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1. Introduction

The aim of this paper is to construct a class of linear operators in more general condi-
tions. The method was inspired by Jakimovski and Leviatan (see [1]). We do not study
the convergence of these operators with the well-known theorem of Bohman-Korovkin.
The evaluation theorems for the rate of convergence are different from the well-known
theorem of Shisha-Mond. We prove the Voronovskaja-type theorem for these operators.
In the end, we give particularizations of these operators.

We recall some notions and results which we will use in this paper.
Let N be the set of positive integer numbers and N0 = N∪ {0}. For a given interval

I , we will use the following function sets: B(I)= { f | f : I →R, f bounded on I}, C(I)=
{ f | f : I →R, f continuous on I}, and CB(I)= B(I)∩C(I).

For any x ∈ I , consider the functions ψx : I →R defined by ψx(t)= t− x and ei : I →R,
ei(t)= ti for any t ∈ I , i∈ {0,1,2,3,4}.

For f ∈ CB(I), by the first-order modulus of smoothness of f is meant the function
ω( f ;·) : [0,∞)→R defined for any δ ≥ 0 by

ω( f ;δ)= sup
{∣∣ f (x′)− f (x′′)

∣
∣ : x′,x′′ ∈ I ,|x′ − x′′| ≤ δ}. (1.1)
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In the following, we take into account the properties of the first-order modulus of
smoothness and the properties of the linear positive functional.

Lemma 1.1. Let f ∈ CB(I). Then, ω( f ;·) has the following properties:
(a) ω( f ;0)= 0,
(b) ω( f ;·) is an increasing function,
(c) ω( f ;·) is a uniform continuous function on I ,
(d) for any δ > 0, x, t ∈ I , one has | f (t)− f (x)| ≤ [1 + δ−2ψ2

x (t)]ω( f ;δ).

Lemma 1.2. Let A : E(I)→R be a linear positive functional. Then,
(a) for f ,g ∈ E(I) with f (x)≤ g(x) for any x ∈ I , one has

A( f )≤A(g); (1.2)

(b) |A( f )| ≤ A(| f |) for any f ∈ E(I), where E(I) is a subset of the set of real functions
defined on I .

In [2] we have demonstrated the following theorem.

Theorem 1.3. Let I be an interval x ∈ I , and let the function f : I →R be s times differen-
tiable in x. According to the Taylor Expansion Theorem, one has

f (t)=
s∑

i=0

(t− x)i

i!
f (i)(x) + (t− x)sμ(t− x), (1.3)

where μ is a bounded function and lim
t→x μ(t− x) = 0. If f (s) is a continuous function on I ,

then for any δ > 0 and x ∈ I one has

∣
∣(μ(t− x)

∣
∣≤ 1

s!

[
1 + δ−2ψ2

x (t)
]
ω
(
f (s);δ

)
. (1.4)

2. Preliminaries

In this section, we construct a general class of linear and positive operators and we dem-
onstrate for these operators an approximation theorem and a Voronovskaja-type theo-
rem.

Let I , J be intervals and I ∩ J is a nonempty interval. For any m ∈ N and k ∈ N0,
consider the function ϕm,k : J → R with the property ϕm,k(x) ≥ 0 for any x ∈ J and the
linear and positive functional Am,k : E(I)→R.
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In the following, let E(I) and F(J) be subsets of the set of real functions defined on I , J
respectively, such that the series

∑∞
k=0ϕm,k(x)Am,k( f ) is convergent for any f ∈ E(I) and

any x ∈ J . We suppose that ψix ∈ E(I) for any x ∈ I ∩ J and any i∈ {0,1, . . . ,s+ 2}.
In what follows s∈N0, s is even.

Definition 2.1. For m∈N, define the operator Lm : E(I)→ F(J) by

(
Lm f

)
(x)=

∞∑

k=0

ϕm,k(x)Am,k( f ) (2.1)

for any f ∈ E(I) and x ∈ J .
Proposition 2.2. The operators (Lm)m≥1 are linear and positive on E(I ∩ J).

