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Complex-valued harmonic functions that are univalent and sense-preserving in the open
unit disk can be written in the form f = h+ g, where h and g are analytic in the open unit
disk. The functions h and g are called the analytic and coanalytic parts of f , respectively.
In this paper, we construct certain planar harmonic maps either by varying the coana-
lytic parts of harmonic functions that are known to be harmonic starlike or by adjoining
analytic univalent functions with coanalytic parts that are related or derived from the
analytic parts.
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1. Introduction

A continuous function f = u+ iv is a complex-valued harmonic function in a domain
D ⊂ C if both u and v are real harmonic in D. In any simply connected domain, we can
write f = h+ g, where h and g are analytic in D. We call h the analytic and g the coanalytic
part of f . Clunie and Sheil-Small [1] pointed out that a necessary and sufficient condition
for f to be locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)| in D.

Denote by H the class of functions f that are harmonic univalent and sense-preserving
in the open unit disk Δ = {z : |z| < 1} with f (0) = fz(0)− 1 = 0. Thus the analytic and
coanalytic parts of the function f = h+ g may be written, respectively, as

h(z)= z+
∞∑

k=2

akz
k, g(z)=

∞∑

k=1

bkz
k,

∣∣b1
∣∣ < 1. (1.1)
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Note that H reduces to S, the class of normalized univalent analytic functions when-
ever the coanalytic part of f is zero, that is, g ≡ 0. For f = h + g ∈ H , the condition
h′(0) = 1 > |g′(0)| = |b1| implies that the function ( f − b1 f )/(1− |b1|2) is also in H .
Consequently, we may sometimes restrict ourselves to Ĥ , the subclass of H for which
b1 = fz(0)= 0. Clunie and Sheil-Small [1] showed that H and Ĥ are normal families but
only Ĥ is compact. For more references on harmonic mappings, see Duren [2].

In this paper, we construct certain planar harmonic maps either by varying the coana-
lytic parts of functions f = h+ g or by adjoining functions in S with coanalytic parts that
are related to or derived from the analytic parts. One form of the latter process, known as
shearing, is due to Clunie and Sheil-Small [1]. An application of this method has recently
appeared in [3] and a detailed discussion of shear construction can be found in [4].

2. Functions harmonic starlike by proximity

In this section, some harmonic functions are identified by virtue of neighborhood prox-
imity to a given function. When discussing combinations of functions involving coeffi-
cients, it is convenient to indicate the kth coefficient of a function f as ak( f ). Using this
convention, a normalized harmonic function f = h+ g of the form (1.1) can be written
in the form

f (z)= z+ a−1( f )z+
∞∑

|k|=2

ak( f )φk(z), (2.1)

where φk(z)= zk for k ≥ 2 and φk(z)= (z)−k for k ≤−2.
It is proved in [5] (see also [6]) that for harmonic functions f ∈H of the form (2.1) if

(1 +α)
∣∣a−1( f )

∣∣+
∞∑

|k|=2

∣∣(k−α)
∣∣∣∣ak( f )

∣∣≤ 1−α, 0≤ α < 1, (2.2)

then (∂/∂θ)(arg f (reiθ)) ≥ α, z = reiθ ∈ Δ, that is, f is harmonic sense-preserving and
starlike of order α in Δ. The condition (2.2) is also necessary if f ∈ Ĥ . For the special
cases of (2.2) when a−1( f )= α= 0, see Silverman [7] and when only α= 0, see Silverman
and Silvia [8]. For the sake of simplicity, the class of sense-preserving harmonic functions
starlike of order zero in Δ is called sense-preserving harmonic starlike.

For f of the form (2.1) and δ > 0, the δ-neighborhood of f , denoted by Nδ( f ), is
defined as the class of all functions F of the form (2.1) so that

∣∣a−1( f )− a−1(F)
∣∣+

∞∑

|k|=2

|k|∣∣ak( f )− ak(F)
∣∣≤ δ. (2.3)

We let N̂δ( f )≡Nδ( f )∪ Ĥ .
Ruscheweyh [9] introduced the notion of δ-neighborhoods for subclasses of analytic

univalent functions and proved that N1/4( f ) is analytic starlike for all analytic convex
functions f . The natural extension of Ruscheweyh’s δ-neighborhood to the harmonic
case was introduced by Avci and Zlotkiewicz [10].
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From the coefficient condition (2.2) for α = 0, we conclude that, over the class H of
sense-preserving harmonic functions, the 1-neighborhood N1(z) is a subset of sense-
preserving harmonic starlike functions. In other words, coefficient proximity of planar
harmonic functions to the identity function can yield starlikeness. This readily supports
the construction of starlike planar harmonic functions. For example, the harmonic func-
tion

f (z)= h(z) + g(z)= z+
i

3
z+

∞∑

|k|=2

ak( f )φk(z), (2.4)

where ak( f )=ak=1/(k2k) for k ≥ 2 and a−k( f )=bk= i/(k3k) for k ≥ 2 is sense-preserv-
ing harmonic starlike in Δ.

