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1. Introduction

Let Pk(η) be the class of functions p(z) analytic in the unit disc E = {z : |z| < 1} satisfying
the properties p(0)= 1 and

∫ 2π

0

∣∣∣∣Rep(z)−η
1−η

∣∣∣∣dθ ≤ kπ, (1.1)

where z = reiθ , k ≥ 2, 0≤ η < 1. For η = 0, we obtain the class Pk defined by Pinchuk [1],
and for η = 0, k = 2, we have the class P of functions with positive real part, whereas
P2(η)= P(η) is the class of functions with positive real part greater than η. We can write
(1.1) as

p(z)= 1
2

∫ 2π

0

1 + (1− 2η)ze−it

1− ze−it dμ(t), (1.2)

where μ(t) is a function with bounded variation on [0,2π] such that

∫ 2π

0
dμ(t)= 2,

∫ 2π

0

∣∣dμ(t)
∣∣≤ k. (1.3)
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We can also write (1.1), for p ∈ Pk(η) in E, if and only if

p(z)=
(
k

4
+

1
2

)
p1(z)−

(
k

4
− 1

2

)
p2(z), p1, p2 ∈ P(η). (1.4)

It is known [2] that the class Pk(η) is a convex set. Let A be the class of functions f ,
defined by

f (z)= z+
∞∑
m=2

amz
m, (1.5)

which are analytic in E. By S, K , S∗, and C, we denote the subclasses of A which are
univalent, close-to-convex, starlike, and convex in E, respectively. The class A is closed
under the Hadamard product or convolution:

( f∗g)(z)=
∞∑
m=0

ambmz
m+1, (1.6)

where

f (z)=
∞∑
m=0

amz
m+1, g(z)=

∞∑
m=0

bmz
m+1. (1.7)

We define the following.

Definition 1.1. Let f ∈ A. Then, for α,β ≥ 0, 0 ≤ η < α + β ≤ 1, k ≥ 2, and z ∈ E, f ∈
Qk(α,β,η) if and only if

{
α f ′(z) +β

(
z f ′(z)

)′}∈ Pk(η). (1.8)

We note that, for β = 0 and k = 2, f ′ ∈ P(η) ⊂ P for z ∈ E and this implies that f
is univalent in E, see [3]. For any real number s, the multiplier transformations Isλ of
functions f ∈ A are defined by

f sλ (z)= Isλ f (z)= z+
∞∑
m=2

(
m+ λ
1 + λ

)s
amz

m (λ >−1). (1.9)

It is obvious that Isλ(I
t
λ f (z)) = Is+tλ f (z) for all real numbers s and t. The operator Isλ has

been studied by several authors for different choices of s and λ, see [4–7]. It is worth
noting that, for s any nonnegative integer and λ = 0, the operator Isλ is the differential
operator defined by Sălăgeam [8]. Also the operator Isλ is related rather closely to the
multiplier transformation discussed by Flett [9]. Using (1.9) and convolution, function
f sλ,μ is defined as follows:

f sλ (z)∗ f sλ (z)= z

(1− z)μ
, z ∈ E, μ > 0. (1.10)
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Motivated essentially by Choi et al. operator [10] and Noor integral operator [11–14],
Cho and Kim [15] defined the operator Isλ,μ : A→A as

Isλ,μ f (z)= f sλ,μ(z)∗ f (z), (1.11)

where s is real, λ >−1, μ > 0, and f ∈ A. In particular, I0
0,2 f (z)= z f ′(z), I1

0,2 f (z)= f (z).
From (1.10) and (1.11), we have

z
(
Is+1
λ,μ f (z)

)′ = (λ+ 1)Isλ,μ f (z)− λIs+1
λ,μ f (z), (1.12)

z
(
Isλ,μ f (z)

)′ = μIsλ,μ+1 f (z)− (μ− 1)Isλ,μ f (z). (1.13)

We now define the following.

