,Y) +€P(X,Y;X,$Y). (2.19)
Again replacing Y by ¢Y, W by Y, and Z by X in (2.9), we have
R(X,¢Y,Y,¢X) = R(X,¢Y,X,$Y) +€P(X,Y;X,Y). (2.20)
By using Bianchi’s first identity (2.19) and (2.20), we have
R(X,¢X,Y,9Y) =Q(X,Y)+Q(X,¢Y) +24eP(X,Y; X, ¢Y). (2.21)
Thus using the last four equations, we have the result. O
Now, it should be noted that D(X) = H(X) if and only if X is a unit vector, and

Q(X,Y) =K(X,Y) if and only if {X,Y} is an orthonormal pair. Then, as an application
of lemma, we have the following lemma.

LemMa 2.3. Let {X,Y} be an orthonormal pair of the tangent space of an (€)-Sasakian
manifold M orthogonal to £. If one puts g(X,¢Y) = cos6,0 < 6 < 7, then

K(X,Y) = ;{3(1 +c056)2H<X+¢Y>

X +¢Y|
(X —oY X+Y

—H( &: ; ) —H(X)-H(Y) +6€sin26}.

Proof. Tt follows from Lemma (2.2).

Since the ¢-sectional curvature determines the curvature of a Sasakian manifold, then
it can be easily verified that if the ¢-sectional curvature H(X) is independent of the choice
of avector X at any point and has value ¢, then ¢ is constant on M and the curvature tensor



6 International Journal of Mathematics and Mathematical Sciences

R of (€)-Sasakian manifold satisfies

RX,Y,Z,W) = (c +43e) gV, 2)g(X, W) —g(X,Z)g(Y, W)}
+ % (X)(2)g(Y, W) — n(Y)p(Z)g(X, W)
+ (V) n(W)g(X,Z) — n(X)n(W)g(Y,Z) (2.23)
+g(¢Y)Z)g(¢X, W) — g((px,z)g((py’ W)
+2g(X,¢Y)g(¢Z, W)}.
O

Now, our next aim of this paper is as follows.

THEOREM 2.4. Let (M*"*1,¢,1n,&) be an (€)-Sasakian manifold of dimension > 7, then the
following relations are equivalent.
(1) M has constant ¢-sectional curvature c; that is, H(X) is constant.
(i1) M has constant totally real sectional curvature; that is, for any totally real section
{X,Y}, K(X,Y) is constant.
(iii) M has constant totally real bisectional curvature; that is, B(X,Y) is constant.

3. Proof of the main Theorem 2.4

In the proof, we assume that X, Y, and Z are unit vector fields.

If H(X) is constant and equal to ¢, then for a totally real section {X,Y}, (2.23) gives
K(X,Y) = —(c+3€)/4 and B(X,Y) = —(c+ 7€)/2; this gives (i)=(ii) and (i)=(iii) re-
spectively.

Now, let {X,Y} be a totally real section, then {(X + Y)/v/2,(—¢X + ¢Y)/\/2} is also a
totally real section, and assume that M has constant totally real sectional curvature (say
k); then

K<X+Y —¢X+¢Y>:k; 3.1)

V2T V2
this gives

4k = H(X)+H(Y) +K(X,$Y) + K(Y,$X) — 4R(X,$Y,Y,$X) — 2R(X,Y,$X,$Y),
(3.2)

or
H(X)+H(Y) =8k +6. (3.3)

Since the dimension of M is (2n+ 1),n = 3, therefore there exists a unit vector Z or-
thonormal to {X, Y} such that

HX)+H(Z) =8k +6. (3.4)
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Therefore, using (3.3) and (3.4), we conclude that

H(X)=H(Y). (3.5)
Thus, we have (ii)=(i).
Next, we prove that (iii)= (i).
Since
B(X,Y) = R(X,¢X,Y,¢Y), (3.6)

where 7(X) =n(Y) =g(X,Y) = g(X,¢Y) =0, then using (2.19) and (2.20), we have
B(X,Y)=K(X,Y)+K(X,¢Y) —2e. (3.7)
Now, let M have constant totally real bisectional curvature (say ¢), then
K(X,Y)+K(X,¢9Y) =t+2e. (3.8)

Also {(X+Y)/V/2,(—¢pX + ¢Y)/+/2} is a totally real section for a totally real section {X, Y}
then

B(X\;LEY, _“”f/iz”/’y) _ (3.9)
this gives
H(X)+H(Y) +2R(X,$X,Y,Y) — 4R(X,¢Y, X, $Y) = 4 — 2¢, (3.10)
or
H(X)+H(Y)—-4K(X,9Y) = 2t - 2¢. (3.11)
Replacing Y by ¢Y, we get
H(X)+H(Y)-4K(X,Y) =2t —2e. (3.12)
Using (3.8) in addition to (3.11) and (3.12), we have
H(X)+H(Y) = 4t+2e. (3.13)

Since there can exist a unit vector Z orthogonal to {X,Y}, then
H(X)+H(Z) = 4t +2¢. (3.14)
Using (3.13) and (3.14), we have
H(X)=H(Y). (3.15)

Hence, the result is given.
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