Proof. The proof follows immediately. �

Definition 2.3. For m∈N and i∈N0, define Ti by

(
TiLm

)
(x)=mi

(
Lmψ

i
x

)
(x)=mi

∞∑

k=0

ϕm,k(x)Am,k
(
ψix
)

(2.2)

for any x ∈ I ∩ J .
Theorem 2.4. If f ∈ E(I) is an s-times differentiable function in x ∈ I ∩ J , with f (s) con-
tinuous in x, and if there exist αs, αs+2 ∈ [0,∞) and m(s)∈N such that

αs+2 < αs + 2 (2.3)

and (TsLm)(x)/mαs , (Ts+2Lm)(x)/mαs+2 are bounded for any m∈N, m≥ (s), then

lim
m→∞m

s−αs
[
(
Lm f

)
(x)−

s∑

i=0

1
i!mi

(
TiLm

)
(x) f (i)(x)

]

= 0. (2.4)

Assume that f is an s times differentiable function on I with f (s) continuous on I and an in-
tervalK ⊂ I ∩ J exists such that there existm(s)∈N and the constants kj(K)∈R depending
on K , so that for any m∈N, m≥m(s) and x ∈ K , one has

(
TjLm

)
(x)

mαj
≤ kj(K), (2.5)

where j ∈ {s,s+ 2}. Then, the convergence given in (2.4) is uniform on K and

ms−αs
∣
∣
∣
∣
∣
(
Lm f

)
(x)−

s∑

i=0

1
i!mi

(
TiLm

)
(x) f (i)(x)

∣
∣
∣
∣
∣

≤ 1
s!

(
ks(K) + ks+2(K)

)
ω
(
f (s);

1√
m2+αs−αs+2

) (2.6)

for any x ∈ K and m≥m(s).
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Proof. According to Taylor’s Theorem, we have

f (t)=
s∑

i=0

(t− x)i

i!
f (i)(x) + (t− x)sμ(t− x), (2.7)

where μ is a bounded function and lim
t→x μ(t− x)= 0.

Hence, from (2.7), we have

Am,k( f )=
s∑

i=0

f (i)(x)
i!

Am,k
(
ψix
)

+Am,k
(
ψsxμx

)
, (2.8)

where μx : I →R, μx(t)= μ(t− x), for any t ∈ I ∩ J .
Multiplying by ϕm,k(x) and summing over k ∈N0, we obtain

(
Lm f

)
(x)=

s∑

i=0

f (i)(x)
i!

(
Lmψ

i
x

)
(x) +

∞∑

k=0

ϕm,k(x)Am,k
(
ψsxμx

)
. (2.9)

Thus,

ms−αs
[
(
Lm f

)
(x)−

s∑

i=0

f (i)(x)
i!mi

(
TiLm

)
(x)

]

= (Rm f
)
(x), (2.10)

where

(
Rm f

)
(x)=ms−αs

∞∑

k=0

ϕm,k(x)Am,k
(
ψsxμx

)
. (2.11)

Then,

∣
∣(Rm f

)
(x)
∣
∣≤ms−αs

∞∑

k=0

ϕm,k(x)
∣
∣Am,k

(
ψsxμx

)∣∣ (2.12)

and taking Lemma 1.2 into account, we obtain

∣
∣(Rm f

)
(x)
∣
∣≤ms−αs

∞∑

k=0

ϕm,k(x)Am,k
(
ψsx
∣
∣μx

∣
∣). (2.13)

According to the relation (1.4), for any δ > 0 and t ∈ I ∩ J , we have

∣
∣μx(t)

∣
∣= ∣∣μ(t− x)

∣
∣≤ 1

s!

[
1 + δ−2ψ2

x (t)
]
ω
(
f (s);δ

)
, (2.14)

and so

(
ψsx
∣
∣μx

∣
∣)(t)≤ 1

s!

[
ψsx(t) + δ−2ψs+2

x (t)
]
ω
(
f (s);δ

)
. (2.15)
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From (2.13) and (2.15), it results that

∣
∣(Rm f

)
(x)
∣
∣≤ 1

s!
ms−αs

[ ∞∑

k=0

ϕm,k(x)Am,k
(
ψsx
)

+ δ−2
∞∑

k=0

ϕm,k(x)Am,k
(
ψs+2
x

)
]

ω
(
f (s);δ

)
.

(2.16)

Thus,

∣
∣(Rm f

)
(x)
∣
∣≤ 1

s!

[(
TsLm

)
(x)

mαs
+ δ−2

(
Ts+2Lm

)
(x)

mαs+2
m−2−αs+αs+2

]
ω
(
f (s);δ

)
. (2.17)

Considering δ = 1/
√
m2+α2−αs+2 , the inequality above becomes

∣
∣(Rm f

)
(x)
∣
∣≤ 1

s!

