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Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An
additive function F : R→ R is called a generalized derivation if there exists a derivation
d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove
that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0,
(2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) = x ◦ y or d(x) ◦ F(y) + x ◦ y = 0, (4) either
d(x) ◦ F(y) = [x, y] or d(x) ◦ F(y) + [x, y] = 0, (5) either d(x) ◦ F(y)− xy ∈ Z(R) or
d(x) ◦ F(y) + xy ∈ Z(R), (6) either [d(x),F(y)] = [x, y] or [d(x),F(y)] + [x, y] = 0, (7)
either [d(x),F(y)]= x ◦ y or [d(x),F(y)] + x ◦ y = 0 for all x, y ∈U .

Copyright © 2007 Huang Shuliang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let R be an associative ring with center Z(R). For any x, y ∈ R, the symbol [x, y] stands
for the commutator xy − yx and denote by x ◦ y the anticommutator xy + yx. Given
two subsets A and B of R, [A,B] will denote the additive subgroup of R generated by all
elements of the form [a,b], where a ∈ A, b ∈ B. For a nonempty subset S of R, we put
CR(S) = {x ∈ R | [x,s] = 0 for all s ∈ S}. Recall that R is prime if aRb = 0 implies a = 0
or b = 0. An additive map d : R→ R is called a derivation if d(xy)= d(x)y + xd(y) holds
for all x, y ∈ R. An additive function F : R→ R is called a generalized derivation if there
exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. Many
analysts have studied generalized derivation in the context of algebras on certain normed
spaces (see [1] for reference). An additive subgroup U of R is said to be a Lie ideal of R if
[u,r]∈U for all u∈U and r ∈ R.

In [2], Ashraf et al. investigates the commutativity of a prime ring R admitting a
generalized derivation F with associated derivation d satisfying anyone of the following
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properties: d(x) ◦ F(y)= 0, [d(x),F(y)]= 0, d(x) ◦ F(y)= x ◦ y, d(x) ◦ F(y) + x ◦ y = 0,
d(x) ◦ F(y)− xy ∈ Z(R), d(x) ◦ F(y) + xy ∈ Z(R), [d(x),F(y)] = [x, y], [d(x),F(y)] +
[x, y]= 0 for all x, y ∈ I , where I is a nonzero ideal of R.

In [3], Bergen et al. investigate the relationship between the derivations and Lie ideals
of a prime ring, and obtain some useful results. In [4], P. H. Lee and T. K. Lee get six
sufficient conditions of central Lie ideal, which extend some results of commutativity on
a prime ring. Motivated by the above, in this paper, we extend M. Ashraf ’s results to a Lie
ideal of a prime ring. Throughout this paper, R will be a prime ring and U will always
denote a Lie ideal of R.

2. Preliminaries

We begin with the following known results which will be used extensively to prove our
theorems.

Lemma 2.1. If U is a Lie ideal of R such that u2 ∈U for all u∈U , then 2uv ∈U for all u,
v ∈U .

Proof. For all w,u,v ∈U ,

uv+ vu= (u+ v)2−u2− v2 ∈U. (2.1)

On the other hand,

uv− vu∈U. (2.2)

Adding two expressions, we have 2uv ∈U for all u,v ∈U . �

Lemma 2.2 [3]. If U � Z(R) is a Lie ideal of R, then CR(U)= Z(R).

Lemma 2.3 [3]. If U is a Lie ideal of R, then CR([U ,U])= CR(U).

Lemma 2.4. Set V = {u∈U | d(u)∈U}. If U � Z(R), then V � Z(R).

Proof. Assume that V ⊆ Z(R). Since [U ,U] ⊆ U and d([U ,U]) ⊆ U , we have [U ,U] ⊆
V ⊆ Z(R). Hence CR([U ,U])= R. From Lemma 2.2, CR(U)= Z(R). But by Lemma 2.3,
CR([U ,U])= CR(U). That is, R= Z(R), a contradiction. �

Lemma 2.5 [3]. If U � Z(R) is a Lie ideal of R and if aUb = 0, then a= 0 or b = 0.

