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1. Introduction

One of the important and basic topics in the theory of classical point set topology and sev-
eral branches of mathematics, which have been researched by many authors, is continuity
of functions. This concept has been extended to the setting of I-continuity of functions.
Janković and Hamlett [1, 2] introduced the notion of I-open sets in topological spaces.
Abd El-Monsef et al. [3] further investigated I-open sets and I-continuous functions.
Dontchev [4] introduced the notion of pre-I-open sets and obtained a decomposition of
I-continuity. The notion of semi-I-open sets to obtain decomposition of continuity was
introduced by Hatir and Noiri [5, 6]. In addition to this, Caksu Guler and Aslim [7] have
introduced the notion of b-I-sets and b-I-continuous functions. In the light of the above
results, the purpose of this paper is to study b-I-open sets and b-I-continuous functions
and to obtain several characterizations and properties of these concepts.

2. Preliminaries

Throughout this paper, int(A) and Cl(A) denote the interior and closure of A, respec-
tively. An ideal is defined as a nonempty collection I of subsets of X satisfying the
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following two conditions. (1) If A ∈ I and B ⊂ A, then B ∈ I . (2) If A ∈ I and B ∈ I ,
then A∪ B ∈ I . An ideal topological space is a topological space (X ,τ) with an ideal
I on X , and it is denoted by (X ,τ,I). For a subset A⊂X , A∗(I)={x∈X :U ∩ A /∈ I
for each neighborhood U of x} is called the local function of A with respect to I and
τ [8]. We simply write A∗ instead of A∗(I) to be brief. X∗ is often a proper subset of
X . The hypothesis X = X∗ [9] is equivalent to the hypothesis τ ∩ I =∅ [10]. For every
ideal topological space (X ,τ,I), there exists a topology τ∗(I), finer than τ, generated by
β(I ,τ) = {U − I : U ∈ τ and I ∈ I}, but in general β(I ,τ) is not always a topology [1].
Additionally, Cl∗(A) = A∪ (A)∗ defines a Kuratowski closure operator for τ∗(I). For
a subset A ⊂ X , A is called ∗-dense in itself [9] (resp., τ∗-closed [1], ∗-perfect [9]) if
A⊂ A∗ (resp., A∗ ⊂ A, A= A∗). Given a space (X ,τ,I) and A⊂ X , A is called I-open if
A⊂ int(A∗) and a subset K is called I-closed if its complement is I-open [3].

3. b-I-open sets

First we will recall some definitions used in sequel.

Definition 3.1. A subset S of a topological space X is said to be
(a) α-open set [11] if S⊂ int(cl(int(S))),
(b) semiopen set [12] if S⊂ cl(int(S)),
(c) preopen set [13] if S⊂ int(cl(S)),
(d) β-open set [14] if S⊂ cl(int(cl(S))),
(e) b-open set (or γ-open [15]) [16] if S⊂ cl(int(S))∪ int(cl(S)).

The class of all semiopen (preopen, α-open) sets in X will be denoted by SO(X ,τ)
(PO(X ,τ),αO(X ,τ)).

Definition 3.2. A subset S of an ideal topological space X is said to be
(a) α-I-open set [5] if S⊂ int(cl∗(int(S))),
(b) semi-I-open set [5] if S⊂ cl∗(int(S)),
(c) pre-I-open set [3] if S⊂ int(cl∗(S)),
(d) β-I-open set [5] if S⊂ cl∗(int(cl∗(S))),
(e) I-open set [1] if S⊂ int(S∗),
(f) b-I-open set [7] if S⊂ cl∗(int(S))∪ int(cl∗(S)).

The class of all semi-I-open (pre-I-open, α-open, and b-I-open) sets in X will be de-
noted by SIO(X ,τ) (PIO(X ,τ), αIO(X ,τ), and BIO(X ,τ)).

Proposition 3.3. For a subset of an ideal topological space, the following conditions hold:
(a) every b-I-open set is b-open;
(b) every pre-I-open set is b-I-open [7];
(c) every semi-I-open set is b-I-open [7];
(d) SIO(X ,τ)∪PIO(X ,τ)⊂ BIO(X ,τ).

