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1. Introduction

Let L be an algebraic number field of degree n. Let Or denote the ring of integers of L.
The element « € Oy is called a generator of L if L = Q(«). The index of « is the positive
integer ind « given by

D(«) = (inda)?d(L), (1.1)

where d(L) is the discriminant of L and D(«) is the discriminant of the minimial polyno-
mial of . The index of L is

i(L) = ged {ind & | « is a generator of L}. (1.2)

A positive integer > 1 dividing i(L) is called a common index divisor of L. If Oy, possesses
an element f3 such that {1,/5,[32,...,[3“‘1} is an integral basis for L, then L is said to be
monogenic. If L is monogenic, then i(L) = 1. Thus a field possessing a common index
divisor is nonmonogenic.

Let f(x) be an irreducible polynomial in Z[x] of odd prime degree q and suppose
that Gal(f(x)) = D, (the dihedral group of order 2q). We note that D, = (o,7) with
01 =12 = (07)* = 1. Let M be the splitting field of f(x). Let 6 be a root of f(x) and set
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L = Q(0) so that the degree of L over Q is equal to g. We denote the unique quadratic
subfield of M by K.

We prove in Section 2 the following theorem which gives a criterion for a prime p to
be a common index divisor of L.

TaEOREM 1.1. Let f(x) € Z[x] be irreducible, deg(f(x)) = q (an odd prime), and
Gal(f(x)) = Dy. Let M be the splitting field of f(x). Let 6 € C be a root of f(x). Set
L =Q(0) so that [L: Q] = q. Let K be the unique quadratic subfield of M. If p is a prime

satisfying
P<%(q+1), p1d(K), (1.3)
then
P=RRS- Ry (1.4)

for distinct prime ideals Ry, R,...,Rg+1)2 of O, and p is a common index divisor of L.

As an application of Theorem 1.1, we determine in Section 3 the index of a field de-
fined by a dihedral quintic trinomial of the form x°> + ax+b, a,b € Z.

In Section 4, we determine the index of an infinite family of fields defined by dihedral
polynomials of degree 7.

Finally in Section 5, we consider a dihedral field of degree 11 and use Theorem 1.1 to
show that it is nonmonogenic.

We note that a method for calculating a generator of K, and hence d(K), directly from
f(x)is given in [1].

2. Proof of Theorem 1.1

As p | d(K), we have p = p? for some prime ideal g of Ok. Suppose that & is inert in
M/K. Then p = £?* in M/Q. This contradicts [2, Theorem 10.1.26, part (6)]. Hence g is
not inert in M/K. Suppose & totally ramifies in M/K. Then g = Q7 for some prime ideal
Qof M. Thus p = £? = Q*1 in M. Hence, by [2, Theorem 10.1.26, part (9)], we have p | g.
But p and q are primes so p = q. This contradicts the assumption p < (1/2)(g+ 1). Hence
§ does not totally ramify in M. Then, as M is normal over K of prime degree g, we have

P=QQ---Qq (2.1)
for distinct prime ideals Q1, Q3,...,Qq of M. Thus
p=9=QQ--- Q. (2.2)

Hence, by [2, Theorem 10.1.26, part (6)], we have
PR Ry, 2.3

for distinct prime ideals Ry, Ry,...,R(g+1)2 of L, which is (1.4). We note that the decom-
position of p in L can be checked directly by studying the Gal(M/L) action on the coset
space D,/D, where D is a decomposition subgroup at p.
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Let g(x) be any defining polynomial for L, so that deg(g(x)) = g. Let ¢ be a root of g(x)
such that Q(¢) = L. Suppose p {ind(¢). The inertial degree f = 1 in the extension M/Q
(using the tower M/K/Q), hence in L/Q, so that all the irreducible factors of g(x) modulo
p are linear. Thus g(x) has at most p irreducible factors modulo p. Hence, by Dedekind’s
theorem, p factors into at most p prime ideals in L. Thus by (1.4) we have (1/2)(qg+1) <
p. This contradicts p < (1/2)(q + 1). Hence p | ind(¢) for all defining polynomials g. Thus
p is a common index divisor of L.

