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We deal with the family B(n,k,r) of trinomial arcs defined as the set of roots of the tri-
nomial equation zn = αzk + (1−α), where z = ρeiθ is a complex number, n and k are two
integers such that 0 < k < n, and α is a real number between 0 and 1. These arcs B(n,k,r)
are continuous arcs inside the unit disk, expressed in polar coordinates (ρ,θ). The ques-
tion is to prove that ρ(θ) is a decreasing function, for each trinomial arc B(n,k,r).
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1. Introduction

Consider the trinomial equation

zn = αzk + (1−α), (1.1)

where z is a complex number, n and k are two integers such that k = 1,2, . . . ,n− 1, and
α is a real number. The first discussion of the behavior of the roots of trinomial equa-
tions was in Fell [1]. She presented a description of the trajectories of these roots, called
trinomial arcs. These arcs can be expressed in polar coordinates (ρ,θ) by a function ρ(θ)
and are continuous in functions of α as α varies between 0 and 1, or between 1 and +∞,
or between −∞ and 0. Fell [1] also studied the monotonicity of the function α(θ) and
gave a bound for the modulus of roots. However, she did not establish the monotonicity
of ρ as a function of θ. Though the descriptive results of Fell [1] give us the information
about the form and location of the trinomial arcs, nevertheless, these types of arcs are not
suitably designed for further study. In this paper, we will restrict our attention to a family
of trinomial arcs, solutions of (1.1) with 0 < α < 1, inside the unit disk Du = {z : |z| ≤ 1}.
We begin by defining this family of trinomial curves denoted by B(n,k,r), where n, k, and
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r satisfy some conditions. Note that Dubuc and Zaoui [2] studied trinomial arcs denoted
by Bm and which are part of this family of arcs B(n,k,r). Next, we prove in this work
that ρ(θ) is a differentiable function for these arcs. With a view to solving the problem of
monotonicity of ρ(θ) for the trinomial arcs B(n,k,r), two important intermediate results
are shown. At last, this study allows us to prove that ρ(θ) is a decreasing function.

2. Study of the trinomial equation

In (1.1), fix n and k. For z = ρeiθ in (1.1), one has ρneinθ = αρkeikθ + (1− α). Separating
real and imaginary parts, one gets ρn sinnθ = αρk sinkθ and ρn cosnθ = αρk coskθ + (1−
α). So, when θ /= lπ/n, where l is an integer, we get

ρn−k = α sinkθ
sinnθ

. (2.1)

On the other hand, divide (1.1) by zn and consider the imaginary part. When α /= 0
and θ /= lπ/(n− k), where l is an integer, we obtain that

ρk = (α− 1)
α

sinnθ
sin(n− k)θ

. (2.2)

Therefore, we have the next equation of the trajectories of roots of (1.1):

ρn−k sinnθ− ρn sin(n− k)θ = sinkθ. (2.3)

In fact, Fell has studied in [1] the trinomial equation

λzn + (1− λ)zk − 1= 0, (2.4)

where z is a complex number, n and k are two integers such that k = 1,2, . . . ,n− 1, and
λ is a real number. Substituting into (2.4) the expression given for zn by (1.1), we get
(zk − 1)[1− λ(1−α)]= 0. So, zk = 1 or λ(1−α)= 1. When z is not a kth root of unity, it
follows that α= 1− 1/λ. Hence, in order to pass from (1.1) to (2.4), we can set α= 1− 1/λ.
It stems easily from this equality that the case 0≤ α≤ 1 of (1.1) corresponds to the case
1≤ λ < +∞ of (2.4).

In this work, we are interested in the case 0≤ α≤ 1, so we have

sign (sinnθ)= sign (sinkθ)=−sign
(

sin(n− k)θ
)
. (2.5)

Definition 2.1. An angle θ which fulfills (2.5) will be called an (n,k)-feasible angle for the
trinomial equation (1.1) with 0≤ α≤ 1.

Moreover, in view of the next lemma of [3], the trajectories of roots of (1.1) with
0≤ α≤ 1 are inside the unit disk.

Lemma 2.2. For any (n,k)-feasible angle θ for (1.1) with 0 ≤ α ≤ 1, the function of ρ,
−ρn{sin(n− k)θ/ sinkθ}+ ρn−k{sinnθ/ sinkθ}− 1, is increasing and vanishes for one and
only one positive value of ρ, which is not larger than 1.