Proof. The proof is obvious. �
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Remark 3.4. For several sets defined above, we have the following implications:

α-open

open α-I-open semi-I-open semiopen

I-open pre-I-open b-I-open b-open

preopen

(3.1)

Example 3.5. Consider the set R of real numbers with the usual topology with ideal I =
{∅} and let S = [0,1]∪ ((1,2)∩Q), where Q stands for the set of rational numbers.
Then S is b-I-open set but neither semi-I-open nor pre-I-open. On the other hand, let
T = [0,1)∩Q. Then T is not b-I-open.

Example 3.6. Let (R,τ) be the real numbers with the usual topology and I the ideal of
all finite sets of R. Let Q be the set of all rationals. Since Q∗(I)=R, then Q is b-I-open.
Since cl∗(intQ)=∅,Q is not semi-I-open.

Example 3.7. Let X = {a,b,c,d} be the topological space by setting

τ = {X ,∅,{b},{c,d},{b,c,d}}, I = {{c},{d},{c,d},∅}. (3.2)

Then A= {a,b} is not pre-I-open but it is b-I-open.

Proposition 3.8. Let S be a b-I-open set such that intS=∅. Then S is pre-I-open set.

Proof. Since S ⊂ cl∗(intS)∪ int(cl∗(S)) = cl∗(∅)∪ int(cl∗(S)) = int(cl∗(S)), then S is
pre-I-open. �

Lemma 3.9. Let A and B be subsets of a space (X ,τ,I) [1]. Then
(1) if A⊂ B, then A∗ ⊂ B∗;
(2) if U ∈ τ, then U ∩A∗ ⊂ (U ∩A)∗.

Proposition 3.10. Let (X ,τ,I) be an ideal topological space and A, B subsets of X .
(a) If Uα ∈ BIO(X ,τ) for each α∈ Δ, then ∪{Uα : α∈ Δ} ∈ BIO(X ,τ).
(b) If A∈ BIO(X ,τ) and B ∈ τ, then A∩B ∈ BIO(X ,τ) [7].
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Proof. (a) Since Uα ∈ BOI(X ,τ), we have Uα ⊂ cl∗(int(Uα))∪ int(cl∗(Uα)) for each α∈
Δ. Then by using Lemma 3.9, we have
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(3.3)

Hence
⋃

α∈ΔUα is b-I-open.
(b) Let A∈ BIO(X ,τ) and B ∈ τ. Then A⊂ cl∗(intA)∪ int(cl∗(A)) and
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(3.4)

This shows that A∩B ∈ BIO(X ,τ). �

Definition 3.11. A subset A of a space (X ,τ,I) is said to be b-I-closed if its complement is
b-I-open.

Theorem 3.12. If a subset A of a space (X ,τ,I) is b-I-closed, then int(cl∗(A))∩ cl∗(intA)
⊂A.

Proof. Since A is b-I-closed, X −A∈ BIO(X ,τ) and since τ∗(I) is finer than τ, we have

X −A⊂ cl∗
(

int(X −A)
)∪ int

(
cl∗(X −A)

)⊂ cl
(

int(X −A)
)∪ int

(
cl(X −A)

)

= [X − [ int
(

cl(A)
)]]∪ [X − [cl(intA)

]]

⊂ [X − [ int
(

cl∗(A)
)]]∪ [X − [cl∗(intA)

]]

= X − [[ int
(

cl∗(A)
)]∩ [cl∗(intA)

]]
.

(3.5)
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Therefore, we obtain

[
int
(

cl∗(A)
)]∩ [cl∗(intA)

]⊂A. (3.6)
�

Corollary 3.13. Let A be a subset of (X ,τ,I) such that X − [int(cl∗(A))] =
cl∗(int(X −A)) and X − [cl∗(intA)]= int(cl∗(X −A)). Then A is b-I-closed if and only if
int(cl∗(A))∩ cl∗(intA)⊂ A.

Proof. Necessity. This is an immediate consequence of Theorem 3.12.

Sufficiency. Let int(cl∗(A))∩ cl∗(intA)⊂ A. Then

X −A⊂ X − [ int
(

cl∗(A)
)∩ cl∗(intA)

]

⊂ [X − [ int
(

cl∗(A)
)]]∪ [X − [cl∗(intA)

]]

= cl∗
(

int(X −A)
)∪ int

(
cl∗(X −A)

)
.