For 0 < α < 1 and for f and F of the form (2.1), let F ∈ Nα( f ). Using the triangle
inequality, we can write

∣∣a−1(F)
∣∣+

∞∑

|k|=2

|k|∣∣ak(F)
∣∣

= ∣∣a−1( f )− a−1(F)
∣∣+

∞∑

|k|=2

|k|∣∣ak( f )− ak(F)
∣∣+

∣∣a−1( f )
∣∣+

∞∑

|k|=2

|k|∣∣ak( f )
∣∣

<
∣∣a−1( f )− a−1(F)

∣∣+
∞∑

|k|=2

|k|∣∣ak( f )− ak(F)
∣∣+ (1 +α)

∣∣a−1( f )
∣∣

+
∞∑

|k|=2

|k|∣∣ak( f )
∣∣≤ α+ (1−α)= 1.

(2.5)

Therefore, by (2.2) and according to the definition (2.3), we have proved the following.

Theorem 2.1. If f of the form (2.1) satisfies the coefficient condition (2.2), then Nα( f ), 0 <
α < 1, consists of sense-preserving harmonic starlike functions.

Since the condition (2.2) is also necessary if f ∈ Ĥ , the above theorem yields the fol-
lowing.

Corollary 2.2. If f ∈ Ĥ is starlike of order α, 0 < α < 1, then N̂α( f ), 0 < α < 1, consists of
sense-preserving harmonic starlike functions.

For the special case α= 1/2, Theorem 2.1 yields the following corollary which was also
obtained by Avci and Zlotkiewicz [10].

Corollary 2.3. If f ∈ Ĥ is of the form (2.1) and if
∑∞
|k|=2 k

2|ak( f )| ≤ 1, then N̂1/2 consists
of sense-preserving harmonic starlike functions.

The more general form of the above results is given in the following theorem.
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Theorem 2.4. For 0 < α < 1, let f = h+ g satisfy the condition (2.2), where f is of the form
(2.1) and h and g are given by (1.1). If the complex sequences {ck}∞k=2 and {dk}∞k=1 satisfy
the inequality

∣∣d1
∣∣+

∞∑

k=2

k
(∣∣ck

∣∣+
∣∣dk
∣∣)≤ α

2−α
, (2.6)

then the function F =H +G is sense-preserving harmonic starlike in Δ, where

H(z)= h(z) +
∞∑

k=2

ckz
k, G(z)= g(z) +

∞∑

k=1

dkz
k. (2.7)

Proof. For fixed α, 0 < α < 1, set |ak| = λk((1−α)/(k−α)) and |bk| = μk((1−α)/(k+α)).
In view of (2.2), μ1 +

∑∞
k=2(λk + μk) ≤ 1. Since k((1−α)/(k−α)) is decreasing in k and

k((1−α)/(k+α)) is increasing in k and observing that max{2((1−α)/(2−α)),(1−α)} =
2((1−α)/(2−α)), it follows that |b1| +

∑∞
k=2 k(|ak| + |bk|) ≤ 2((1−α)/(2−α)), with

equality when λ2 = 1. Then under the hypotheses of the theorem, we conclude that F =
H +G is sense-preserving harmonic starlike in Δ because

∞∑

k=2

k
∣∣ak + ck

∣∣+
∞∑

k=1

k
∣∣bk +dk

∣∣

≤ ∣∣b1
∣∣+

∞∑

k=2

k
(∣∣ak

∣∣+
∣∣bk
∣∣)+

∣∣d1
∣∣+

∞∑

k=2

k
(∣∣ck

∣∣+
∣∣dk
∣∣)

≤ 2
(

1−α

2−α

)
+

α

2−α
= 1.

(2.8)

�

We note that the result of Theorem 2.4 is sharp when a2 = (1−α)/(2−α) and c2 =
α/2(2−α).