3. Dihedral quintic trinomials
Let f(x) = x° +ax+b € Z[x] have Galois group Ds. Then there exist coprime integers m

and nand i, j € {0,1} such that

a =2*"451"4d, (m* — mn — n*)E*F,
L (3.1)
b=2"5"%d,(2m — n)(m+2n)E°F,

where d7 is the largest square dividing m? + n?, d3 is the largest fifth power dividing m? +
mn —n?, and

E_n12+n2 m?+ mn — n?
- 2 = 35
di d3

(3.2)

This result is due to Roland et al. [3, page 138], see also [4, page 139]. The discriminant
of x> +ax+bis

D(f) = 210720567200 (2m® + 4m>n + 5m*n® — 5m*n* + 4mn® — 2n6)2E10F4, (3.3)

see [3, equation (3), page 139]. As gcd(m,n) = 1, we have 31 m? + n? and 3t m? + mn — n?
so 31E and 31F.If 3| n, then 3{m, and so 312m® + 4m°n+ 5m*n* — 5m*n* + 4mn> —
2n°. 1f 3 { n, then as the polynomial 2x° + 4x° + 5x* — 5x% + 4x — 2 is irreducible (mod3),
we deduce that 31 2m® + 4m>n + 5m*n* — 5m?n* + 4mn® — 2n°. Hence 31 D(f). Thus 31
ind(8), where L = Q(6), f(6) = 0. Hence 31i(L). By Engstrom [5, page 234] as [L: Q] =
5, the only primes that can divide i(L) are 2 and 3. We use our theorem to show that
2 1 i(L). From Spearman and Williams [4, pages 149, 150], the discriminant d(K) of the
unique quadratic subfield of the splitting field of f(x) satisfies

22|1d(K) ifm=n+1(mod2),
(3.4)
2’|d(K) ifm=n=1(mod2).

Thus 2 | d(K). Hence, by Theorem 1.1, 2 is a common index divisor of L. From Engstrom
[5, Table, page 234],as 2 = RiR3R} by Theorem 1.1, we deduce, i(L) = 2. As i(L) # 1, this
gives an infinite family of nonmonogenic dihedral quintic fields. In [6], an infinite family
of monogenic dihedral quintic fields was exhibited.
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4. A class of dihedral polynomials of degree 7

We recall a family of polynomials of degree 7 due to Smith [7, page 790]. This family is
fi(x) (t € Z), where f;(x) is given by

fi(x) =x7 — (78 + 3562 + 21t + 1) [21x° + (98¢ + 70)x*
— (1029¢° +4557t> + 343t — 105) x°
—28(7t+1)(49£ + 147> + 63t — 3) x?
+7(7t* +42t — 1) (7> + 14t = 5) (7t +1)%x
+235298t7 +1236858t° + 11380741
+562226t* +112708° — 491412 — 322t +6].

(4.1)

Smith showed that the Galois group of f;(x) over Q(t) is D;. We are interested in de-
termining integers ¢ for which the Galois group of f;(x) (considered as a polynomial in
Z[x]) over Q is D;. MAPLE gives the discriminant of f;(x) as

D(f,) = 2%72415(7¢2 — 14t — 9)° (78 + 3522 + 21t +1)°

, (42)

X (6312 +266¢ — 25)° (49¢t* — 1961° — 169412 — 140t — 3)°.

Lemma 4.1. (i) Ift = 1 (mod3), then 31 D(f;).
(ii) Ift = 1,2 or 4 (mod5), then 51 D(f;).

The proof follows from (4.2).

LemMma 4.2. Ift € Z is such that
210t 78 +35t2421t+11s square-free > 1, (4.3)

then fi(x) is irreducible over Q.

Proof Set a(t) = 7t3 +35t2 + 21t + 1 and b(t) = —235298t7 — 1236858t° — 1138074¢t> —
562226t% — 1127013 +4914t*> + 322t — 6. Then, from (4.1), we see that

fi(x) =x”  (modal(t)), (4.4)
£:(0) = a(t)b(2). (4.5)

The resultant of a(t) and b(t) as polynomials in ¢ is (by MAPLE) 24377, Clearly 7 1 a(t)
and (as 2 | t) 2t a(t). Thus ged,(a(t),b(t)) = 1. Let q be any prime dividing a(¢) (so q #
2,7). Then qlla(t) and g 1 b(t). Thus, by (4.1) and (4.4), g divides the coefficients of x
(i=0,1,2,3,4,5,6) in f;(x) and by (4.5) qll f:(0). Hence, by Eisenstein’s criterion, f;(x) is
irreducible over Q. O



Blair K. Spearman etal. 5

Let 8 denote one of the roots of f;(x). Let a1 = 0, a2,...,a7 be all the roots of f;(x). Set
L = Q(0). Under condition (4.3), we have [L: Q] = 7.