(3.7)

Thus X −A is b-I-open and so A is b-I-closed. �

If (X ,τ,I) is an ideal topological space and A is a subset of X , we denote by τ|A. the
relative topology on A and I|A = {A∩ I : I ∈ I} is obviously an ideal on A.

Lemma 3.14 (see [1]). Let (X ,τ,I) be an ideal topological space and A, B subsets of X such
that B ⊂ A. Then B∗(τ|A,I|A)= B∗(τ,I)∩A.

Theorem 3.15. Let (X ,τ,I) be an ideal topological space. If U ∈ τ and W ∈ BIO(X ,τ),
then U ∩W ∈ BIO(U ,τ|U ,I|U).

Proof. Since U is open, we have intU A = intA for any subset A of U . By using this fact
and Lemma 3.14, we have
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(3.8)

This shows that U ∩W ∈ BIO(U ,τ|U·,I|U·). �
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Proposition 3.16 (see [7]). For an ideal topological space (X ,τ,I) and A⊂ X , we have the
following.

(1) If I =∅, then A is b-I-open if and only if A is b-open.
(2) If I = P(x), then A is b-I-open if and only if A∈ τ.
(3) If I = N , then A is b-I-open if and only if A is b-open, where N is the ideal of all

nowhere dense sets.

Lemma 3.17 (see [1]). Let (X ,τ,I) be an ideal topological space and let A ⊂ X . Then if
U ∈ τ, U ∩A∗ =U ∩ (U ∩A)∗ ⊂ (U ∩A)∗.

Proposition 3.18. Let (X ,τ,I) be an ideal topological space with Δ being an arbitrary
index set. Then

(1) if A∈ BIO(X ,τ) and B ∈ τα, then A∩B ∈ BO(X ,τ);
(2) if A∈ PIO(X ,τ) and B ∈ SIO(X ,τ), then A∩B ∈ SO(A);
(3) if A∈ PIO(X ,τ) and B ∈ SIO(X ,τ), then A∩B ∈ PO(B).

Proof. (1) Since intersection of b-open and α-set is always a b-open set [16, Proposition
2.4], then the claim is clear due to Proposition 3.3.

(2)-(3) It was proved in [17] that the intersection of a preopen and a semiopen set is
a preopen subset of the semiopen set and a semiopen subset of the preopen set. Thus the
claim follows from [5, Proposition 2.5] and [6]. �

Proposition 3.19. Each b-I-open subset which is τ∗-closed is semi-I-closed.

Proof. Let A be b-I-open and τ∗-closed set. Then

A⊂ int
(

cl∗(A)
)∪ cl∗(intA)= intA∪ [ intA∪ (intA)∗

]

= intA∪ (intA)∗ = cl∗(intA).
(3.9)

�

Definition 3.20. If S is a subset of a space (X ,τ,I), then
(a) the b-I-closure of S, denoted by cl∗b (S), is the smallest b-I-closed set containing

S;
(b) the b-I-interior of S, denoted by intb I(S), is the largest b-I-open set contained in

S.

Lemma 3.21. (1) Let A be a subset of a space (X ,τ,I). Then A is b-I-closed if and only if
cl∗b (A)= A.

(2) Let B be a subset of a space (X ,τ,I). Then A is b-I-open if and only if intb I(B)= B.

Proposition 3.22. Let A, B be subsets of a space (X ,τ,I) such that A is b-I-open and B is
b-I-closed inX . Then there exist a b-I-open setH and a b-I-closed setK such thatA∩B ⊂ K
and H ⊂ A∪B.

Proof. Let K = cl∗b (A)∩ B and H = A∪ intb I(B). Then, K is b-I-closed and H is b-I-
open. A ⊂ cl∗b (A) implies A ∩ B ⊂ cl∗b (A) ∩ B = K and intb I(B) ⊂ B implies A ∪
intb I(B)=H ⊂A∪B. �

Definition 3.23. (1) A subset S of a space (X ,τ,I) is called b-dense if clb(S) = X , where
clb(S) is the smallest b-closed set containing S [15].