[(
TsLm

)
(x)

mαs
+

(
Ts+2Lm

)
(x)

mαs+2

]
ω
(
f (s);

1√
m2+αs−αs+2

)
. (2.18)

Taking into account that (TsLm)(x)/mαs and (Ts+2Lm)(x)/mαs+2 are bounded for any m∈
N, m≥m(s), and considering the fact that

lim
m→∞ω

(
f (s);

1√
m2+αs−αs+2

)
= ω( f (s);0

)= 0, (2.19)

we have that

lim
m→∞

(
Rm f

)
(x)= 0. (2.20)

From (2.10) and (2.20), (2.4) follows.
If in addition (2.5) takes place then, (2.18) becomes

∣
∣(Rm f

)
(x)
∣
∣≤ 1

s!

(
ks(K) + ks+2(K)

)
ω
(
f (s);

1√
m2+αs−αs+2

)
, (2.21)

for m ≥m(s) and x ∈ K . Therefore, the convergence from (2.4) is uniform on K . Now,
(2.10) and (2.21) yield (2.6). �

In the following, we suppose that for any k ∈N0 and m∈N, we have

Am,k
(
e0
)= 1, (2.22)

and for any x ∈ I ∩ J and m∈N
∞∑

k=0

ϕm,k(x)= 1. (2.23)

Remark 2.5. Taking (2.22) and (2.23) into account, it results that

(
T0Lm

)
(x)= 1 (2.24)

for any x ∈ I ∩ J and m∈N.
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Remark 2.6. In Theorem 2.4, we choose the smallest αs and αs+2, if they exist.

Remark 2.7. Taking (2.24) into account, we choose α0 = 0.

Remark 2.8. For s= 0, s= 2, respectively, we state two corollaries which we will use in the
section Main results.

Corollary 2.9. If f ∈ E(I) is a continuous function in x ∈ I ∩ J , and if there exist α2 and
m(0)∈N such that

0≤ α2 < 2 (2.25)

and (T2Lm)(x)/mα2 is bounded for any m∈N, m≥m(0), then

lim
m→∞

(
Lm f

)
(x)= f (x). (2.26)

Assume that f is continuous on I and an interval K ⊂ I ∩ J exists, such that there exist
m(0)∈N and k2(K) so that for any m∈N, m≥m(0), and x ∈ K , one has

(
T2Lm

)
(x)

mα2
≤ k2(K). (2.27)

Then, the convergence given in (2.26) is uniform on K and

∣
∣(Lm f

)
(x)− f (x)

∣
∣≤ (1 + k2(K)

)
ω
(
f ;

1√
m2−α2

)
(2.28)

for any x ∈ K and m≥m(0).

Corollary 2.10. If f ∈ E(I) is a two-times differentiable function in x ∈ I ∩ J , with f (2)

continuous in x, and if there exist α2, α4 and m(2)∈N such that

0≤ α2 < 2,

0≤ α4 < α2 + 2,
(2.29)

(T2Lm)(x)/mα2 and ((T4Lm)(x))/mα4 are bounded for any m∈N, m≥m(2), then

lim
m→∞m

2−α2

[(
Lm f

)
(x)− f (x)− 1

m

(
T1Lm

)
(x) f (1)(x)− 1

2m2

(
T2Lm

)
(x) f (2)(x)

]
= 0.

(2.30)

Assume that f is a two-times differentiable function on I with f (2) continuous on I and an
intervalK ⊂ I ∩ J exists, such that there existm(2)∈N and kj(K), so that for anym≥m(2)
and x ∈ K , one has

(
TjLm

)
(x)

mαj
≤ kj(K), (2.31)

where j ∈ {2,4}. Then, the convergence given in (2.30)is uniform on K .

