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Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The
Riemann zeta function and its extension, the polylogarithm function, arise in the theory
of numbers. Though it might not have been expected, these two sets of functions belong
to a wider class of functions whose members have operator representations. In particular,
we show that the Fermi-Dirac and Bose-Einstein integral functions are expressible as op-
erator representations in terms of themselves. Simpler derivations of previously known
results of these functions are obtained by their operator representations.
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1. Introduction

The study of analytic functions is very useful for the application of mathematics to vari-
ous physical and engineering problems and for the development of a further understand-
ing of mathematics itself. In particular, the Riemann zeta function [1, page 1]

ζ(s) :=
∞∑

n=0

1
ns

(s= σ + it, σ > 1), (1.1)

has played an important role in number theory. There have been several generalizations
of the zeta function. Of special interest for our purposes is the polylogarithm function

φ(x,s)= Lis(x) := F(x,s) :=
∞∑

n=0

xn

ns
, (1.2)



2 International Journal of Mathematics and Mathematical Sciences

which extends the zeta function as

φ(1,s)= Lis(1)= F(x,1)= ζ(s). (1.3)

It has been studied extensively by several authors including Lambert, Legendre, Abel,
Kummer, Appell, Lerch, Lindelöf, Wirtinger, Jonquière, Truesdell, and others. It is related
to the Fermi-Dirac and Bose-Einstein integral functions which in turn come from the
Fermi-Dirac and Bose-Einstein statistics for the quantum description of collections of
particles of spins (n+ 1/2)� and n�, respectively. For the asymptotic expansions and other
properties of these functions, we refer to the works in [2–10].

We present a series representation of a class of functions and deduce the well-known
series representation and operator forms of the Fermi-Dirac (and Bose-Einstein) integral
and other related functions. The present formulation helps us to find an alternate proof of
the Euler formula for the closed-form representation of the zeta function at even integral
values. Lindelöf proved the expansion [11, equation (15), page 30]

φ(x,s)= Lis(x)= Γ(1− s)(− log x)s−1 +
∞∑

n=0

ζ(s−n)

(
log(x)

)n

n!

(| log x| < 2π
)
,

(1.4)

which is useful for numerical evaluation of the function. The function (1.2) is related to
the Fermi-Dirac integral function [4, page 30]

Fp(x) := 1
Γ(p+ 1)

∫∞

0

tp

et−x + 1
dt (p >−1), (1.5)

and the Bose-Einstein integral function [4, page 53]

Bp(x) := 1
Γ(p+ 1)

∫∞

0

tp

et−x − 1
dt (p > 0), (1.6)

as we have

Fp−1(x)=−φ(− ex, p
)=−Lip

(− ex), (1.7)

Bp−1(x)= φ(ex, p
)= Lip

(
ex
)
. (1.8)

Putting p = 0 in (1.5), we find (see also [4, page 20])

F0(x)= x+ ln
(
1 + e−x

)
. (1.9)

Note that the Fermi-Dirac and Bose-Einstein integral functions are also related by the
duplication formula

Fp(x)= Bp(x)− 2−pBp(2x), (1.10)

which is useful in translating the properties of these functions.
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2. The Mellin and Weyl transform representations

The Mellin transform of a function ϕ(t) (0 ≤ t <∞), if it exists, is defined by (see [12,
page 79])

ΦM(s) :=M[ϕ;s] :=
∫∞

0
ts−1ϕ(t)dt (s= σ + it). (2.1)

The inversion formula for the Mellin transform is given by [12, page 80]

ϕ(t)= 1
2πi

∫ c+i∞

c−i∞
ΦM(z)t−zdz. (2.2)

If ϕ∈ L1
loc[0,∞) is such that ϕ(t)=O(t−σ1 ), t→0+ and ϕ(t)=O(t−σ2 ), t→∞, the integral

ΦM(s) in (2.1) defines a function in the strip σ1 < σ < σ2. Moreover, if the function ϕ(t)
is continuous in [0,∞) and has rapid decay at infinity, the Mellin transform (2.1) will
converge absolutely for σ > 0. In particular, if the integral (2.1) converges uniformly and
absolutely in the strip σ1 < σ < σ2, the function ΦM(s) is analytic in the interior of the
strip σ1 < σ < σ2 [12, page 80].