(2) A subset S of a space (X ,τ,I) is called b-I-dense if cl∗b (S)= X .
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Remark 3.24. Every b-I-dense subset in a space (X ,τ,I) is b-dense.

4. b-I-continuous mappings

Definition 4.1. (a) A function f : (X ,τ)→ (Y ,σ) is called b-continuous (or γ-continuous)
if the inverse image of each open set in Y is b-open set in X [15].

(b) A function f : (X ,τ)→ (Y ,σ) is called precontinuous if the inverse image of each
open set in Y is preopen set in X [13].

(c) A function f : (X ,τ,I)→ (Y ,σ) is called pre-I-continuous if the inverse image of
each open set in Y is pre-I-open set in X [18].

(d) A function f : (X ,τ)→ (Y ,σ) is called semicontinuous if the inverse image of each
open set in Y is semiopen set in X [12].

(e) A function f : (X ,τ,I)→ (Y ,σ) is called semi-I-continuous if the inverse image of
each open set in Y is semi-I-open set in X [5].

(f) A function f : (X ,τ)→ (Y ,σ) is called α-continuous (or γ-continuous) if the in-
verse image of each open set in Y is α-open set in X [14].

(g) A function f : (X ,τ,I) → (Y ,σ) is called α-I-continuous if the inverse image of
each open set in Y is α-I-open set in X [5].

(h) A function f : (X ,τ,I) → (Y ,σ) is called b-I-continuous if the inverse image of
each open set in Y is b-I-open set in X [7].

Remark 4.2 (see [7, Propositions 6 and 7]). (1) b-I-continuity implies b-continuity.
(2) semi-I-continuity implies b-I-continuity.
(3) pre-I-continuity implies b-I-continuity.

Definition 4.3 (see [19]). Let A be a subset of a space (X ,τ,I).

Then the set ∩{U ∈ τ : A⊂U} is called the kernel of A and denoted by Ker(A).

Lemma 4.4 (see [20]). Let A be a subset of a space (X ,τ), then
(a) x ∈ Ker(A) if and only if A∩F �=∅ for any closed subset F of X with x ∈ F;
(b) A⊂ Ker(A) and A= Ker(A) if A is open in X ;
(c) if A⊂ B, then Ker(A)⊂ Ker(B).

Definition 4.5. Let N be a subset of a space (X ,τ,I) and let x ∈ X . Then N is called b-I-
neighborhood of x, if there exists a b-I-open set U containing x such that U ⊂N .

Theorem 4.6. The following statements are equivalent for a function f : (X ,τ,I)→ (Y ,σ):
(a) f is b-I-continuous;
(b) for each x ∈ X and each open set V in Y with f (x)∈V , there exists a b-I-open set

U containing x such that f (U)⊂V ;
(c) for each x ∈ X and each open set V in Y with f (x) ∈ V , f −1(V) is a b-I-

neighborhood of x;
(d) the inverse image of each closed set in (Y ,σ) is b-I-closed;
(e) for every subset A of X , f (intb I(A))⊂ Ker( f (A));
(f) for every subset B of Y , intb I( f −1(B))⊂ f −1(Ker(B)).
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Proof. (a)⇒(b). Let x ∈ X and let V be an open set in Y such that f (x) ∈ V . Since f is
b-I-continuous, f −1(V) is b-I-open. By putting U = f −1(V) which is containing x, we
have f (U)⊂V .

(b)⇒(c). Let V be an open set in Y and let f (x) ∈ V . Then by (b), there exists a b-
I-open set U containing x such that f (U) ⊂ V . So x ∈ U ⊂ f −1(V). Hence f −1(V) is a
b-I-neighborhood of x.

(c)⇒(a). Let V be an open set in Y and let f (x) ∈ V . Then by (c), f −1(V) is a b-I-
neighborhood of x. Thus for each x ∈ f −1(V), there exists a b-I-open set Ux containing
x such that x ∈Ux ⊂ f −1(V). Hence f −1(V)⊂⋃x∈ f −1(V)Ux and so f −1(V)∈ BOI(X ,τ).