Remark 2.11. Theorem 2.4, Corollary 2.9, and 2.10 are Voronovskaja-type theorems.
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3. Main results

In this section, we construct a general class of linear positive operators. Let R0 = [0,∞)
and J be an interval with J ⊂R0. Let the sequence (am)m≥1 so that amx ∈ J for any m∈N
and x ∈ J . The indefinitely differentiable functions a,b : J →R have the property:

b(x) > 0 (3.1)

for any x ∈R0,

a(1) �= 0 (3.2)

and for any compact K ⊂ J the constants M1(K), M2(K) depending on K exist, such that

∣
∣a(k)(x)

∣
∣≤M1(K),

∣
∣b(k)(x)

∣
∣≤M2(K)

(3.3)

for any x ∈ K and k ∈N0.
Then, it is known that

a(x)=
∞∑

n=0

1
n!
a(n)(0)xn,

b(x)=
∞∑

p=0

1
p!
b(p)(0)xp

(3.4)

for any x ∈ J .
If u,x,ux ∈ J , we calculate

a(u)b(ux)=
( ∞∑

n=0

1
n!
a(n)(0)un

)( ∞∑

p=0

1
p!
b(p)(0)(ux)p

)

(3.5)

and we take it to the form

a(u)b(ux)=
∞∑

k=0

pk(x)uk, (3.6)

where

pk(x)=
k∑

i=0

1
i!(k− i)!

a(i)(0)b(k−i)(0)xk−i. (3.7)
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Remark 3.1. If u= 1, then from (3.6), we obtain

a(1)b
(
amx

)=
∞∑

k=0

pk
(
amx

)
(3.8)

for any m∈N and x ∈ J .

Remark 3.2. We consider that the conditions a(i)(0)b(k−i)(0)/a(1)≥ 0, i∈ {0,1, . . . ,k} and
k ∈N0, hold and then it results that a(1)pk(x)≥ 0 for any x ∈ J and any k ∈N0.

In the following, let a fixed function w : R0 → (0,∞), called the weight function, and
the set functions

E(w)= { f | f :R0 →R such that w f is bounded on[0,∞)
}
. (3.9)

For f ∈ E(w), there exists a positive constantM such thatw(x)| f (x)| ≤M for any x ∈R0.
For m∈N and x ∈ J , and taking in the end (3.8) into account, we have

∣
∣
∣
∣
∣

1
a(1)b

(
amx

)
∞∑

k=0

pk
(
amx

)
f
(
k

m

)∣∣
∣
∣
∣≤

1
a(1)b

(
amx

)
∞∑

k=0

pk
(
amx

)
∣
∣
∣
∣ f
(
k

m

)∣∣
∣
∣

≤ M

w(x)
1

a(1)b
(
amx

)
∞∑

k=0

pk
(
amx

)= M

w(x)
,

(3.10)

from where it results that the series (1/a(1)b(amx))
∑∞

k=0 pk(amx) f (k/m) is convergent.

Definition 3.3. For m∈N, define the operator Lm : E(w)→ F(J) by

(
Lm f

)
(x)= 1

a(1)b
(
amx

)
∞∑

k=0

pk
(
amx

)
f
(
k

m

)
(3.11)

for any f ∈ E(w) and x ∈ J , where F(J) is a subset of the set of real functions defined on
J .

Remark 3.4. The operators (Lm)m≥1 are linear and positive on E(w).
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In the following, we consider that for any x ∈ J , we have ψix ∈ E(w), i∈ {1,2,3,4}.

Definition 3.5. For m∈N and i∈ {1,2,3,4}, define Ti by

(
TiLm

)
(x)=mi

(
Lmψ

i
x

)
(x)=mi 1

a(1)b
(
amx

)
∞∑

k=0

pk
(
amx

)
(
k

m
− x

)i
(3.12)

for any x ∈ J .

Lemma 3.6. One has

(
Lme0

)
(x)= 1, (3.13)

(
Lme1

)
(x)= am

m

b(1)
(
amx

)

b
(
amx

) x+
1
m

a(1)(1)
a(1)

,

(
Lme2

)
(x)=

(
am
m

)2 b(2)
(
amx

)

b
(
amx

) x2 +
1
m

am
m

a(1) + 2a(1)(1)
a(1)

b(1)
(
amx

)

b
(
amx

) x+
1
m2

a(1)(1) + a(2)(1)
a(1)

,

(
Lme3

)
(x)=

(
am
m

)3 b(3)
(
amx

)

b
(
amx

) x3 +
1
m

(
am
m

)2 3a(1) + 3a(1)(1)
a(1)

b(2)
(
amx

)

b
(
amx

) x2

+
1
m2

am
m

a(1) + 6a(1)(1) + 3a(2)(1)
a(1)

b(1)
(
amx

)

b
(
amx

) x+
1
m3

a(1) + 3a(2)(1) + a(3)(1)
a(1)