The approach used to prove Theorem 2.4 can be used to prove the following more
general result.

Theorem 2.5. Under the hypotheses of Theorem 2.4, Nδ( f ) consists of functions that are
sense-preserving harmonic starlike of order β, β < α, when δ = 2(α−β)/(2−α)(2−β).

Proof. Since ((k−β)/(1−β))((1−α)/(k−α)) is decreasing in k and ((k+β)/(1−β))((1
−α)/(k+α)) is increasing in k, we can write

∞∑

k=2

(
k−β

1−β

)∣∣ak
∣∣+

∞∑

k=1

(
k+β

1−β

)∣∣bk
∣∣≤

(
2−β

1−β

)(
1−α

2−α

)
(2.9)

with equality only when |a2| = (1−α)/(2−α). Thus,

∞∑

k=2

(
k−β

1−β

)∣∣ck
∣∣+

∞∑

k=1

(
k+β

1−β

)∣∣dk
∣∣≤ 1−

(
2−β

1−β

)(
1−α

2−α

)
. (2.10)
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Using a similar argument, we see that |d1|+
∑∞

k=2 k(|ck|+ |dk|) is maximized when

2−β

1−β

∣∣c2
∣∣= 1−

(
2−β

1−β

)(
1−α

2−α

)
or

∣∣c2
∣∣= α−β

(2−β)(2−α)
. (2.11)

Therefore, the theorem follows since

∣∣d1
∣∣+

∞∑

k=2

k
(∣∣ck

∣∣+
∣∣dk
∣∣)≤ 2(α−β)

(2−β)(2−α)
. (2.12)

�

Note that the result of Theorem 2.5 is sharp for |a2| = (1−α)/(2−α) and |c2| = (α−
β)/(2−β)(2−α).

3. Planar harmonic functions with directional convexity

A domain Ω is said to be convex in the direction eiφ if, for every fixed complex number τ
and real number t, the setΩ∩{τ + teiφ} is either connected or empty. In [1], the following
characterization of harmonic functions with directional convexity was proved.

Lemma 3.1. A harmonic function f = h+ g locally univalent in Δ is a univalent mapping
of Δ onto a domain that is convex in the direction of the real axis if and only if h− g is a
conformal mapping of Δ onto a domain that is convex in the direction of the real axis.

By imposing a simple rotation and forming fφ = h + eiφg, the function fφ obtained
from f = h+ g is convex in the direction eiφ. For the sake of brevity, in this section we
only deal with functions convex in the direction of the real axis. The process discussed
in the above lemma has recently been referred to as shear construction (see [4]) and
provides a useful tool for constructing some planar harmonic functions with directional
convexity. In the following, we use Lemma 3.1 to construct harmonic functions that are
convex in the direction of the real axis.

Example 3.2. For k = ie−it/2[(e−it − ie2it)/8cos3(t/2−π/4)], c =−ie2it, d =−ieit, and 0 <
t < π set

h(z)= kLog
(

1 +dz

1− z

)
+

1
(1 +d)2

((
d− 2c+d2

)
z+
(
2d2 + cd2

)
z2

(1 +dz)2

)
,

g(z)= kLog
(

1 +dz

1− z

)
− 1

(1 +d)2

(
(1 + 2c+d)z+

(
c+ 2cd− 2d2

)
z2

(1 +dz)2

)
.

(3.1)

Setting G= h− g, we obtain G(z)= (z+ cz2)/(1 +dz)2 which is analytic and convex in the
direction of the real axis. This is because the functionK defined byG(z)=e−i(π/2)K(ei(π/2)z)
is proved by Goodman and Saff [11] to be convex in the direction of the imaginary axis.
Therefore, from Lemma 3.1, we conclude that f = h+ g is a planar harmonic function
that is convex in the direction of the real axis.

Another set of examples follows nicely from binomials in the form z − azn for se-
lected n. To set things up, we have the following.
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Lemma 3.3. Let fn(z)= z− azn, where a is real and n is a natural number greater than 1.
Then

(i) f2 is convex in the direction of the real axis whenever |a| ≤ 1/2;
(ii) f3 is convex in the direction of the real axis whenever −1/9≤ a≤ 1/3;

(iii) f4 is convex in the direction of the real axis whenever |a| ≤ 1/8;
(iv) f5 is convex in the direction of the real axis whenever −1/5≤ a≤ 1/25.