Remark 2.3. The upper and lower half-planes are symmetrical. So, we will restrict our
study of trinomial arcs to the upper half-plane.
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3. Description and definition of trinomial arcs B(n,k,r)

Notice that for α= 0, (1.1) has n roots: the nth roots of unity. Fell [1], in her Descriptive
Claim II, pages 314-315, tells us that the trajectories of the n roots can be described as
trajectories of particles starting at these n roots. As α changes from 0 to 1, they move
continuously until α= 1, (n− k) of them have moved into (n− k)th roots of unity, and
k of them have collapsed to 0. There are k trajectories going to 0, the k tangents being
lines going through 0 and one kth root of −1. Consider C = {nth roots of unity}, D =
{(n− k)th roots of unity}, and E = {kth roots of − 1}. Let γ be in C and let δ be the
unique nearest neighbor of γ in D∩ E. Fell [1] asserts that, in the case δ ∈ D∩ E with
0≤ α≤ 1, there exists γ′ in C such that δ is equidistant from γ and from γ′. There exists
also α0 in [0,1] such that the trajectories of two particles starting at γ and γ′ when α= 0
are continuous arcs until the point of their meeting on the line segment θ = arg(δ) when
α= α0. When α moves from α0 to 1, the two roots remain on the segment θ = arg(δ), one
of them goes to 0 and the other tends to δ. Fell shows in [1] that all the trinomial arcs
solutions of (1.1) in the case 0≤ α≤ 1 with δ ∈D∩E are such that the feasible angles θ
belong to intervals of length less than or equal to π/n and bounded on the one side by
arg(δ) where δ is both a kth root of −1 and an (n− k)th root of unity, and on the other
side by arg(γ) where γ is an nth root of unity. There are so two types of arcs in this case;
the first type is such that θ belongs to [arg(γ),arg(δ)] where γ ∈ C and the second type
is such that θ belongs to [arg(δ),arg(γ′)] where γ′ ∈ C, such that δ is equidistant from γ
and from γ′.

In [2], Dubuc and Zaoui studied a class of trinomial arcs denoted by Bm and defined as
the set of roots of (1.1) with 0≤ α≤ 1, n=m, k =m− 2, where m is an odd integer larger
than 2 and the feasible angles belong to the interval [π−π/m,π]. They showed in [2] that
ρ(θ) is a decreasing function on [π−π/m,π] for the arcs Bm. Becausem is an odd integer,
we can say that γ such that arg(γ) = π − π/m is an nth root of unity and δ such that
arg(δ)= π is both a kth root of −1 and an (n− k)th root of unity. Dubuc and Zaoui have
thus solved the problem of monotonicity of ρ(θ), pointed out in [1? ], for some particular
trinomial arcs, namely Bm, solutions of (1.1) in the case 0 ≤ α ≤ 1 with δ ∈ D∩ E and
θ ∈ [arg(γ),arg(δ)]. In this paper, our objective is to study the monotonicity of ρ(θ) for
all trinomial arcs corresponding to this case. In fact, these arcs, denoted by B(n,k,r), will
be defined as follows.

Let d be the greatest common divider of k and n, we assume that k/d and n/d are
odd numbers, then we define d trinomial arcs, B(n,k,0),B(n,k,1), . . . ,B(n,k,d− 1). Let
r ∈ {0,1, . . . ,d− 1}, then for any angle θ ∈ (θ0,θ1) with θ1 = (2r + 1)π/d and θ1 − θ0 =
π/n, there exists a unique solution ρ = ρ(θ) ∈ (0,1) to the equation ρn sin(n− k)θ −
ρn−k sinnθ + sinkθ = 0 given by (2.3). Any solution of (2.3) induces the solution z = ρeiθ
of (1.1) with α= ρn−k sinnθ/ sinkθ.

Figure 3.1 provides such an arc.

Remark 3.1. When α = 0, (1.1) becomes zn = 1. So, its solutions are the nth roots
of unity. In the case α= 1, (1.1) becomes zk[zn−k − 1]= 0. Then, the n roots of (1.1) are
the (n − k)th roots of unity, which are simple roots and 0, a root of multiplicity
k.
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Figure 3.1. Trinomial arc defined for feasible angles θ ∈ (θ0,θ1).