(a)⇔(d). It is obvious.
(a)⇒(e). Let A be any subset of X . Suppose that y /∈ Ker( f (A)). Then, by Lemma 4.4,

there exists a closed subset F of Y such that y ∈ F and f (A)∩ F = ∅. Thus we have
A∩ f −1(F)=∅ and (intb I(A))∩ f −1(F)=∅. Therefore, we obtain f (intb I(A))∩F =∅

and y /∈ f (intb I(A)). This implies that f (intb I(A))⊂ Ker(A).
(e)⇒(f). Let B be any subset of Y . By (e) and Lemma 4.4, we have f (intb I( f −1(B)))⊂

Ker( f ( f −1(B)))⊂ Ker(B) and intb I( f −1(B))⊂ f −1(Ker(B)).
(f)⇒(a). Let V be an open set of Y . Then by Lemma 4.4 and (f), we have

intb I( f −1(V)) ⊂ f −1(Ker(V)) = f −1(V) and intb I( f −1(V)) = f −1(V). This shows that
f −1(V) is b-I-open. �

The following examples show that b-I-continuous functions do not need to be semi-
I-continuous and pre-I-continuous, and b-continuous function does not need to be b-I-
continuous.

Example 4.7. Let X = Y = {a,b,c,d} be the topological space by setting τ = σ = {{a},
{d},{a,d},X ,∅}, and I = {∅,{c}} on X .

Define a function f : (X ,τ,I)→ (Y ,σ) as follows: f (a)= f (c)= d and f (b)= f (d)=
b. Then f is b-I-continuous but it is not pre-I-continuous.

Example 4.8. Let (X ,τ) be the real line with the indiscrete topology and (Y ,σ) the real
line with the usual topology. Then the identity function f : (X ,τ,P(X)) → (Y ,σ) is b-
continuous but not b-I-continuous.

Example 4.9. Let X = Y = {a,b,c} be the topological space by setting τ = σ = {X ,∅,{a,
b}} and I = {{c},∅}. Define a function f : (X ,τ,I)→ (Y ,σ) as follows: f (a)=a, f (b)=c,
and f (c)= b. Then f is b-I-continuous but not semi-I-continuous.

Proposition 4.10. Let f : (X ,τ,I)→ (Y ,σ , J) and g : (Y ,σ , J)→ (Z,ν) be two functions,
where I and J are ideals on X and Y , respectively. Then g ◦ f is b-I-continuous if f is b-I-
continuous and g is continuous.

Proof. The proof is clear. �

Theorem 4.11. Let f : (X ,τ,I)→ (Y ,σ) be b-I-continuous and U ∈ τ. Then the restriction
f|U : (U ,τ|U ,I|U)→ (Y ,σ) is b-I-continuous.
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Proof. Let V be any open set of (Y ,σ). Since f is b-I-continuous, f −1(V) ∈ BIO(X ,τ)
and by Theorem 3.15, ( f|U)−1(V) = f −1(V)∩U ∈ BIO(U ,I|U). This shows that f|U :
(U ,τ|U ,I|U)→ (Y ,σ) is b-I-continuous. �

Theorem 4.12. Let f : (X ,τ,I)→ (Y ,σ , J) be a function and let {Uα : α ∈ Δ} be an open
cover of X . If the restriction function f |Uα is b-I-continuous for each α∈ Δ, then f is b-I-
continuous.

Proof. The proof is similar to that of Theorem 4.11. �

Theorem 4.13. A function f : (X ,τ,I)→ (Y ,σ) is b-I-continuous if and only if the graph
function g : X → X ×Y defined by g(x)= (x, f (x)) for each x ∈ X is b-I-continuous.

Proof. Necessity. Let f be b-I-continuous. Now let x ∈ X and let W be any open set in
X × Y containing g(x) = (x, f (x)). Then there exists a basic open set U ×V such that
g(x) ⊂ U ×V ⊂W . Since f is b-I-continuous, there exists a b-I-open set U1 in X such
that x ∈U1 ⊂ X and f (U1)⊂V . By Proposition 3.10, U1∩U ∈ BOI(X ,τ) and U1∩U ⊂
U , then g(U1∩U)⊂U ×V ⊂W . This shows that g is b-I-continuous.