Definition 1.2. Let f ∈ A. Then, for s real, λ > 1, μ > 0,

f ∈Qs
k(λ,μ,α,β,η) iff Isλ,μ f (z)∈Qk(α,β,η) for z ∈ E. (1.14)

2. Preliminary results

Lemma 2.1. If h(z) is analytic in E with h(0)= 1 and if λ1 is a complex number satisfying
Re λ1 ≥ 0 (λ1 
= 0), then {h(z) + λ1zh′(z)} ∈ Pk(δ), 0 ≤ δ < 1, implies h(z) ∈ Pk(δ + (1−
δ)(2γ− 1) and

γ =
∫ 1

0

(
1 + tRe λ1

)−1
dt, (2.1)

where γ is an increasing function of Re λ1 and 1/2≤ γ < 1. The estimate is sharp.

Proof. Let h(z) = (k/4 + 1/2)h1(z)− (k/4− 1/2)h2(z), h(z) is analytic in E with h(0) =
1. Then, h(z) + λ1zh′(z) = (k/4 + 1/2)[h1(z) + λ1zh

′
1(z)]− (k/4− 1/2)[h2(z) + λ1zh

′
2(z)].

Since [h(z) + λ1zh′(z)]∈ Pk(δ), we use (1.4) to have [hi(z) + λ1zh
′
i (z)]∈ P(δ), i= 1,2.We

now apply a lemma in [16] to conclude that hi ∈ P(δ1), i= 1,2, and δ1 = δ + (1− δ)(2γ−
1), where γ is given by (2.1) and it is an increasing function of Re λ1 with 1/2 ≤ γ < 1.
Consequently h∈ Pk(δ1) in E. �

Lemma 2.2 [17]. If p(z) is analytic in E with p(0)= 1, then, for any function F, analytic in
E, the function p∗F takes values in the convex hull of image of E under F.

Lemma 2.3. Let β1 < 1. If the function p is analytic in E, with p(0) = 1, then p ∈ Pk(β2),
β2 = (2β1− 1) + 2(1−β1)ln2, z ∈ E. This result is sharp.
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Proof. The proof is immediate when we use (1.4) and a similar result for the class P(β2)
in [18]. �

Lemma 2.4. For η1 ≤ 1 and η2 ≤ 1,Pk(η1)∗Pk(η2)⊂ Pk(1− 2(1−η1)(1−η2)). This result
is sharp.

Proof. Let H ∈ Pk(η1), p ∈ Pk(η2). Then, using (1.4), we can write

(H∗p)(z)=
(
k

4
+

1
2

)[(
H1∗p1

)
(z)
]−
(
k

4
− 1

2

)[(
H2∗p2

)
(z)
]
,

Hi ∈ P
(
η1

)
, pi ∈ P

(
η2

)
, i= 1,2.

(2.2)

Now using a result from [19], we have, for i= 1,2,
(
Hi∗pi

)∈ P(η), η= 1− 2
(
1−η1

)(
1−η2

)
. (2.3)

This result is shown to be sharp in [19] and consequently (H∗p)∈ Pk(η). �

3. Main results

Theorem 3.1. Qs
k(λ,μ,α,β,η)⊂Qs

k(λ,μ,1,0,σ) for

σ = σ1 +
(
1− σ1

)(
2σ2− 1

)
, σ1 = η

α+β
,

σ2 =
∫ 1

0

(
1 + tβ/(α+β))−1

dt, with
1
2
≤ σ2 ≤ 1.

(3.1)

Proof. Let f ∈Qs
k(λ,μ,α,β,η). Then, by definition it follows that

{
α
(
Isλ,μ f

)′
+β
(
z
(
Isλ,μ f

)′)′}∈ Pk(η), z ∈ E. (3.2)

Set (Isλ,μ f (z))′ = p(z). Then p is analytic in E with p(0)= 1 and for z ∈ E,

{
α
(
Isλ,μ f (z)

)′
+β
(
z
(
Isλ,μ f (z)

)′)′ −η
α+β−η

}

=
{

α+β
α+β−η p(z) +

β

α+β−ηzp
′(z)− η

α+β−η
}
∈ Pk.