The Weyl transform of a function ϕ(t) (0 ≤ t <∞), if it exists, is defined by [6, page
201]

Φ(s;x) :=W−s[ϕ(t)
]
(x) := 1

Γ(s)

∫∞

0
ts−1ϕ(t+ x)dt (σ > 0, x > 0). (2.3)

We define Φ(0;x)
.= ϕ(x) and

Φ(−s;x) := (−1)n
dn

dxn
[
Φ(s;x)

]
, (2.4)

where n is the smallest integer greater than σ . Then, we have the representation

Φ(−n;x) := (−1)n
dn

dxn
[
Φ(0;x)

]= (−1)n
dn

dxn
[
ϕ(x)

]
(n= 0,1,2, . . .). (2.5)

Since [6, page 243] W−αW−β =W−α−β =W−βW−α, we have

Φ(α+β;x)=W−α[Φ(β; t)
]
(x)= 1

Γ(α)

∫∞

0
tα−1Φ(β; t+ x)dt. (2.6)

3. A class of good functions and applications

To prove our main result, we define a class χ of functions that we call “good.” A function
ϕ∈ L1

loc[0,∞) is said to be a member of the class χ if
(P.1) Φ(0; t) has a power series representation at t = 0 ;
(P.2) the integral in (2.1) is absolutely and uniformly convergent in the strip 0 < σ1 ≤

σ ≤ σ2 < 1.
The class of good functions is nonempty, as e−t and (1/(et − 1)− 1/t) belong to the class.
We prove our representation formulae here and discuss their applications in the next
sections.
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Theorem 3.1. The Weyl transform of a good function, ϕ, can be represented by

Φ(s;x)=
∞∑

n=0

Φ(s−n;0)
(−x)n

n!
(0≤ σ < 1, x > 0). (3.1)

Proof. Since ϕ ∈ χ, the corresponding function Φ(s;x) ∈ χ must have the Taylor series
expansion about x = 0:

Φ(s;x)=
∞∑

n=0

dn

dxn
[
Φ(s;x)

]
x=0

xn

n!
. (3.2)

However, we have

dn

dxn
[
Φ(s;x)

]
x=0 = (−1)nΦ(s−n;0). (3.3)

The proof follows directly from (3.2) and (3.3). �

Theorem 3.2. For a good function, ϕ, the Weyl transform of

ψ(t) := t−μ +ϕ(t) (3.4)

is

Ψ(s;x)= Γ(μ− s)
Γ(μ)

xs−μ +
∞∑

n=0

Φ(s−n;0)
(−x)n

n!
(0 < σ < μ, x > 0). (3.5)

Proof. Taking the Weyl transform of both sides in (3.4) and using (see [6, equation (7.7),
page 249])

W−s[t−μ
]
(x)= Γ(μ− s)

Γ(μ)
xs−μ (0 < σ < μ, x > 0), (3.6)

we arrive at (3.5). �

4. Applications to Fermi-Dirac and Bose-Einstein integral functions

We show that the Fermi-Dirac and Bose-Einstein functions are expressible as the Weyl
transform of a good function and recover their classical series representations by using
the result (3.1) in a simple way. It is to be remarked that the result (3.1) is applicable to a
wider class of functions. For example, cos(t) and sin(t) are good functions having Weyl
transforms cos (x + πs/2) and sin (x + πs/2) (0 < σ < 1). An application of (3.1) leads to
the representations

cos
(
x+

π

2
s
)
=

∞∑

n=0

cos
(
π

2
(s−n)

)
(−x)n

n!
,

sin
(
x+

π

2
s
)
=

∞∑

n=0

sin
(
π

2
(s−n)

)
(−x)n

n!
.

(4.1)
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Theorem 4.1. The Fermi-Dirac integral function has the Taylor series representation

Fs−1(x)=
∞∑

n=0

(
1− 2n−s+1)ζ(s−n)

xn

n!
(0 < σ < 1, x > 0), (4.2)

with coefficients involving the zeta values.

Proof. Replacing x by −x in (1.5) and putting p = s− 1, we obtain the operator form of
the Fermi-Dirac integral

Fs−1(−x)=W−s
[

1
et + 1

]
(x). (4.3)

Putting

ϕ(t) := 1
et + 1

, (4.4)

we find that

Fs−1(−x)=W−s
[

1
et + 1

]
(x)=Φ(s;x). (4.5)

However, we have (see [1, equation (2.7.1), page 23])

Fs−1(0)=Φ(s;0)= (1− 21−s)ζ(s). (4.6)

Putting these values in the representation Theorem 3.1 with x in place of −x, we arrive at
(4.2). �

Theorem 4.2. The Bose-Einstein integral function has the series representation

Bs−1(−x)= Γ(1− s)xs−1 +
∞∑

n=0

ζ(s−n)
(−x)n

n!
(0 < σ < 1, x > 0), (4.7)

with coefficients involving the values of the zeta function.

Proof. Replacing x by −x in (1.6) and putting p = s− 1, we obtain the operator form of
the integral function

Bs−1(−x)=W−s
[

1
et − 1

]
(x). (4.8)

Putting

θ(t) := 1
et − 1

− 1
t

, (4.9)

we find that

1
et − 1

= 1
t

+ θ(t) (4.10)



6 International Journal of Mathematics and Mathematical Sciences

and (see [1, equation (2.7.1), page 23])

W−s[θ(t)
]
(0)=W−s

[
1

et − 1
− 1
t

]
(0)= ζ(s). (4.11)

Since the function θ(t)∈ χ, it follows from the representation Theorem 3.1 that

Θ(s;x)=
∞∑

n=0

ζ(s−n)
(−x)n

n!
. (4.12)