Proof. Since fn is univalent inΔ if and only if |a| ≤ 1/n and convex in Δ if and only if |a| ≤
1/n2, we need to consider only the intervals −1/n≤ a <−1/n2 and 1/n2 < a≤ 1/n. �

According to the definition of directional convexity, fn is convex in the direction of the
real axis if the intersection of any line parallel to the real axis with fn(Δ) is a connected
set or empty. Consequently, fn is convex in the direction of the real axis if and only if
� fn(eiθ) for −π < θ ≤ π has at most one relative extremum in the upper half-plane and
at most one relative extremum in the lower half-plane.

(i) For n= 2, we have �{ f2(eiθ)} = sin(θ)− asin(2θ). Let

g2(θ)= ∂
(�{ f2

(
eiθ
)})

∂θ
= cos(θ)− 2acos(2θ)= 2a+ cos(θ)− 4acos2(θ). (3.2)

For a �= 0, we observe that g2(θ) = 0 whenever cos(θ) = (1±√1 + 32a2)/(8a) are valid
roots. We let γ1(a)= (1 +

√
1 + 32a2)/(8a) and γ2(a)= (1−√1 + 32a2)/(8a) for a �= 0.

First, consider γ1(a). For 1/4 < |a| < 1/2, we obtain 8|a| − 1 > 0 and 2|a| − 1 < 0.
Consequently, 16|a|(2|a| − 1) = 32a2 − 16|a| < 0 from which it follows that 1 + 32a2 >
64a2− 16|a|+ 1= (8|a|− 1)2. Therefore, |γ1(a)| > 1 and we conclude that cos(θ) �= γ1(a)
whenever 1/4 < |a| < 1/2 and −π < θ ≤ π. This means that there are no relative extrema
when 1/4 < |a| < 1/2 and cos(θ) = γ1(a). Similarly, this is the case for |a| = 1/2. This is
because cos(θ)= γ1(1/2)= 1=−γ1(−1/2) which yields �{ f2(eiθ)} = g2(θ)= g′2(θ)= 0.

Next, consider γ2(a). From

dγ2

da
=
(
1−√1 + 32a2

)

8a2
√

1 + 32a2
, a �= 0, (3.3)

we see that γ2 is decreasing for both −1/2 < a < −1/4 and 1/4 < a < 1/2. Consequently,
for −1/2 < a <−1/4, we have 0.366≈ (

√
3− 1)/2 < γ2(a)≤ 1/2 and for 1/4 < a < 1/2, we

have −1/2≤ γ2(a) < (1−√3)/2≈−0.366.
Thus, corresponding to each coefficient a satisfying either −1/2 < a < −1/4 or 1/4 <

a < 1/2, there exists θa ∈ (−π,π) that is a critical number for �{ f2(eiθ)}. On the other
hand, the identity sin2(θa)= 1− cos2(θa) insures that any pair of relative extrema will not
both occur in either the upper or lower half-plane. Hence, we conclude that �{ f2(eiθ)}
has at most one relative extremum in the upper half-plane and at most one relative ex-
tremum in the lower half-plane when either −1/2 < a <−1/4 or 1/4 < a < 1/2.
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Combined with the condition |a| ≤ 1/4 required for convexity, we conclude that f2 is
convex in the direction of the real axis whenever |a| ≤ 1/2.

(ii) For n= 3, we have � f3(eiθ)=�{eiθ − ae3iθ} = sin(θ)− asin(3θ) and

g3(θ)= ∂
(�{ f3

(
eiθ
)})

∂θ
= cos(θ)− 3acos(3θ)= (cos(θ)

)(
1 + 9a− 12acos2(θ)

)
. (3.4)

Since (1 + 9a)/(12a)≤ 0 for−1/9≤ a < 0 and (1 + 9a)/(12a) > 1 for 0 < a < 1/3, it follows
that, if−1/9≤ a < 1/3, then the only critical numbers for �{ f3(eiθ)} occur when cos(θ)=
0. Now,

g′3(θ)= dg3

dθ
= ∂2

(�{ f3
(
eiθ
)})

∂θ2
=−sin(θ) + 9asin(3θ) (3.5)

and −1/9 < a < 1/3 yield that g′3(π/2) = −1− 9a < 0 and g′3(−π/2) = 1 + 9a > 0. Hence,
� f3(eiθ) has a relative maximum when θ = π/2 and a relative minimum when θ =−π/2,
while g3(θ) = 4cos(θ)sin2(θ) when a = 1/3 and g′3(0) = g′3(π) = 0 yield that there is no
additional relative extremum. Therefore, f3 is convex in the direction of the real axis for
a satisfying −1/9≤ a≤ 1/3.