LemMmA 4.3. Fort € Z, set

Ps(x) = l_[ (x— (@i +a;)). (4.6)
1<i<j<7
Then Py,(x) € Z[x] and
Pr(x) = F;(x)Gi(x)Hy(x), (4.7)

where Fi(x), G¢(x), and Hy(x) are distinct polynomials of degree 7 in Z[x], which satisfy

F,(x) = Gi(x) = Hy(x) = x’ (moda(t)),
Fi(0) = =32a(t)c(t),

(4.8)
G:(0) = —32a(t)d(t),
H(0) = 32a(t)e(t),
where
c(t) =277831% + 43218 — 300615¢* + 131516F + 17241¢> — 14t — 25,
d(t) = 8575t% — 52822t + 34153t* + 27244+ + 2737t* — 406t — 25, (4.9)

e(t) = 1029t° — 48021 — 9457t* — 529213 — 97312 + 14t + 25.

Proof. The assertion Py,(x) € Z[x] follows from [8, Lemma 11.1.3, page 359] and the fact
that ay,as,...,a7 are algebraic integers. The remaining assertions of the lemma can be
verified using MAPLE. U

LemMa 4.4. Ift € Z is such that
21t 74352 +21t+ 1 is square-free > 1 (4.10)

then the polynomials F(x), G¢(x), and Hy(x) are irreducible over Q.

Proof. The resultants of a(t) and c(t) (resp., a(t) and d(¢), a(t) and e(t)) regarded as
polynomials in ¢ are by MAPLE —2%07¢ (resp., —2307¢, 2307%). Exactly as in the proof of
Lemma 4.2, making use of Lemma 4.3, we find by Eisenstein’s criterion that the polyno-
mials F;(x), G;(x), and H;(x) are irreducible over Q. O
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LEMMA 4.5. Ift € Z is such that

20t 7P +35£2+21t+11is square-free > 1,

4.11
t is not a perfect square, ( )

then
Gal (fi(x)) = D5. (4.12)

Proof. Jensen and Yui [8, Theorem II.1.2, page 359] have shown that a monic polynomial
f(x) € Q[x] of degree p, where p is a prime = 3 (mod4), has Gal(f) = D, if and only if
(i) f(x) is irreducible over Q,
(ii) D(f) is not a perfect square,
(iii) Ps(x) factors as a product of (p — 1)/2 distinct irreducible polynomials of degree
p over Q.

By Lemma 4.2, f;(x) is irreducible over Q. As ¢ is not a perfect square, we see by (4.2) that
D(f;) is not a perfect square. Finally, by Lemmas 4.3 and 4.4, Py, (x) factors as a product of
3 distinct irreducible polynomials of degree 7 over Q. Hence, by the Jensen-Yui criterion,
Gal(f;(x)) =~ D;. O

THEOREM 4.6. (i) There exist infinitely many integers t satisfying

2\lt, t=1(mod3), t=1,2o0r4(mod>5),

7t + 352 + 21t + 1 is square-free > 1, (4.13)
and for these values of t,
i(L) = 2% (4.14)
(ii) There exist infinitely many integers t satisfying
2\It, 31It, t=1,2o0r4 (mod5),
7t +35t% + 21t + 1 is square-free > 1. (4.15)
and for these values of t,
i(L) =2%3. (4.16)

Proof. The infinitude of integers of the required forms follows from a result of Erdés [9].