Sufficiency. Suppose that g is b-I-continuous and let V be open set in Y containing f (x).
Then X ×V is open set in X ×Y and by the b-I-continuity of g, there exists a b-I-open
set U containing x such that g(U)⊂ X ×V . Therefore, we obtain f (U)⊂ V . This shows
that f is b-I-continuous. �

Theorem 4.14. Let {Xα : α∈ Δ} be any family of ideal topological spaces. If f : (X ,τ,I)→
(
∏

α∈ΔXα,σ) is a b-I-continuous function, then Pα ◦ f : X → Xα is b-I-continuous for each
α∈ Δ, where Pα is the projection of

∏
Xα onto Xα.

Proof. We will consider a fixed α◦ ∈ Δ. Let Gα0 be an open set of Xα0 . Then (Pα0 )−1(Gα0 )
is open set in

∏
α �=α0

Xα. Since f is b-I-continuous, f −1((Pα0 )−1(Gα0 ))= (Pα0 ◦ f )−1(Gα0 )
is b-I-open in X . Thus Pα0 ◦ f is b-I-continuous. �

Lemma 4.15 (see [21]). For any function f : (X ,τ,I)→ (Y ,σ), f (I) is an ideal on Y .

Definition 4.16 (see [21]). An ideal topological space (X ,τ,I) is said to be I-compact if
for every I-open cover {Wα : α ∈ Δ} of X , there exists a finite subset Δ◦ of Δ such that
(X −∪{Wα : α∈ Δ◦})∈ I .

Definition 4.17. An ideal topological space (X ,τ,I) is said to be b-I-compact if for every b-
I-open cover {Wα : α∈ Δ} of X , there exists a finite subset Δ◦ of Δ such that (X −∪{Wα :
α∈ Δ◦})∈ I .

Theorem 4.18. The image of a b-I-compact space under a b-I-continuous surjective func-
tion is f (I)-compact.

Proof. Let f : (X ,τ,I) → (Y ,σ) be a b-I-continuous surjection and {Vα : α ∈ Δ} be an
open cover of Y . Then { f −1(Vα) : α ∈ Δ} is a b-I-open cover of X due to our assump-
tion on f . Since X is b-I-compact, then there exists a finite subset Δ◦ of Δ such that
(X −∪{ f −1(Vα) : α∈ Δ◦})∈ I . Therefore (Y −∪{Vα : α∈ Δ◦})∈ f (I) which shows that
(Y ,σ , f (I)) is f (I)-compact. �
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Definition 4.19. An ideal topological space (X ,τ,I) is said to be b-I-normal if for each
pair of nonempty disjoint closed sets of X , it can be separated by disjoint b-I-open sets.

Definition 4.20. An ideal topological space (X ,τ,I) is said to be b-I-connected if X is not
the union of two disjoint b-I-open subsets of X .

Definition 4.21 (see [22]). A topological space (X ,τ) is said to be ultra normal if for each
pair of nonempty disjoint closed sets of X , it can be separated by disjoint clopen sets.

Theorem 4.22. If f : (X ,τ,I)→ (Y ,σ) is a b-I-continuous, closed injection and Y is nor-
mal, then X is b-I-normal.

Proof. Let F1 and F2 be disjoint closed subsets of X . Since f is closed and injective, f (F1)
and f (F2) are disjoint closed subsets of Y . Since Y is normal, f (F1) and f (F2) are sep-
arated by disjoint open sets V1 and V2, respectively. Hence F1 ⊂ f −1(V1), F2 ⊂ f −1(V2),
f −1(V1)∈ BIO(X ,τ), f −1(V2)∈ BIO(X ,τ), and f −1(V1)∩ f −1(V2)=∅. Thus X is b-I-
normal. �

Corollary 4.23. If f : (X ,τ,I)→ (Y ,σ) is a b-I-continuous, closed injection and Y is ultra
normal, then X is b-I-normal.

Theorem 4.24. A b-I-continuous image of a b-I-connected space is connected.