(iii) When n= 4, we have � f4(eiθ)=�{eiθ − ae4iθ} = sin(θ)− asin(4θ) and

g4(θ)= ∂
(�{ f4

(
eiθ
)})

∂θ
=−32acos4(θ) + 32acos2(θ) + cos(θ)− 4a. (3.6)

Let

Ha(x)=−32ax4 + 32ax2 + x− 4a, −1≤ x ≤ 1. (3.7)

We will show that, for a satisfying 1/16 < |a| ≤ 1/8, Ha has exactly one zero in [−1,1].
For 1/16 < a≤ 1/8, note that 0≤−32ax4 + 32ax2 ≤ 8a and 32ax2 + x− 4a is nonposi-

tive for

u1(a)= −1−√1 + 29a2

64a
≤ x ≤ −1 +

√
1 + 29a2

64a
= u2(a). (3.8)

Hence, Ha(x)≥ 0 + x− 4a≥ x− 1/2≥ 0 for 1/2≤ x ≤ 1 and Ha(x)≤ 8a+ x− 4a= 4a+
x < 0 for −1 ≤ x < −1/2. Since Ha(x) = −32ax4 + (32ax2 + x− 4a) < 0 for u1(a) ≤ x ≤
u2(a) and u1(a)∈ (−1,−1/2] when 1/16 < a≤ 1/8, we have that Ha(x) < 0 for −1≤ x ≤
u2(a).

For −1/8 ≤ a < −1/16, we have 8a ≤ −32ax4 + 32ax2 ≤ 0 for −1 ≤ x ≤ 1 and that
32ax2 + x− 4a is nonnegative for u2(a)≤ x ≤ u1(a). Therefore, it follows that Ha(x) < 0
for −1≤ x <−1/2 and Ha(x) > 0 for u2(a)≤ x ≤ 1.

Combining these yields that if 1/16 < a ≤ 1/8, then Ha �= 0 for x ∈ [−1,u2(a))
∪ [1/2,1] and has at least one zero for x ∈ [u2(a),1/2) and if −1/8 ≤ a < −1/16, then
Ha �= 0 for x ∈ [−1,−1/2]∪ (u2(a),1] and has at least one zero for x ∈ (−1/2,u2(a)).

Since u2(a) is decreasing from (−1 +
√

3)/4 to 1/4 for 1/16 < a ≤ 1/8 and increasing
from −1/4 to (1−√3)/4 for −1/8 ≤ a < −1/16, it follows that the intervals [u2(a),1/2)
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for 1/16 < a≤ 1/8 and (−1/2,u2(a)] for −1/8≤ a <−1/16 are contained in (0,
√

2/2] and
[−√2/2,0), respectively.

Finally, H′
a(x)= 26ax(1− 2x2) + 1 > 0 for x ∈ [−√2/2,0) when −1/8≤ a <−1/16 and

for x ∈ (0,
√

2/2] when 1/16 < a ≤ 1/8. Consequently, Ha has exactly one zero in [u2(a),
1/2) for 1/16 < a≤ 1/8 and exactly one zero in (−1/2,u2(a)] for−1/8≤ a <−1/16. There-
fore, for each a satisfying 1/16 < |a| ≤ 1/8, Ha has exactly one zero in [−1,1]. It follows
that there is one value of cos(θ) for which g4(θ)= 0.

We conclude that, for each a satisfying 1/16 < |a| ≤ 1/8, g4 has exactly one zero in each
of the upper and lower half-planes. Hence, � f4(eiθ) has at most one relative extremum
in each of the upper and lower half-planes, that is, f4 is convex in the direction of the
real axis for 1/16 < |a| ≤ 1/8. This combined with the convexity for |a| ≤ 1/16 yields the
claimed result.

(iv) For n= 5, we have � f5(eiθ)=�{eiθ − ae5iθ} = sin(θ)− asin(5θ) and

g5(θ)= ∂
(� f5

(
eiθ
))

∂θ
= cos(θ)− 5acos(5θ)

= (cos(θ)
)[

(1− 25a) + 100acos2(θ)− 80acos4(θ)
]
.

(3.9)

We observe that g5(θ) = 0 when cos(θ) = 0 and for a ∈ (−∞,−4/25]∪ (0,∞) whenever
0≤ (25a±√125a2 + 20a)/(20a)≤ 1.