Lemma 2.6. A group can not be a union of two of its proper subgroups.

Lemma 2.7 [4]. Let d �= 0 be a derivation of R such that [u,d(u)] ∈ Z(R) for all u ∈ U .
Then U ⊆ Z(R).

Lemma 2.8 [4]. Let d and δ be nonzero derivations of R such that dδ(U) ⊆ Z(R). Then
U ⊆ Z(R).

Lemma 2.9 [5]. If U is a Lie ideal of a semiprime ring R and [U ,U]⊆ Z(R), then U ⊆ Z(R).
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Lemma 2.10 [3]. If d �= 0 is a derivation of R, and if U is a Lie ideal of R such that d(U)⊆
Z(R), then U ⊆ Z(R).

3. The proof of main theorems

Theorem 3.1. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈ U for
all u ∈ U , and F a generalized derivation associated with d �= 0. If d(x) ◦ F(y) = 0 for all
x, y ∈U , then U ⊆ Z(R)s.

Proof. Assume that U � Z(R), then V � Z(R) by Lemma 2.4. Now we have d(x)◦F(y)=
0 for all x, y ∈U . Replacing y by 2yz, by Lemma 2.1 and using char R �= 2, we get d(x)◦
F(yz)=0 for all x, y,z ∈U and we obtain (d(x) ◦ y)d(z)−y[d(x),d(z)]+(d(x)◦F(y))z−
F(y)[d(x),z]=0. Now using our hypotheses, the above relation yields (d(x)◦ y)d(z)−
y[d(x),d(z)]−F(y)[d(x),z]=0. For any x ∈V , replace z by d(x) to get

(
d(x)◦ y)d2(x)− y

[
d(x),d2(x)

]= 0. (3.1)

Now, replace y by 2zy in (3.1) to get (d(x) ◦ (zy))d2(x)− zy[d(x),d2(x)] = 0. This im-
plies that

z
(
d(x)◦ y)d2(x) +

[
d(x),z

]
yd2(x)− zy

[
d(x),d2(x)

]= 0. (3.2)

Combining (3.1) with (3.2), we get [d(x),z]yd2(x)=0 for x ∈V and y,z ∈U . In particu-
lar, [d(x),x]yd2(x)=0, and hence [d(x),x]Ud2(x)=0 for x ∈ V . Then, either [d(x),x]=
0 or d2(x)= 0 by Lemma 2.5. Now let V1={x ∈ V | [d(x),x]= 0} and V2={x ∈ V |
d2(x) = 0}. Then V1, V2 are both additive subgroups of V and V1 ∪V2 = V . Thus, ei-
ther V = V1 or V = V2 by Lemma 2.6. If V = V1, then Lemma 2.7 gives V ⊆ Z(R), a
contradiction. On the other hand, if V = V2 then V ⊆ Z(R) by Lemma 2.8, again a con-
tradiction. �

Theorem 3.2. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈ U for
all u ∈ U , and F a generalized derivation associated with d �= 0. If [d(x),F(y)] = 0 for all
x, y ∈U , then U ⊆ Z(R).

Proof. Assume that U � Z(R), then V � Z(R) by Lemma 2.4. By hypotheses, we have

[
d(x),F(y)

]= 0 (3.3)

for all x, y ∈U . Replacing y by 2yz in (3.3) and using char R �= 2, we get

F(y)
[
d(x),z

]
+ y
[
d(x),d(z)

]
+
[
d(x), y

]
d(z)= 0 (3.4)

for all x, y,z ∈U . For any x ∈V , replacing z by 2zd(x) in (3.4) and using (3.4), we get

yz
[
d(x),d2(x)