Proof. Let f : (X ,τ,I) → (Y ,σ) be a b-I-continuous function of a b-I-connected space
X onto a topological space Y . If possible, let Y be disconnected. Let A and B form a
disconnected set of Y . Then A and B are clopen and Y = A∪B, where A∩B =∅. Since
f is b-I-continuous, X = f −1(Y)= f −1(A∪B), where f −1(A) and f −1(B) are nonempty
b-I-open sets in X . Also f −1(V1)∩ f −1(V2)=∅. Hence X is non-b-I-connected, which
is a contradiction. Therefore, Y is connected. �

Definition 4.25. A function f : (X ,τ,I)→ (Y ,σ , J) is called b-I-open (resp., b-I-closed) if
for each U ∈ τ (resp., closed set F), f (U) (resp., f (F)) is b-J-open (resp., b-J-closed).

Remark 4.26. Every b-I-open (resp., b-I-closed) function is b-open (resp., b-closed) and
the converses are false in general.

Example 4.27. Let X = {a,b,c}, τ1 = {X ,∅,{b,c}}, τ2 = {X ,∅,{a,b},{b},{a}}, and I =
{{a},∅}. Then the identity function f : (X ,τ1)→ (X ,τ2,I) is b-open but not b-I-open.

Example 4.28. Let X = {a,b,c}, τ1 = {X ,∅,{a}}, τ2 = {X ,∅,{b,c},{b},{c}}, and I =
{{c},∅}. Define a function f : (X ,τ1)→ (X ,τ2,I) as follows: f (a) = a, f (b) = f (c) = b.
Then, f is b-closed but not b-I-closed.

Definition 4.29. (a) A function f : (X ,τ,I)→ (Y ,σ , J) is called semi-I-open (resp., semi-
I-closed) if for each U ∈ τ (resp., closed set F), f (U) (resp., f (F)) is semi-J-open (resp.,
semi-J-closed) [6] .

(b) A function f : (X ,τ,I)→ (Y ,σ , J) is called pre-I-open (resp., pre-I-closed) if for
each U ∈ τ (resp., closed set F), f (U) (resp., f (F)) is pre-J-open (resp., pre-J-closed).

(c) A function f : (X ,τ,I)→ (Y ,σ , J) is called α-I-open (resp., α-I-closed) if for each
U ∈ τ (resp., U is closed), f (U) is α-I-open (resp., α-I-closed).
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Remark 4.30. (1) Every semi-I-open (resp., semi-I-closed) function is b-I-open (resp.,
b-I-closed); (2) every pre-I-open (resp., pre-I-closed) function is b-I-open (resp., b-I-
closed).

Theorem 4.31. A function f : (X ,τ,I)→ (Y ,σ , J) is b-I-open if and only if for each x ∈ X
and each neighborhood U of x, there exists V ∈ BJO(Y ,σ) containing f (x) such that V ⊂
f (U).

Proof. Suppose that f is a b-I-open function. For each x ∈ X and each neighborhood
U of x, there exists U◦ ∈ τ such that x ∈ U◦ ⊂ U . Since f is b-I-open, V = f (U◦) ∈
BJO(Y ,σ) and f (x) ∈ V ⊂ f (U). Conversely, let U be an open set of (X ,τ). For each
x ∈ U , there exists Vx ∈ BIO(X ,τ) such that f (x) ∈ Vx ⊂ f (U). Therefore we obtain
f (U) = ∪{Vx : x ∈ U} and hence by Proposition 3.10, f (U) ∈ BJO(Y ,σ). This shows
that f is b-I-open. �

Theorem 4.32. Let f : (X ,τ,I)→ (Y ,σ , J) be b-I-open (resp., b-I-closed). IfW is any subset
of Y and F is a closed (resp., open) set of X containing f −1(W), then there exists a b-I-closed
(resp., b-I-open) subset H of Y containing W such that f −1(H)⊂ F.

Proof. Suppose that f is a b-I-open function. Let W be any subset of Y and F a closed
subset of X containing f −1(W). Then X − F is open and since f is b-I-open, f (X −
F) is b-I-open. Hence H = Y − f (X − F) is b-I-closed. It follows from f −1(W) ⊂ F
that W ⊂H . Moreover, we obtain f −1(H) ⊂ F. For a b-I-closed function, we can prove
Theorem 4.32 similarly. �

Theorem 4.33. For any bijective function f : (X ,τ)→ (Y ,σ , J), the following are equivalent:
(i) f −1 : (Y ,σ , J)→ (X ,τ) is b-I-continuous;

(ii) f is b-I-open;
(iii) f is b-I-closed.