When n= 2, the trajectories of roots of (1.1) with 0 < α < 1 are linear, then we define
the continuous arcs B(n,k,r) as follows.

Definition 3.2. Let n and k be two integers such that n is greater than or equal to 3 and
0 < k < n. Let d = gcd(k,n) and r ∈ {0,1, . . . ,d− 1}, one assumes that k/d and n/d are odd
numbers, then the continuous arc

B(n,k,r)= {z = ρ(θ)eiθ : 0 < (2r + 1)π/d− θ < π/n} (3.1)

is the set of roots of (1.1) with 0 < α < 1.

This family of arcs B(n,k,r) exists in view of the following lemma.

Lemma 3.3. Let n and k be two integers such that n is greater than or equal to 3 and 0 < k <
n. Let d = gcd(k,n) and r ∈ {0,1, . . . ,d− 1}, one assumes that k/d and n/d are odd numbers,
then in the trinomial equation (1.1) with 0 < α < 1, any angle of the interval (θ0,θ1), with
θ1 = (2r + 1)π/d and θ0 = θ1−π/n is feasible. In particular, for each trinomial arc B(n,k,r),
one has sinnθ > 0, sinkθ > 0, and sin(n− k)θ < 0 for any θ in the interval (θ0,θ1).

Proof. Let θ be an angle such that (2r + 1)π/d−π/n < θ < (2r + 1)π/d. So, we have (2r +
1)nπ/d−π < nθ < (2r + 1)nπ/d. Because the number n/d is odd, it follows that sinnθ > 0.
On the other side, we have (2r + 1)kπ/d− kπ/n < kθ < (2r + 1)kπ/d. Since k/d is an odd
number and k < n, it yields that sinkθ > 0. Finally, we have (2r + 1)(n− k)π/d − (n−
k)π/n < (n− k)θ < (2r + 1)(n− k)π/d. As the number (n− k)/d is even and k > 0, we
obtain that sin(n− k)θ < 0. The conditions (2.5) are fulfilled. �
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Figure 3.2. Trinomial arcs B(n,k,r) inside the upper half unit disk.

4. Differentiability of the function ρ(θ) for the arcs B(n,k,r)

Now, we will prove that the derivative dρ/dθ exists and it is well defined for the trinomial
arcs B(n,k,r).

Proposition 4.1. For each trinomial arc B(n,k,r), the function ρ(θ) is differentiable for
any feasible angle θ in the interval (θ0,θ1).

Proof. Let B(n,k,r) be a trinomial arc. By (2.2), we have ρk(θ)= (1− 1/α)sinnθ/ sin(n−
k)θ. According to Lemma 3.3, the feasible angles θ are such that sinnθ > 0 and sin(n−
k)θ < 0. If we put f (θ) = (1− 1/α)sinnθ/ sin(n− k)θ and as 0 < α = α(θ) < 1, the de-
nominator of f (θ) is never zero. The function f (θ) is well defined. In addition, f is
differentiable and positive. So, the function ρ(θ)= [ f (θ)]1/k is differentiable (since α(θ)
is differentiable, see Fell [1, pages 326–327]). Therefore, its derivative dρ/dθ exists and it
is well defined. �

5. Monotonicity of the function ρ(θ) for the arcs B(n,k,r)

In this section, our main interest is to show that ρ(θ) is a monotonic function, that is, the
derivative dρ/dθ is never zero, for each trinomial arc B(n,k,r). Differentiating both sides
of (2.3) with respect to θ, we obtain

[
(n− k)ρn−k−1 sinnθ−nρn−1 sin(n− k)θ

]dρ

dθ

= k coskθ + (n− k)ρn cos(n− k)θ−nρn−k cosnθ.

(5.1)

Supposing that dρ/dθ = 0, we will consider ρn and ρn−k as solutions of the system,

k coskθ + (n− k)ρn cos(n− k)θ−nρn−k cosnθ = 0,

ρn−k sinnθ− ρn sin(n− k)θ− sinkθ = 0.
(5.2)
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This system is equivalent to the following system:

R(θ) · ρn−k =N1(θ),

R(θ) · ρn =N2(θ),
(5.3)

where

R(θ)= (n− k)sinkθ− k cosnθ sin(n− k)θ,

N1(θ)= (n− k)sinnθ−nsin(n− k)θ coskθ,

N2(θ)= (n− k)sinnθ coskθ−nsin(n− k)θ.