]
+ y
[
d(x),z

]
d2(x) +

[
d(x), y

]
zd2 = 0. (3.5)
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Again, replacing y by 2ty in (3.5) and using (3.5), we get [d(x), t]yzd2(x)= 0 for all x ∈V
and y,z, t ∈ U . In particular, [d(x),x]yzd2(x)= 0. That is, [d(x),x]UUd2(x)= 0. Then,
either [d(x),x] = 0 or Ud2(x) = 0 (i.e., d2(x) = 0 ). Now, let V1 = {x ∈ V | [d(x),x] =
0} and V2 = {x ∈ V | Ud2(x) = 0}. Then V1, V2 are both additive subgroups of V and
V1∪V2 = V . Thus, either V = V1 or V = V2 by Lemma 2.6. If V = V1, then Lemma 2.7
gives V ⊆ Z(R), a contradiction. On the other hand, if V = V2 then Ud2(x) = 0, and
hence d2(x)Ud2(x)= 0 for all x ∈V . Thus, Lemma 2.5 yields that d2(x)= 0 for all x ∈V .
Now, we have obtained V ⊆ Z(R) by Lemma 2.8, again a contradiction. �

Theorem 3.3. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u ∈ U , and F a generalized derivation associated with d �= 0. If d(x) ◦ F(y) = x ◦ y for all
x, y ∈U , then U ⊆ Z(R).

Proof. We are given d(x) ◦ F(y) = x ◦ y for all x, y ∈ U . If F = 0, then x ◦ y = 0 for all
x, y ∈U . Replacing y by 2yz and using char R �= 2, we get y[x,z]= 0 for all x, y,z ∈U . In
particular, [x,z]y[x,z] = 0 (i.e., [x,z]U[x,z] = 0), and hence [x,z] = 0 (i.e., [U ,U] = 0)
by Lemma 2.5. Then Lemma 2.9 yields that the required result. Therefore, we assume that
F �= 0. For any x, y ∈U , we have

d(x)◦F(y)= x ◦ y. (3.6)

Replacing y by 2yz, we get

(
d(x)◦ y)d(z)− y

[
d(x),d(z)

]
+
(
d(x)◦F(y)

)
z−F(y)

[
d(x),z

]= (x ◦ y)z− y[x,z].
(3.7)

Combining (3.6) with (3.7), we get

(
d(x)◦ y)d(z)− y

[
d(x),d(z)

]−F(y)
[
d(x),z

]
+ y[x,z]= 0 (3.8)

for all x, y,z ∈U . For any x ∈V , replacing z by d(x) in (3.8), we get

(
d(x)◦ y)d2(x)− y

[
d(x),d2(x)

]
+ y
[
x,d(x)

]= 0. (3.9)

Now, replacing y by 2yz in (3.9), we get

(
z
(
d(x)◦ y)+

[
d(x),z

]
y
)
d2(x)− zy

[
d(x),d2(x)

]
+ zy

[
x,d(x)

]= 0. (3.10)

Combining (3.9) with (3.10), we get [d(x),z]yd2(x) = 0 for all x ∈ V and y,z ∈ U . In
particular, [d(x),x]yd2(x)= 0. So we get [d(x),x]Ud2(x)= 0. The rest of the proof is the
same with the end of Theorem 3.1, and we get the required result. �

Now, using the similar techniques, we also prove the following two theorems.

Theorem 3.4. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u ∈ U , and F a generalized derivation associated with d �= 0. If d(x) ◦ F(y) + x ◦ y = 0 for
all x, y ∈U , then U ⊆ Z(R).
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Theorem 3.5. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u∈U , and F a generalized derivation associated with d �= 0. If either [d(x),F(y)]= [x, y]
or [d(x),F(y)] + [x, y]= 0 for all x, y ∈U , then U ⊆ Z(R).

Theorem 3.6. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u∈U , and F a generalized derivation associated with d �= 0. If d(x)◦F(y)− xy ∈ Z(R) for
all x, y ∈U , then U ⊆ Z(R).