Under conditions (4.13) and (4.15), L is a dihedral field of degree 7, by Lemma 4.5.
With the notation of Theorem 1.1, we see from (4.2) that K = Q(+/%). Clearly 2 | d(K). By
Theorem 1.1, 2 is a common index divisor of L. Also from Theorem 1.1, we see that 2 =
R R3R3R;] for distinct prime ideals Ry, Ry, R3, Ry of L. Hence, by Engstrom [5, Table, page
235], we see that 2*||i(L). For both (4.13) and (4.15) we have by Lemma 4.1(ii) 5 { D( f;)
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so 51i(L). For (4.13) by Lemma 4.1(i) we have 31 D(f;), so 31i(L). As [L: Q] = 7, by [5,
page 224], the only possible prime divisors of i(L) are 2, 3, and 5. Hence i(L) = 2* in case
(i). For case (ii), by Theorem 1.1, 3 is a common index divisor of L. Also, by Theorem 1.1,
we see that 3 = R;R3R3R; for distinct prime ideals Ry, Ry, R, Ry of L. Hence, by Engstrom
[5, Table, page 235], we see that 3||i(L). Finally, as the only possible prime divisors of i(L)
are 2, 3, and 5, we deduce that i(L) = 2*3 in case (ii). O

5. A dihedral field of degree 11

Let

f(x) =x" —2x10 — 517 — x® + 536x7
+3x% — 1999x° + 281x* + 2571x° (5.1)
— 485x% — 680x + 69.

By MAPLE, f(x) is irreducible over Q. Let 6 be a root of f(x) and set L = Q(0), so that
[L:Q] = 11. Let M be the splitting field of f(x). It is known that M is the Hilbert class
field of K = Q(~/10401) [10] so that L is a dihedral extension of Q. By Theorem 1.1, 3 is
a common index divisor of L, hence L is not monogenic.

Acknowledgments

The research of the first and second authors was supported by grants from the Natural
Sciences and Engineering Research Council of Canada.

References

[1] B. K. Spearman, K. S. Williams, and Q. Yang, “The 2-power degree subfields of the splitting
fields of polynomials with Frobenius Galois groups,” Communications in Algebra, vol. 31, no. 10,
pp. 47454763, 2003.

[2] H. Cohen, Advanced Topics in Computational Number Theory, vol. 193 of Graduate Texts in
Mathematics, Springer, New York, NY, USA, 2000.

[3] G.Roland, N. Yui, and D. Zagier, “A parametric family of quintic polynomials with Galois group
Ds,” Journal of Number Theory, vol. 15, no. 1, pp. 137-142, 1982.

[4] B. K. Spearman and K. S. Williams, “The discriminant of a dihedral quintic field defined by a
trinomial X° + aX + b,” Canadian Mathematical Bulletin, vol. 45, no. 1, pp. 138-153, 2002.

[5] H.T. Engstrom, “On the common index divisors of an algebraic field,” Transactions of the Amer-
ican Mathematical Society, vol. 32, no. 2, pp. 223-237, 1930.

[6] M.J.Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, “Dihedral quintic fields with a power
basis,” Mathematical Journal of Okayama University, vol. 47, pp. 75-79, 2005.

[7] G.W. Smith, “Some polynomials over Q(t) and their Galois groups,” Mathematics of Computa-
tion, vol. 69, no. 230, pp. 775-796, 2000.

[8] C. U. Jensen and N. Yui, “Polynomials with D, as Galois group,” Journal of Number Theory,
vol. 15, no. 3, pp. 347-375, 1982.



8 International Journal of Mathematics and Mathematical Sciences

[9] P. Erdos, “Arithmetical properties of polynomials,” Journal of the London Mathematical Society.
Second Series, vol. 28, pp. 416-425, 1953.

[10] http://math.univ-lyon1.fr/~roblot/resources/hilb.gp.

Blair K. Spearman: Department of Mathematics and Statistics, University of British Columbia
Okanagan, Kelowna, BC, Canada V1V 1V7
Email address: blair.spearman@ubc.ca

Kenneth S. Williams: School of Mathematics and Statistics, Carleton University, Ottawa, ON,
Canada K1S 5B6
Email address: kwilliam@connect.carleton.ca

Qiduan Yang: Department of Mathematics and Statistics, University of British Columbia Okanagan,
Kelowna, BC, Canada V1V 1V7
Email address: qiduan.yang@ubc.ca


http://math.univ-lyon1.fr/~roblot/resources/hilb.gp
mailto:blair.spearman@ubc.ca
mailto:kwilliam@connect.carleton.ca
mailto:qiduan.yang@ubc.ca