(5.4)

The difference of the two equalities of (5.3) leads to the equation:

R(θ)
[
ρn− ρn−k]=U(θ)[1− coskθ] (5.5)

with

U(θ)=−[nsin(n− k)θ + (n− k)sinnθ
]
. (5.6)

We now show that the hypothesis dρ/dθ = 0 leads to a contradiction. For that, we need
the two following lemmas.

Lemma 5.1. Let d = gcd(k,n) and r ∈ {0,1, . . . ,d − 1}, one assumes that 0 < k < n, k/d
and n/d are odd. Then, one assumes R(θ)= (n− k)sinkθ− k sin(n− k)θ cosnθ > 0 for any
feasible angle θ in the interval (θ0,θ1), where θ1 = (2r + 1)π/d and θ0 = θ1−π/n.

Proof. Let θ be a feasible angle in ]θ0,θ1[, with θ1 = (2r + 1)π/d and θ0 = θ1 − π/n. By
first, remark that cosnθ = 0 if and only if θ = θc = [2n(2r + 1)/d− 1]π/2n. Moreover, we
have cosnθ > 0 for θ < θc and cosnθ < 0 for θ > θc. By Lemma 3.3, we have sinkθ > 0 and
sin(n− k)θ < 0. Then, we get R(θ) > 0 for any θ in ]θ0,θc]. In the other case, that is when θ
belongs to ]θc,θ1[, remarking that R(θ) can be expressed as R(θ)= (n− k)sinnθ cos(n−
k)θ−nsin(n− k)θ cosnθ, we will consider the function K(θ)= R(θ)/cosnθ cos(n− k)θ=
(n− k)tannθ−n tan(n− k)θ. In this case, we have cosnθ <0. In addition, as (2r + 1)π/d−
π/2n < θ < (2r + 1)π/d, we get (n− k)(2r + 1)π/d− (n− k)π/2n < (n− k)θ < (n− k)(2r +
1)π/d. Because (n− k)(2r + 1)/d is even, there exists a nonnegative integer q such that
2q = (n− k)(2r + 1)/d. Then, this double inequality becomes 2qπ − (n− k)π/2n < (n−
k)θ < 2qπ. Since (2q− 1/2)π < 2qπ − (n− k)π/2n, we obtain that cos(n− k)θ > 0. The
sign of R(θ) is so opposed to the sign of K(θ), which is derivable with K ′(θ) = n(n−
k)[tan2nθ− tan2(n− k)θ]. Since tannθ < 0 and tan(n− k)θ < 0, the zeros of K ′(θ) ver-
ify the equation tannθ = tan(n− k)θ. Therefore, the unique solution of this equation is
of the form θ = lπ/k where l is an integer. However, lπ/k ∈]θc,θ1[ if and only if k(2r +
1)/d− k/2n < l < k(2r + 1)/d. As k(2r + 1)/d is odd, there exists a nonnegative integer p
such that (2p + 1) = k(2r + 1)/d. Hence, we get (2p + 1)− k/2n < l < (2p + 1). Because
k < n, it follows that (2p + 1/2) < l < (2p + 1), which is not possible since l is an integer.
We conclude that K ′(θ) is never zero. Moreover, K(θ) goes to −∞ as θ tends on the right
to θc and K(θ1) = 0. This implies that K(θ) < 0 and that R(θ) > 0 for any θ in ]θc,θ1[.
Therefore, R(θ) > 0 for any θ in the interval ]θ0,θ1[. �
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Lemma 5.2. Let d = gcd(k,n) and r ∈ {0,1, . . . ,d− 1}, one assumes that 0 < k < n, k/d and
n/d are odd. Then, one has U(θ) = −[nsin(n− k)θ + (n− k)sinnθ] > 0 for any feasible
angle θ in the interval (θ0,θ1), where θ1 = (2r + 1)π/d and θ0 = θ1−π/n.