Proof. It is straightforward. �

Definition 4.34 ([4]). A function f : (X ,τ,I)→ (Y ,σ , J) is called ∗-I-continuous if the
preimage of every open set in (Y ,σ) is ∗-dense in itself.

Proposition 4.35. For a subset A⊂ (X ,τ,I), if the condition (int(A∗))∗ ⊂ int(A∗) holds,
then the following are equivalent:

(1) A is I-open;
(2) A is b-I-open and ∗-dense in itself.

Proof. (1)⇒(2) Let A be an I-open subset of (X ,τ,I). Then A ⊂ int(A∗) ⊂ A∗, which
shows that A is ∗-dense in itself. Since A is I-open, then A is pre-I-open and so A ⊂
int(cl∗(A))⊂ int(cl∗(A))∪ cl∗(intA). Thus A is b-I-open.

(2)⇒(1) Let A be a b-I-open and ∗-dense in itself.
Then since (int(A∗))∗ ⊂ int(A∗), A⊂ int(cl∗(A))∪ cl∗(intA)= int(A∪A∗)∪(intA∪

(intA)∗)⊂ int(A∗)∪ int(A)∪ (int(A))∗ = int(A∗)∪ (int(A))∗ = int(A∗). �

Proposition 4.36. If a function f : (X ,τ,I)→ (Y ,σ) is I-continuous and if (int(A∗))∗ ⊂
int(A∗) for each subset A of X , then f is b-I-continuous and ∗-I-continuous.



12 International Journal of Mathematics and Mathematical Sciences

Proof. From Proposition 4.35, the proof is clear. �

Definition 4.37. A space (X ,τ) is called
(1) b-space if every b-open set of X is open in X [23],
(2) submaximal if every dense set of X is open in X , and equivalently, if every pre-

open set is open,
(3) extremally disconnected if the closure of every open set of X is open in X .

Corollary 4.38. If a function f : (X ,τ,I)→ (Y ,σ) is continuous, then f is b-I-continuous.

Corollary 4.39. If (X ,τ) is b-space, then for any ideal I on X , BIO(X ,τ)= BO(X ,τ)= τ.

Corollary 4.40 ([18]). If (X ,τ) is submaximal, then for any ideal I on X , PIO(X ,τ) =
PO(X ,τ)= τ.

Corollary 4.41. If (X ,τ) is b-space, then for any ideal I on X , BIO(X ,τ) = BO(X ,τ) =
PIO(X ,τ)= PO(X ,τ)= τ.

Corollary 4.42. If (X ,τ) is extremally disconnected and submaximal, then for any ideal I
on X , PIO(X ,τ)= SIO(X ,τ)= SO(X ,τ)= PO(X ,τ)= αO(X ,τ)= αIO(X ,τ)= τ.

Corollary 4.43. If (X ,τ) is b-space, then for any ideal I on X , BIO(X ,τ) = BO(X ,τ) =
SIO(X ,τ)= SO(X ,τ)= τ.

Corollary 4.44. If (X ,τ) is b-space, then for any ideal I on X , BIO(X ,τ) = BO(X ,τ) =
PIO(X ,τ)= SIO(X ,τ)= SO(X ,τ)= PO(X ,τ)= αO(X ,τ)= αIO(X ,τ)= τ.

Corollary 4.45. Let f : (X ,τ,I)→ (Y ,σ) be a function and let (X ,τ) be b-space, then the
following are equivalent:

(1) f is b-I-continuous,
(2) f is b-continuous,
(3) f is pre-I-continuous,
(4) f is precontinuous,
(5) f is semi-I-continuous,
(6) f is semicontinuous,
(7) f is α-I-continuous,
(8) f is α-continuous,
(9) f is continuous.

Remark 4.46. For b-I-open, b-open, semi-I-open, semiopen, pre-I-open, pre-open, α-I-
open, and open functions, we have similar corollary if (X ,τ) is b-space.
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