(3.3)

From (1.4) and (3.4), we have, for i= 1,2,
[

α+β
α+β−η pi(z) +

β

α+β−ηzp
′
i (z)− η

α+β−η
]
= hi(z)∈ P. (3.4)

By putting σ1 = η/(α+β), we see that

pi(z) +
β

α+β
zp′i (z)= (1− σ1

)
hi(z) + σ1 =Hi(z)∈ P(σ1). (3.5)

Now using Lemma 2.1, we obtain pi ∈ P(σ), where σ is given by (3.1). Therefore, (Isλ,μ f )′

∈ Pk(σ) and consequently f ∈Qs
k(λ,μ,1,0,σ) in E. �
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Remark 3.2. By writing σ1 = η/(α+β), α1 = α/(α+β), we can deduce from Definition 1.2
that f ∈Qs

k(λ,μ,α,β,η), if and only if, for 0≤ α1 ≤ 1,

[
α1
(
Isλ,μ f

)′
+
(
1−α1

)(
z
(
Isλ,μ f

)′)′]∈ Pk(σ1), z ∈ E. (3.6)

In this case, we say that f ∈Qs
k(λ,μ,α1,σ1) in E.

Theorem 3.3. Let s be real, λ >−1, μ > 0. Then,

Qs
k

(
λ,μ+ 1,α1,σ1

)⊂Qs
k

(
λ,μ,α1,δ1

)⊂Qs+1
k

(
λ,μ,α1,δ2

)
, (3.7)

where α1 and σ1 are as defined in Remark 3.2 and

δ1 = σ1 +
(
1− σ1

)(
2η1− 1

)
, η1 =

∫ 1

0

(
1 + t1/μ

)−1
dt, (3.8)

δ2 = δ1 +
(
1− δ1

)
(2η2− 1

)
, η2 =

∫ 1

0

(
1 + t1/(λ+1))−1

dt. (3.9)

Proof. We first show that Qs
k(λ,μ+ 1,α1,σ1)⊂Qs

k(λ,μ,α1,δ1).
Let f ∈Qs

k(λ,μ+ 1,α1,σ1) and set

p(z)= α1

[(
Isλ,μ f (z)

)′]
+
(
1−α1

)[(
zIsλ,μ f (z)′

)′]
. (3.10)

From (1.13) and (3.10), we have, for z ∈ E,

{
α1
(
Isλ,μ+1 f (z)

)′
+
(
1−α1)

(
z
(
Iλ+μ+1 f (z)

)′)′}=
{
p(z) +

1
μ
zp′(z)

}
∈ Pk

(
σ1
)

(3.11)

and, on using (1.4), it follows that Re {pi(z) + (1/μ)zp′i (z)} > σ1, z ∈ E, i= 1,2.
Now, applying Lemma 2.1, we have Re pi(z) > δ1, i = 1,2, where δ1 is given by (3.8).

This implies p ∈ Pk(δ1) for z ∈ E and hence f ∈ Qs
k(λ,μ,α1,δ1) in E. To prove Qs

k

(λ,μ,α1,δ1)⊂Qs+1
k (λ,μ,α1,δ2), we proceed as follows. Set

{
α1
(
Is+1
λ,μ f (z)

)′
+
(
1−α1

)(
z
(
Is+1
λ,μ f (z)

)′)′}= h(z). (3.12)

Then, using (1.12), we have

{
α1
(
Isλ,μ f (z)

)′
+
(
1−α1

)(
z
(
Isλ,μ f (z)

)′)′}=
{
h(z) +

1
λ+ 1

zh′(z)
}
∈ Pk

(
δ1
)
. (3.13)

With similar argument as detailed above, we obtain the required result. �

Theorem 3.4. The class Qs
k(λ,μ,α1,σ1) is closed under the convolution with a convex func-

tion. That is, if f ∈Qs
k(λ,μ,α1,σ1) and φ ∈ C for z ∈ E, then (φ∗ f )∈Qs

k(λ,μ,α1,σ1).
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Proof. Let f ∈Qs
k(λ,μ,α1,σ1). Consider