,

(
Lme4

)
(x)=

(
am
m

)4 b(4)
(
amx

)

b
(
amx

) x4 +
1
m

(
am
m

)3 6a(1) + 4a(1)(1)
a(1)

b(3)
(
amx

)

b
(
amx

) x3

+
1
m2

(
am
m

)2 7a(1) + 18a(1)(1) + 6a(2)(1)
a(1)

b(2)
(
amx

)

b
(
amx

) x2

+
1
m3

am
m

a(1) + 14a(1)(1) + 18a(2)(1) + 4a(3)(1)
a(1)

b(1)
(
amx

)

b
(
amx

) x

+
1
m4

a(1)(1) + 7a(2)(1) + 6a(3)(1) + a(4)(1)
a(1)

(3.14)

for any x ∈ J and m∈N.

Proof. The relation (3.13) results from (3.8). The proof of relations (3.14) follows imme-
diately by differentiating (3.6) with respect to u, and after that take 1 for u and amx for
x. �
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Lemma 3.7. For x ∈ J and m∈N, the following hold
(
T0Lm

)
(x)= 1,

(
T1Lm

)
(x)=−m

(
1− am

m

b(1)
(
amx

)

b
(
amx

)
)
x+

a(1)(1)
a(1)

,
(3.15)

(
T2Lm

)
(x)=−m2

[
1−

(
am
m

)2 b(2)
(
amx

)

b
(
amx

)
]
x2

+m2
(

1− am
m

b(1)
(
amx

)

b
(
amx

)
)(

2x2− 1
m

a(1) + 2a(2)(1)
a(1)

x
)

+mx+
a(1)(1) + a(2)(1)

a(1)
,

(3.16)

(
T4Lm

)
(x)=−m4

[
1−

(
am
m

)4 b(4)
(
amx

)

b
(
amx

)
]
x4

+m4
[

1−
(
am
m

)3 b(3)
(
amx

)

b
(
amx

)
](

4x4− 1
m

6a(1) + 4a(1)(1)
a(1)

x3
)

+m4
[

1−
(
am
m

)2 b(2)
(
amx

)

b
(
amx

)
](
− 6x4 + 4

1
m

3a(1) + 3a(1)(1)
a(1)

x3

− 1
m2

7a(1) + 18a(1)(1) + 6a(2)(1)
a(1)

x2
)

+m4
(

1− am
m

b(1)
(
amx

)

b
(
amx

)
)(

4x4− 6
1
m

a(1) + 2a(1)(1)
a(1)

x3

+ 4
1
m2

a(1) + 6a(1) + 3a(2)(1)
a(1)

x2

− 1
m3

a(1) + 14a(1) + 18a(2)(1) + 4a(3)(1)
a(1)

x
)

+ 3m2x2 +
a(1) + 10a(1)(1) + 6a(2)(1)

a(1)
mx

+
a(1)(1) + 7a(2)(1) + 6a(3)(1) + a(4)(1)

a(1)
.

(3.17)

Proof. The proof follows immediately from (3.12) and Lemma 3.6. �

Theorem 3.8. Let f :R0 →R be a function, f ∈ E(w). If x ∈R0, f is continuous in x, α2

and m(0)∈N exist such that

1≤ α2 < 2 (3.18)

and m2−α2|1− (am/m)i(b(i)(amx)/b(amx))| is bounded for any m ∈ N, m ≥m(0), where
i∈ {1,2}, then

lim
m→∞

(
Lm f

)
(x)= f (x). (3.19)
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Assume that f is continuous on R0 and a compact interval K ⊂ R0 exists, such that there
exist m(0)∈N and li(K) so that for any m∈N, m≥m(0), and x ∈ K , one has

m2−α2

∣
∣
∣
∣1−

(
am
m

)i b(i)
(
amx

)

b
(
amx

)
∣
∣
∣
∣≤ li(K), (3.20)

where i∈ {1,2}.
Then, the convergence given in (3.19) is uniform in K and

∣
∣(Lm f

)
(x)− f (x)

∣
∣≤M(K)ω

(
f ;

1√
m2−α2

)
(3.21)

for any x ∈ K and any m≥m(0), where M(K) is a constant depending on K .

