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1. Introduction

On the real line, the Dunkl operators are differential-difference operators introduced in
1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These
operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used
to define the Dunkl transform �α which was introduced by Dunkl in [2]. Rösler in [3]
shows that the Dunkl kernels verify a product formula. This allows us to define the Dunkl
translation τx, x ∈R. As a result, we have the Dunkl convolution.

The Hardy-Littlewood maximal function was first introduced by Hardy and Little-
wood in 1930 for functions defined on the circle (see [4]). Later it was extended to various
Lie groups, symmetric spaces, some weighted measure spaces (see [5–10]), and different
hypergroups (see [11–14]).

In this paper, we establish an estimate of the Dunkl translation of the characteristic
function τx(χ[−ε,ε])(y), x, y ∈ R, x �= 0, based on the inversion formula which extends
some results of [11] to the Dunkl operator on R, and we prove the weak type (1,1) of the
uncentered maximal operator M defined for each integrable function f on (R,dμα) by

M( f )(x)= sup
ε>0,|z|∈B(x,ε)

1
μα(]− ε,ε[)

∣
∣
∣
∣
∣

∫ ε

−ε
τz( f )(−y)dμα(y)

∣
∣
∣
∣
∣

, x ∈R, (1.1)
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where B(x,ε) is the interval [max{0,|x|− ε},|x|+ ε[ and μα is a weighted Lebesgue mea-
sure onR (see Section 2). Finally, we obtain for 1 < p ≤ +∞ the Lp-boundedness of M. In
the case z = x, these results are already proved onRd in [9] by using the maximal function
associated to the Poisson semigroup.

The contents of this paper are as follows.
In Section 2, we collect some basic definitions and results about harmonic analysis

associated with Dunkl operator.
In Section 3, we establish estimates of τx(χ[−ε,ε])(y), x, y ∈ R, x �= 0, and we prove

the weak type (1,1) of the uncentered maximal operator M and the Lp-boundedness for
1 < p ≤ +∞ of M.

In the sequel, c represents a suitable positive constant which is not necessarily the same
in each occurrence. Furthermore, we denote by

(i) �(R) the space of C∞-functions on R,
(ii) D∗(R) the space of even functions in �(R) with compact support,

(iii) S∗(R) the space of even functions in �(R) decreasing rapidly.

2. Preliminaries

For a real parameter α >−1/2, we consider the differential-difference operator defined by

Λα( f )(x)= df

dx
(x) +

2α+ 1
x

[

f (x)− f (−x)
2

]

, f ∈�(R), (2.1)

called Dunkl operator.
For λ∈ C, the initial problem

Λα( f )(x)= λ f (x), f (0)= 1, x ∈R, (2.2)

has a unique solution Eα(λ) called Dunkl kernel and given by

Eα(λx)= jα(iλx) +
λx

2(α+ 1)
jα+1(iλx), x ∈R, (2.3)

where jα is the normalized Bessel function of the first kind and order α, defined by

jα(λx)=
⎧

⎪⎨

⎪⎩

2αΓ(α+ 1)
Jα(λx)
(λx)α

if λx �= 0,

1 if λx = 0,
(2.4)

where Jα is the Bessel function of first kind and order α (see [15]).
We have for all x ∈R that

the function λ−→ jα(λx) is even on R,
∣
∣Eα(−iλx)

∣
∣≤ 1.

(2.5)

Let Aα be the function defined on R by

Aα(x)= |x|2α+1

2α+1Γ(α+ 1)
, x ∈R, (2.6)
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and let μα be the weighted Lebesgue measure on R given by

dμα(x)=Aα(x)dx. (2.7)

For every 1≤ p ≤ +∞, we denote by Lp(μα) the space Lp(R,dμα) and we use ‖·‖p,α as a
shorthand for ‖ · ‖Lp(μα).

The Dunkl transform �α which was introduced by Dunkl in [2] is defined for f ∈
L1(μα) by

�α( f )(x)=
∫

R
Eα(−ixy) f (y)dμα(y), x ∈R. (2.8)

According to [16], we have the following results:
(i) for all f ∈ L1(μα), we have ‖�α( f )‖∞,α ≤ ‖ f ‖1,α;

(ii) for all f ∈ L1(μα) such that �α( f )∈ L1(μα), we have the inversion formula

f (x)=
∫

R
Eα(iλx)�α( f )(λ)dμα(λ), a.e x ∈R; (2.9)

(iii) for every f ∈ L2(μα), we have

∥
∥�α( f )

∥
∥

2,α = ‖ f ‖2,α. (2.10)

In the sequel, we consider the signed measure γx,y on R given by

dγx,y(z)=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Wα(x, y,z)dμα(z) if x, y ∈R\{0},
dδx(z) if y = 0,

dδy(z) if x = 0,

(2.11)

where Wα (see [3]) is an even function satisfying the following properties:

Wα(x, y,z)=Wα(y,x,z)=Wα(−x,z, y)=Wα(−z, y,−x),
∫

R

∣
∣Wα(x, y,z)

∣
∣dμα(z)≤ 4.