Proof. Let θ be a feasible angle in ]θ0,θ1[. The function U(θ) is derivable, with U ′(θ)=
−n(n− k)[cos(n− k)θ + cosnθ]. The zeros of U ′(θ) are of the form θ = (2l− 1)π/k or
of the form θ = (2l + 1)π/(2n− k) where l is an integer. However, (2l− 1)π/k ∈]θ0,θ1[
if and only if k(2r + 1)/d + 1− k/n < 2l < k(2r + 1)/d + 1. From the proof of the prece-
dent lemma, we have (2p+ 1)= k(2r + 1)/d, then, this double inequality becomes p+ 1−
k/2n < l < p+ 1. As k < n, one has (p+ 1/2) < p+ 1− k/2n. Hence, (p+ 1/2) < l < (p+ 1),
which is impossible as l is an integer. On the other side, (2l+ 1)π/(2n− k)∈]θ0,θ1[ if and
only if (2n− k)(2r + 1)/2d − 3/2 + k/2n < l < (2n− k)(2r + 1)/2d − 1/2. As n(2r + 1)/d
is odd, there exists a nonnegative integer s such that (2s + 1) = n(2r + 1)/d. Moreover,
since (2p+ 1)= k(2r + 1)/d, it follows that (2n− k)(2r + 1)/2d− 1/2= 2s− p. Therefore,
the double inequality above becomes 2s− p− 1 + k/2n < l < 2s− p, then 2s− p− 1 < l <
2s− p, which is not possible. It follows that U ′(θ) is never zero. In addition, because
U(θ0) > 0 and U(θ1)= 0, we deduce that U(θ) > 0 for any angle θ in ]θ0,θ1[. �

Using the two lemmas above, we can prove the next main result for the trinomial arcs
B(n,k,r).

Theorem 5.3. Let d = gcd(k,n) and r ∈ {0,1, . . . ,d− 1}, one assumes that 0 < k < n, k/d
and n/d are odd. For every trinomial arc B(n,k,r), ρ(θ) is a decreasing function on the
interval (θ0,θ1), where θ1 = (2r + 1)π/d and θ1− θ0 = π/n.

Proof. Let B(n,k,r) be a trinomial arc. Lemmas 5.1 and 5.2 imply, respectively, thatR(θ) >
0 and U(θ) > 0 for any θ in the interval ]θ0,θ1[. Therefore, the relation R(θ)[ρn− ρn−k]=
U(θ)[1− coskθ] given by (5.5) implies that ρn − ρn−k > 0, which is impossible as ρ < 1.
Thus, we have proved that for each trinomial arc B(n,k,r), we have dρ/dθ /= 0, that is,
ρ(θ) is a monotonic function, for any angle θ in ]θ0,θ1[.

Moreover, putting θ = θ0 = (2r + 1)π/d − π/n in (2.3), we have ρn−k(θ0)sinnθ0 −
ρn(θ0)sin(n− k)θ0 − sinkθ0 = 0. Using the facts that (2s + 1) = n(2r + 1)/d and (2p +
1)= k(2r + 1)/d, we get sinnθ0=0 and sin(n− k)θ0=−sinkθ0. So, it follows that [ρn(θ0)−
1]sinkθ0 = 0. Hence, because 2πp < kθ0 < (2p + 1)π, it yields that sinkθ0 /= 0 and that
ρ(θ0) = 1. Since ρ(θ) is less than or equal to 1 for any feasible angle θ, we deduce that
ρ(θ) is a decreasing function on the interval (θ0,θ1). �

6. Conclusion

In this work, we have studied the behavior of the family of trinomial arcs B(n,k,r), com-
posed of all solutions of (1.1) in the case 0 < α < 1 with the feasible angles θ in the interval
[arg(γ),arg(δ)], where γ is an nth root of unity and δ is both a kth root of −1 and an
(n− k)th root of unity. The problem of monotonicity of the trinomial arcs is completely
solved in this case. During the description and definition of B(n,k,r), we have evoked
another type of trinomial arcs, defined as the solutions of (1.1) in the case 0 < α < 1 with
the feasible angles θ in the interval [arg(δ),arg(γ′)], where δ is both a kth root of −1 and
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an (n− k)th root of unity and γ′ is an nth root of unity. A later study of the behavior of
this family of arcs would be interesting.
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