However, from (3.6), we have

W−s
[

1
t

]
(x)= Γ(1− s)xs−1. (4.13)

Taking the Weyl transform of both sides in (4.10) and using (4.11)–(4.13), we get

Bs−1(−x)= Γ(1− s)xs−1 +
∞∑

n=0

ζ(s−n)
(−x)n

n!
. (4.14)

�

Remark 4.3. The present formulation of the Weyl transform representation of the Fermi-
Dirac integral functions leads to the representation (see (2.6))

Fα+β(−x)= 1
Γ(α)

∫∞

0
tα−1Fβ(−t− x)dt (σ > 0). (4.15)

Putting β = α− 1 in (4.15), we get

F2α−1(−x)= 1
Γ(α)

∫∞

0
tα−1Fα−1(−t− x)dt (σ > 0). (4.16)

Similarly, it follows from the operational formulation (4.8) that

Bα+β(−x)= 1
Γ(α)

∫∞

0
tα−1Bβ(−t− x)dt (σ > 0). (4.17)

The operator representations (4.15) and (4.17) provide a useful relation between the
functions and their transforms.

5. Alternate derivation of Euler’s formula

Euler’s formula relating the Riemann zeta function to the Bernoulli numbers, Bn, is one
of the important results in the theory of the zeta function. The usual derivation is long
and complicated. From the results obtained above for the Fermi-Dirac and Bose-Einstein
integral functions, we obtain the Euler formula more simply. The formula is

ζ(2n)= (−1)n+1 2(2π)2n

(2n)!
B2n (n= 1,2,3, ...), (5.1)
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where the Bernoulli numbers are defined by [2, page 804]

x

ex − 1
=

∞∑

n=0

Bn
(−x)n

n!
. (5.2)

The Euler numbers are defined by

2ex

ex + 1
= E0 +

∞∑

n=1

En
(−x)n

n!
. (5.3)

Putting s= 0 in (4.2) and using (1.7), we find that

F−1(x)= ex

ex + 1
=

∞∑

n=0

ζ(−n)
(
1− 2n+1) (x)n

n!
. (5.4)

However, it follows from the Riemann functional equation that

ζ(−n)=−1
2

(2π)−n−1 sin
(
πn

2

)
Γ(n+ 1)ζ(n+ 1). (5.5)

From (5.4) and (5.5), we obtain

2F−1(x)= 2ex

ex + 1
= 1 +

∞∑

n=1

[(
2n+1− 1

)
sin
(
nπ

2

)
Γ(n+ 1)ζ(n+ 1)

]
(x)n

n!
, (5.6)

where we have taken

lim
s→0

[
sin
(
sπ

2

)
ζ(s+ 1)

]
= 1. (5.7)

Comparing the coefficients of equal powers of x in (5.3) and (5.6), we get

E0 = 1,

E2n = 0 (n= 1,2,3, ...),

E2n−1 = (−1)n
4
(
22n− 1

)
(2n− 1)!

(2π)2n ζ(2n),

(5.8)

which can be rewritten to give

ζ(2n)= (−1)n
(2π)2nE2n−1

4
(
22n− 1

)
(2n− 1)!

(n= 1,2,3, ...). (5.9)

Now inserting the relation between the Euler and Bernoulli numbers (see [2, page 805])

En = 2− 2n+2

n+ 1
Bn+1 (n= 1,2,3, ...), (5.10)

we obtain (5.1) as desired. The representation of the zeta values at odd integers remains a
challenging task. We hope that the present formulation of the operator representation of
the Fermi integrals may lead to the desired formula.
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6. Concluding remarks

Transform techniques are extremely powerful tools for dealing with functions and con-
structing solutions of equations. In particular, the Weyl transform, which is at the heart
of the “fractional calculus,” has been extensively used for various purposes. In this pa-
per, we have used it to construct the Fermi-Dirac and Bose-Einstein integral functions
from elementary functions. These functions are related to probabilities arising from the
Fermi-Dirac and Bose-Einstein distribution functions which give the quantum descrip-
tion of collections of identical particles of half-odd integer and integral intrinsic spin,
respectively. Due to their physical significance, these distribution functions have been
extensively studied. Bosons and fermions were regarded as being mutually exclusive with
no fundamental physical quantity described by some function “between” these two in any
sense. However, it was later realized that there can be “effective particles,” called anyons,
that are neither fermions nor bosons but something between the two. The process of ob-
taining the integral functions by the Weyl transform can be used to develop a candidate
for an anyon integral function.

Our procedure has significant “spinoffs.” We recover the well-known connections be-
tween the Fermi-Dirac and Bose-Einstein integral functions and with the zeta and poly-
logarithm function. Of special interest is an alternative, and extremely elegant, derivation
of the Euler formula relating the Riemann zeta function to the even-integer argument
and the Bernoulli numbers. This demonstrates the significance and power of the Weyl
transform method, as applied here. It also leads us to hope that the Fermi-Dirac integral
function may provide a way of constructing a formula for the odd-integer argument. Zeta
function has remained an open problem for the last 300 years.
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