α1
(
Isλ,μ(φ∗ f )(z)

)′
+
(
1−α1)

(
z
(
Isλ,μ(φ∗ f )(z)

)′)′

= α1
(
f sλ,μ(z)∗(φ∗ f )(z)

)′
+
(
1−α1

)(
z
(
f sλ,μ(z)∗(φ∗ f )(z)

)′)′

= α1
(
φ(z)∗ f sλ,μ(z)∗ f (z)

)′
+
(
1−α1

)(
z
(
φ(z)∗ f sλ,μ(z)∗ f (z)

)′)′

= φ(z)
z
∗{α1

(
Isλ,μ f (z)

)′
+
(
1−α1

)(
z
(
Isλ,μ f (z)

)′)′}

=
(
k

4
+

1
2

)[
φ(z)
z
∗h1(z)

]
−
(
k

4
− 1

2

)[
φ(z)
z
∗h2(z)

]
,

(3.14)

where φ(z)/z ∈ P(1/2) and hi ∈ P(σ1). Using Lemma 2.2, we see that [(φ(z)/z)∗hi(z)]∈
P(σ1) and consequently h∈ Pk(σ1), which implies that φ∗ f ∈Qs

k(λ,μ,α1,σ1); the proof
is complete. �

Corollary 3.5. The classQs
k(λ,μ,α1,σ1) is invariant under the following integral operators:

(i) f1(z)= ∫ z0 ( f (t)/t)dt,

(ii) f2(z)= (2/z)
∫ z

0 f (t)dt (Libera’s operator [20]),

(iii) f3(z)= ∫ z0 ( f (t)− f (xt)/(t− xt))dt,|x| ≤ 1, x 
= 1,

(iv) f4(z)= ((1 + c)/zc)
∫ z

0 t
c−1 f (t)dt,Re c > 0.

One may write (see [21, 22])

f1(z)= f (z)∗φ1(z), f2(z)= f (z)∗φ2(z),

f3(z)= f (z)∗φ3(z), f4(z)= f (z)∗φ4(z),
(3.15)

where φi, i= 1,2,3,4, are convex and

φ1(z)=− log(1− z)=
∞∑
n=1

1
n
zn,

φ2(z)= −2
[
z+ log(1− z)

]
z

=
∞∑
n=1

2
n+ 1

zn,

φ3(z)= 1
1− x log

[
1− xz
1− z

]
=

∞∑
n=1

1− xn
(1− x)n

zn, |x| ≤ 1, x 
= 1,

φ4(z)=
∞∑
n=1

1 + c
n+ c

zn, Re c > 0.

(3.16)

Now, the result follows by applying Theorem 3.4. Let μ1 and μ2 be linear operators
defined on the class S as follows:

μ1

(
f (z)

)= z f ′(z), μ2

(
f (z)

)=
[
f (z) + z f ′(z)

]
2

(
Livingston’s operator [23]

)
.

(3.17)
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Then, both of these operators can be written as a convolution operator [21], given by
μi( f )= hi∗ f , i= 1,2, where

h1(z)=
∞∑
n=1

nzn = z

(1− z)2 , h2(z)=
∞∑
n=1

n+ 1
2

zn = z− z2/2

(1− z)2 . (3.18)

It can easily be verified that the radius of convexity rc(h1) = 2−√3 and rc(h2) = 1/2.
These facts together with Theorem 3.4 yield the following.

Theorem 3.6. Let f ∈Qs
k(λ,μ,α1,σ1). Then,

μ1( f )= ( f∗h1
)∈Qs

k

(
λ,μ,α1,σ1

)
, for |z| < 2−√3,

μ2( f )= ( f∗h2)∈Qs
k(λ,μ,α1,σ1

)
, for |z| < 1

2
.

(3.19)

Theorem 3.7. Let 0≤ α1 < α2. Then, Qs
k(λ,μ,α1,σ1)⊂Qs

k(λ,μ,α2,σ1).