Proof. Assume that U � Z(R), then V � Z(R) by Lemma 2.4. By hypotheses, we have
d(x)◦F(y)− xy ∈ Z(R). If F = 0, then xy ∈ Z(R) for all x, y ∈U . In particular, [xy,x]=
0 and hence x[y,x]= 0. Replacing y by 2yz we get xy[z,x]= 0 (i.e., xU[z,x]= 0). Hence,
by Lemma 2.5, either x = 0 or [z,x]= 0. But x = 0 also implies that [z,x]= 0; hence for
any x,z ∈ U , we have [z,x] = 0. Then Lemma 2.9 gives us the required result. Now we
assume that F �= 0. For any x,z ∈ U , we have d(x) ◦ F(y)− xy ∈ Z(R). Replacing y by
2yz and using char R �= 2, we get d(x) ◦ F(yz)− xyz ∈ Z(R) for any x, y,z ∈ U . That
is, (d(x)F(y)− xy)z + d(x)yd(z) ∈ Z(R). This implies that [d(x)yd(z),z] = 0. Then we
have d(x)[yd(z),z] + [d(x),z]yd(z) = 0 for any x, y,z ∈ U . For any x ∈ V , replace y by
2d(x)y in the above relation to get [d(x),z]d(x)yd(z)= 0 (i.e., [d(x),z]d(x)Ud(z)= 0).
Then we have [d(x),z]d(x)= 0 or d(z)= 0 by Lemma 2.5. Now, let U1 = {z ∈U | [d(x),
z]d(x)= 0} and U2 = {z ∈U | d(z)= 0}. Then U1, U2 are both additive subgroups of U
and U1∪U2 =U . Thus, either U =U1 or U =U2 by Lemma 2.6. If U =U1, replace z by
2zy to get [d(x),z]yd(x)= 0, and hence [d(x),z]= 0 (especially, [d(x),x]= 0) or d(x)=
0. For all x ∈U we have [d(x),x]= 0, thus U ⊆ Z(R) by Lemma 2.7, a contradiction. On
the other hand, if U = U2 then d(U) = 0 and hence U ⊆ Z(R) by Lemma 2.10, again a
contradiction. �

The following is proved as in Theorem 3.6 with necessary variations.

Theorem 3.7. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u∈U , and F a generalized derivation associated with d �= 0. If d(x)◦F(y) + xy ∈ Z(R) for
all x, y ∈U , then U ⊆ Z(R).

Theorem 3.8. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u∈U , and F a generalized derivation associated with d �= 0. If [d(x),F(y)]= [x, y] for all
x, y ∈U , then U ⊆ Z(R).

Proof. If F = 0 then [x, y] = 0. That is, [U ,U] = 0, and hence U ⊆ Z(R) by Lemma 2.9.
Now we assume that F �= 0. Then we have

[
d(x),F(y)

]= [x, y] (3.11)

for all x, y ∈U . Replacing y by 2yz in (3.11) and using (3.11), we have

F(y)
[
d(x),z

]
+ y
[
d(x),d(z)

]
+
[
d(x), y

]
d(z)= y[x,z] (3.12)

for all x, y,z ∈U . Now, for any x ∈V , replace z by 2zd(x) in (3.12) and use (3.12) to get

y
[
d(x),z

]
d2(x) + yz

[
d(x),d2(x)

]
+
[
d(x), y

]
zd2(x)= yz

[
x,d(x)

]
. (3.13)
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Again, replace y by 2ty in (3.13) to get

tyz
[
d(x),d2(x)

]
+ ty

[
d(x),z

]
d2(x) + t

[
d(x), y

]
zd2(x) +

[
d(x), t

]
yzd2(x)= tyz

[
x,d(x)

]
.

(3.14)

Combining (3.13) with (3.14), we have[d(x), t]yzd2(x)=0. In particular,[d(x),x]yzd2(x)=
0 for all x ∈V and y,z ∈U . Notice that the arguments in the end of the proof of Theorem
3.1 are still valid in the present situation, and hence we get the required results.

We also prove the following as in Theorem 3.8 with necessary variations. �

Theorem 3.9. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u∈U , and F a generalized derivation associated with d �= 0. If [d(x),F(y)] + [x, y]= 0 for
all x, y ∈U , then U ⊆ Z(R).

Finally, using the similar techniques as in the above theorems, we prove the following.

Theorem 3.10. Let R be a prime ring with char R �= 2, U a Lie ideal such that u2 ∈U for all
u ∈ U , and F a generalized derivation associated with d �= 0. If either [d(x),F(y)] = x ◦ y
or [d(x),F(y)] + x ◦ y = 0 for all x, y ∈U , then U ⊆ Z(R).
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