(2.12)

We have

supp
(

γx,y
)= Sx,y ∪

(− Sx,y
)

with Sx,y =
[∣
∣|x|− |y|∣∣,|x|+ |y|]. (2.13)

For x, y ∈R and f a continuous function on R, the Dunkl translation operator τx given
by

τx( f )(y)=
∫

R
f (z)dγx,y(z) (2.14)
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satisfies the following properties (see [17]):
(i) τx is a continuous linear operator from �(R) into itself;

(ii) for all f ∈�(R), we have

τx( f )(y)= τy( f )(x), τ0( f )(x)= f (x). (2.15)

The Dunkl convolution f ∗α g, of two continuous functions f and g on R with compact
support, is defined by

(

f ∗α g
)

(x)=
∫

R
τx( f )(−y)g(y)dμα(y), x ∈R. (2.16)

The convolution ∗α is associative and commutative (see [3]). The following results are
shown in [18].

(i) For all x ∈ R, the operator τx extends to Lp(μα), p ≥ 1, and we have for f ∈
Lp(μα) that

∥
∥τx( f )

∥
∥
p,α ≤ 4‖ f ‖p,α. (2.17)

(ii) For all x,λ∈R and f ∈ L1(μα), we have

�α
(

τx( f )
)

(λ)= Eα(iλx)�α( f )(λ). (2.18)

(iii) Assume that p,q,r ∈ [1,+∞[ satisfyies 1/p + 1/q = 1 + 1/r (the Young condi-
tion). Then, the map ( f ,g) → f ∗α g defined on Cc(R)× Cc(R) extends to a
continuous map from Lp(μα)×Lq(μα) to Lr(μα), and we have

∥
∥ f ∗α g

∥
∥
r,α ≤ 4‖ f ‖p,α‖g‖q,α. (2.19)

(iv) For all f ∈ L1(μα) and g ∈ L2(μα), we have

�α
(

f ∗α g
)=�α( f )�α(g). (2.20)

3. Estimates for Dunkl translation and weak type (1, 1) of
the uncentered maximal operator

In this section, we establish estimates of τx(χ[−ε,ε])(y), x, y ∈R, x �= 0, where χ[−ε,ε] is the
characteristic function of the interval [−ε,ε], and we prove the weak-type (1,1) of the
uncentered maximal operator M and the Lp-boundedness for 1 < p ≤ +∞ of M.

We observe that for x, y ∈R\{0} and ε > 0,

∣
∣τx

(

χ[−ε,ε]
)

(y)
∣
∣≤ cτ̆|x|

(

χ[0,ε]
)(|y|), (3.1)

where for a continuous function f on [0,+∞[ and r,s > 0, τ̆r denotes the translation of
the Bessel hypergroup given by

τ̆r( f )(s)= 22−α(Γ(α+ 1)
)2

√
πΓ(α+ 1/2)

∫ +∞

0
f (z)Δα(r,s, t)dμα(t) (3.2)
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with

Δα(r,s, t)=

⎧

⎪⎪⎨

⎪⎪⎩

([

(r + s)2− t2
][

t2− (r− s)2
])α−1/2

(rst)2α
if |r− s| < t < r + s,

0 otherwise.
(3.3)

On the other hand, we have from (2.3), (2.5), and (2.8) that

∣
∣�α

(

χ[−ε,ε]
)

(λ)
∣
∣≤ ε

α+ 1
Aα(ε) for ε > 0, λ∈R, (3.4)

and by (2.4),

∣
∣�α

(

χ[−ε,ε]
)

(λ)
∣
∣≤ cεα+1/2λ−α−3/2 for λ∈ [ε−1,+∞[. (3.5)

Then, using (3.4), (3.5), and the fact that |Eα(iλx)| ≤ c(Aα(x))−1/2|λ|−α−1/2, for |x| > 2ε,
λ ∈ R\{0}, the next lemma follows closely the argumentations of [11, Proposition 4.6
and Lemma 5.1].

Lemma 3.1. There exists a positive constant c such that for any x, y ∈ R, x �= 0, and ε > 0,
one has

∣
∣τx

(

χ[−ε,ε]
)

(y)
∣
∣≤ c

Aα
(

ε
)

Aα(x)
. (3.6)

Notation 3.2. For x ∈ R and ε > 0, we denote by B(x,ε) the interval [max{0,|x| − ε},
|x|+ ε[.

Lemma 3.3. There exists a positive constant c such that for any x, y ∈R and ε > 0, one has

∣
∣τx

(

χ[−ε,ε]
)

(y)
∣
∣≤ c

μα
(

]− ε,ε[
)

μα
(

B(x,ε)
) . (3.7)

Proof. On the one hand, we have for |x| ≤ ε that

μα
(

B(x,ε)
)=

∫

B(x,ε)
dμα(y)=

∫ |x|+ε

0
dμα(y)≤ cμα

(

]− ε,ε[
)

, (3.8)

since

1
4

∣
∣τx

(

χ[−ε,ε]
)

(−y)
∣
∣≤ 1, x, y ∈R, (3.9)

then we obtain (3.7) for |x| ≤ ε.
On the other hand, we have for |x| > ε,

μα
(

B(x,ε)
)=

∫ |x|+ε

|x|−ε
dμα(y)≤ c

(|x|+ ε
)2α+1

∫ |x|+ε

|x|−ε
dy

≤ cμα
(

]− ε,ε[
)Aα(x)
Aα(ε)

.