Proof. If α1 = 0, the result is obvious. Therefore, we assume that α1 > 0 and f ∈ Qs
k

(λ,μ,α2,σ1). Let (Isλ,μ f (z))′ =H1(z). Then, by Theorem 3.1, H1 ∈ Pk(σ1). Also, let

{
α1
(
Isλ,� f (z)

)′
+
(
1−α1

)(
z
(
Isλ,μ f (z)

)′)′}=H2(z), H2 ∈ Pk
(
σ1
)

inE. (3.20)

Now,

α2
(
Isλ,μ f (z)

)′
+
(
1−α2

)(
z
(
Isλ,μ f (z)

)′)′ = α2−α1(
1−α1

)H1(z) +

(
1−α2

)
(
1−α1

)H2(z)

=
(
α2−α1

)
(
1−α1

) H1(z) +
(

1− α2−α1(
1−α1

)
)
H2(z).

(3.21)

Since H1,H2 ∈ Pk(σ1) and Pk(σ1) is a convex set, see [2], we obtain the required result.
�

Theorem 3.8. Let fi ∈ Qs
k(λ,μ,α1,ζi), i = 1,2, and let Ψ = f1∗ f2. Then, Ψ(z)/z ∈ Qs

k

(λ,μ,1,ζ) for z ∈ E, where ζ = 1− δ(1− δ1)(1− δ2)(ln2− 1)2 and

δi = ζi +
(
1− ζi

)
(2m− 1). (3.22)

Proof. Since fi ∈Qs
k(λ,μ,α1,ζi), it follows from Theorem 3.1 that fi ∈Qs

k(λ,μ,1,δi), δi =
ζi + (1− ζi)(2m− 1), and

m=
∫ 1

0
(1 + t(1−α))

−1
dt. (3.23)

Now,
(
z
(
Isλ,μΨ(z)

)′)′ = Isλ,μ

[
(Ψ′(z) + zψ′′(z)

]
=
(
z
(
Isλ,μ( f ′1∗ f2)(z)

))′

= Isλ,μ

[(
f ′1 (z)∗ f ′2 (z)

)]= (Isλ,μ f1(z)
)′∗(Isλ,μ f2(z)

)′
.

(3.24)



8 International Journal of Mathematics and Mathematical Sciences

Since fi ∈Qs
k(λ,μ,1,δi), it follows, by Lemma 2.4, that {Ψ′(z) + zΨ′′(z)} ∈Qs

k(λ,μ,1,δ),
where

δ = 1− 2
(
1− δ1

)(
1− δ2

)
. (3.25)

From (3.25) and Lemma 2.3, we have

Ψ′(z)∈Qs
k

(
λ,μ,1,

{
1 + 4(1− δ1

)
(1− δ2

)
(ln2− 1

)})
. (3.26)

From (3.26) and Lemma 2.3, again, we have

Ψ(z)
z

∈Qs
k

(
λ,μ,1,

{
1− δ(1− δ1

)(
1− δ2

)(
ln2− 1

)2})
, z ∈ E. (3.27)

We now consider the converse case of Theorem 3.1 as follows. �

Theorem 3.9. Let f ∈ Qs
k(λ,μ,1,σ). Then, f ∈ Qs

k(λ,μ,α1,σ), 0 < α1 ≤ 1, for |z| < rα1

(α1 
= 1/2), where

rα1 =
1{

2(1−α1) +
√

4α2
1− 6α1 + 3

} . (3.28)

This result is sharp.

Proof. Let φα1
(z)= α1(Isλ,μ f (z))′ + (1−α1)(z(Isλ,μ f (z))′)′. Then,

φα1
(z)= kα1 (z)

z
∗(Isλ,μ f (z))′, where kα1 (z)= α1

z

1− z +
(
1−α1

) z

(1− z)2 . (3.29)

It is known [23] that the function kα1 is convex for |z| < rα1 , where rα1 is given by (3.28)
and this radius is sharp and consequently, for |z| < rα1 , by a well-known result, kα1 ∈
P(1/2). Thus, using Lemma 2.2, and the given fact that f ∈ Qs

k(λ,μ,1,σ), we obtain the
required result. �
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