Proof. Because m2−α2|1− (am/m)i(b(i)(amx)/b(amx))| is bounded for any m ∈ N, m ≥
m(0), it results that (T2Lm)(x)/mα2 is bounded for any m∈N, m≥m(0). Taking relation
(3.16) into account, we apply now the Corollary 2.9. The proof is similar on a compact
interval K . �

Theorem 3.9. Let f :R0 →R be a function, f ∈ E(w). If x ∈R0, f is a two times differen-
tiable function in x with f (2) continuous in x, α2, α4 and m(2)∈N exist such that

1≤ α2 < 2, (3.22)

2≤ α4 < α2 + 2, (3.23)

m4−α4|1− (am/m)i(b(i)(amx)/b(amx))| is bounded for any m ∈ N, m ≥ m(2), where i ∈
{1,2,3,4}, then

lim
m→∞m

2−α2

[
(
Lm f

)
(x)− f (x)− 1

m

(
T1Lm

)
(x) f (1)(x)− 1

2m2

(
T2Lm

)
(x) f (2)(x)

]
= 0.

(3.24)

In addition, if the limit lim
m→∞((T2Lm)(x)/mα2 ) exists and

lim
m→∞

(
T2Lm

)
(x)

mα2
= B2(x)∈R, (3.25)

then

lim
m→∞m

2−α2

[
(
Lm f

)
(x)− f (x)− 1

m

(
T1Lm

)
(x) f (1)(x)

]
= 1

2
B2(x) f (2)(x). (3.26)

Assume that f is a two-times differentiable function on R0 with f (2) continuous on R0 and
a compact interval K ⊂ R0 exists, such that there exist m(2) ∈N and li(K) so that for any
m≥m(2) and x ∈ K , one has

m4−α4

∣
∣
∣
∣1−

(
am
m

)i b(i)
(
amx

)

b
(
amx

)
∣
∣
∣
∣≤ li(K), (3.27)

where i∈ {1,2,3,4}. Then, the convergence given in (3.24) is uniform on K .
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Proof. From (3.23), it results that 4 − α4 > 2 − α2, and then we have that m2−α2|1 −
(am/m)i(b(i)(amx)/b(amx))|, i∈{1,2} are bounded for any m≥m(2). So (T2Lm)(x)/mα2

is bounded for any m ≥m(2). Using the same idea from the proof of Theorem 3.8, we
have that (T2Lm)(x)/mα2 and (T4Lm)(x)/mα4 are bounded for any m∈N, m≥m(2), and
then we apply Corollary 2.10. �

Now, we give some applications where am =m for anym∈N. In the following, by par-
ticularization and applying Theorems 3.8 and 3.9, we can obtain approximation theorems
and Voronovskaja-type theorems for some known operators. Because every application
is a simple substitute in the theorems of this section, we will not replace anything.

Application 3.10. If a(x)= 1 and b(x)= ex, x ∈R0, we obtain the Mirakjan-Favard-Szász
operators (see [3–5]).

Application 3.11. If a(x)= g(x)=∑∞
n=0 anx

n and b(x)= ex, x ∈R0, we obtain the opera-
tors considered by Jakimovski and Leviatan in the paper [1].

Application 3.12. If a(x) = g(x) = 1 and b(x) = coshx =∑∞
k=0(1/(2k)!)x2k, x ∈ R0, then

we get the operators considered by Leśniewicz and Rempulska in the paper [6].

Application 3.13. If a(x) = g(x) = 1 and b(x) = sinhx =∑∞
k=0(1/(2k+ 1)!)x2k+1, x ∈ R0,

we get the operators

(
Am f

)
(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
sinhmx

∞∑

k=0

(mx)2k+1

(2k+ 1)!
f
(

2k+ 1
m

)
if x > 0,

f (0) if x = 0,

(3.28)

where m∈N and x ∈R0. The operators of this type are introduced and studied by Rem-
pulska and Skorupka in the paper [7].

Application 3.14. If a(x)= b(x)= g(x)= coshx, x ∈R0, we obtain the operators studied
by Ciupa in [8].

Application 3.15. If a(x)= g(x)=∑∞
n=0 anx

n and b(x)= coshx, x ∈R0, we get the opera-
tors constructed by Ciupa in the paper [9], and studied in [9, 10].

Application 3.16. If a(x) = 1 and b(x) = bm((1/m)x), x ∈ R0 and m ∈ N, we obtain the
operators studied in the paper [11].
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