(3.10)

Then by (3.6), we obtain (3.7) for |x| > ε, which proves the result. �
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According to [7, Lemma 1.6] (see also [11, Lemma 4.21]), we have the following Vitali
covering lemma.

Lemma 3.4. Let E be a measurable subset of R+ (with respect to μα) which is covered by the
union of a family of bounded intervals {Bj}, where Bj = B(xj ,r j). Then from this family,
one can select a disjoints subsequence, B1,B2, . . . ,Bh, . . . , (which may be finite) such that

∑

h

μα
(

Bh
)≥ cμα(E). (3.11)

Theorem 3.5. The uncentered maximal operator M is of weak type (1,1).

Proof. For ε > 0, x ∈R, |z| ∈ B(x,ε), and f ∈ L1(μα), we have

∫ ε

−ε
τz( f )(−y)dμα(y)= ( f ∗α χ[−ε,ε]

)

(z)=
∫

R
f (y)τz

(

χ[−ε,ε]
)

(−y)dμα(y), (3.12)

then using (2.13), (2.14), and (3.7), we obtain

∣
∣
∣
∣
∣

∫ ε

−ε
τz( f )(−y)dμα(y)| ≤

∫

|y|∈B(z,ε)

∣
∣
∣
∣
∣
τz
(

χ[−ε,ε]
)

(−y)
∣
∣
∣
∣ f (y)

∣
∣dμα(y)

≤ c

(∫

|y|∈B(z,ε)

∣
∣ f (y)

∣
∣dμα(y)

)

μα
(

]− ε,ε[
)

μα
(

B(z,ε)
) ,

(3.13)

hence we deduce that

M( f )(x)≤ cM̃( f )(x), (3.14)

where M̃( f ) is defined by

M̃( f )(x)= sup
ε>0,|z|∈B(x,ε)

1
μα
(

B(z,ε)
)

∫

|y|∈B(z,ε)

∣
∣ f (y)

∣
∣dμα(y). (3.15)

Observe that we have

M̃( f )(−x)= M̃( f )(x), x ∈R. (3.16)

For λ > 0, put

Ẽλ =
{

x ∈R; M̃( f )(x) > λ
}

,

Ẽ+
λ =

{

x ∈R+; M̃( f )(x) > λ
}

,

Ẽ−λ =
{

x ∈R∗−; M̃( f )(x) > λ
}

.

(3.17)

By (3.16) we obtain

μα
(

Ẽ+
λ

)= μα
(

Ẽ−λ
)

, μα
(

Ẽλ
)= 2μα

(

Ẽ+
λ

)

. (3.18)



C. Abdelkefi and M. Sifi 7

Now, for each x ∈ Ẽ+
λ , there exist ε > 0 and z ∈R such that

|z| ∈ B(x,ε),
∫

|y|∈B(z,ε)

∣
∣ f (y)

∣
∣dμα(y) > λμα

(

B(z,ε)
)

. (3.19)

Furthermore, note that x ∈ B(z,ε), then when x runs through the set Ẽ+
λ , the union of the

corresponding B(z,ε) covers Ẽ+
λ . Thus, using Lemma 3.4, we can select a disjoint subse-

quence B(z1,ε1), . . . ,B(zh,εh), . . . , (which may be finite) such that

∑

h

μα
(

B
(

zh,εh
))≥ cμα

(

Ẽ+
λ

)

. (3.20)

We have

∫

|y|∈⋃
h
B(zh,εh)

∣
∣ f (y)

∣
∣dμα(y)≥

∑

h

∫

|y|∈B(zh,εh)

∣
∣ f (y)

∣
∣dμα(y). (3.21)

Applying (3.19) and (3.20) to each of the mutually disjoint intervals, we get

∫

|y|∈⋃
h
B(zh,εh)

∣
∣ f (y)

∣
∣dμα(y) > λ

∑

h

μα
(

B
(

zh,εh
))≥ λcμα

(

Ẽ+
λ

)

. (3.22)

But since the first member of this inequality is majorized by ‖ f ‖1,α, we obtain

μα
(

Ẽ+
λ

)≤ c
‖ f ‖1,α

λ
, (3.23)

and by (3.18), we deduce that

μα
(

Ẽλ
)≤ c

‖ f ‖1,α

λ
, (3.24)

which gives that M̃ is of weak type (1,1), and hence from (3.14), the same is true for M.
�

As consequence of Theorem 3.5, we obtain the following corollary.

Corollary 3.6. If 1 < p ≤ +∞ and f ∈ Lp(μα), then one has

M( f )∈ Lp
(

μα
)

,
∥
∥M( f )

∥
∥
p,α ≤ c‖ f ‖p,α. (3.25)

Proof. Using the Theorem 3.5, [15, Corollary 21.72], and proceeding in the same manner
as in the proof on [2, 1.3.Theorem 1], we obtain the desired results. �
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