Because f5 is not univalent for |a| > 1/5, we restrict ourselves to the consideration
of γ1(a) = (25a+

√
125a2 + 20a)/(20a) and γ2(a) = (25a−√125a2 + 20a)/(20a) for a ∈

∪(0,1/5].
Observe that γ1(−4/25) = 5/4 and γ2(a) > 5/4 for −1/5 ≤ a ≤ −4/25. Also γ1(a) >

γ1(−1/5) = 1 for −1/5 < a < −4/25 because γ′1(a) = [−a/(2a2
√

125a2 + 20a)] > 0. Since
γ1(−1/5)= 1, we have that g5(θ)= 0 when sin2(θ)= cos2(θ)− 1= 0. This in conjunction
with the fact that g′5(θ)= (dg5)/(dθ)= (∂2(�{ f5(eiθ)}))/(∂θ2)= 0 at the critical numbers
lead to the conclusion that there are no relative extrema.

For −1/5 < a < −1/25, the only critical numbers for �{ f5(eiθ)} are when cos(θ) = 0.
Furthermore,

g′5(θ)= dg5

dθ
= ∂2

(�{ f5
(
eiθ
)})

∂θ2
=−sin(θ) + 25asin(5θ) (3.10)

yields that g′5(π/2) = −1 + 25a < 0 and g′5(−π/2) = 1− 25a > 0. Hence, �{ f5(eiθ)} has a
relative maximum when θ = π/2 and a relative minimum when θ =−π/2. This combined
with the convexity of f5 when |a| ≤ 1/25 yields that f5 is convex in the direction of the
real axis for a satisfying −1/5≤ a≤1/25.

In view of Lemma 3.1, examples like those found in Lemma 3.3 lead naturally to the
construction of examples of planar harmonic functions that are convex in the direction
of the real axis. This is illustrated in the following.
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Theorem 3.4. The following functions are convex in the direction of the real axis.
(i) F(z)= z+ ((1− 2a)/2)z2 + (1/2)z2 +

∑∞
|k|=3((1− 2a)/|k|)φk(z); |a| ≤ 1/2.

(ii) G(z) = ∑2
k=1(1/k)zk + ((1− 3a)/3)z3 +

∑3
k=2(1/k)zk +

∑∞
|k|=4((1− 3a)/|k|)φk(z);

−1/9≤ a≤ 1/3.
(iii) H(z) = ∑3

k=1(1/k)zk + ((1− 4a)/4)z4 +
∑4

k=2(1/k)zk +
∑∞
|k|=5((1− 4a)/|k|)φk(z);

|a| ≤ 1/8.
(iv) J(z) = ∑4

k=1(1/k)zk + ((1− 5a)/5)z5 +
∑5

k=2(1/k)zk +
∑∞
|k|=6((1− 5a)/|k|)φk(z);

−1/5≤ a≤ 1/25.

Proof. (i) Since f2(z) = z− az2 = h2 − g2 given by Lemma 3.3 is convex in the direction
of the real axis for −1/2≤ a≤ 1/2, we want to solve the system of equations consisting of
h′2(z)− g′2(z)= 1− 2az and zh′2(z)− g′2(z)= 0. This yields that

g′2(z)= z− 2az2

1− z
. (3.11)

A little more elementary calculus leads to

h2(z)= z− (1− 2a)
[

Log(1− z) + z
]= z+ (1− 2a)

∞∑

n=2

zn

n
,

g2(z)= az2− (1− 2a)z− (1− 2a)Log(1− z)= 1
2
z2 + (1− 2a)

∞∑

n=3

zn

n
.

(3.12)

In view of Lemma 3.1, we conclude that, for each a satisfying |a| ≤ 1/2, the function
F = h2 + g2 is harmonic and convex in the direction of the real axis.

(ii) For a satisfying −1/9 ≤ a ≤ 1/3, setting f3 = h3 − g3 as given by Lemma 3.3 and
zh′3(z)− g′2(z)= 0 yields that G= h3 + g3 is harmonic and convex in the direction of the
real axis where

h3(z)= z+
3
2
az2− (1− 3a)

[
Log(1− z) + z

]
,

g3(z)= 3
2
az2 + az3− (1− 3a)

[
Log(1− z) + z

]
.

(3.13)

(iii) For a such that |a| ≤ 1/8, setting f4 = h4 − g4 and zh′4(z)− g′4(z) = 0 yields that
H = h4 + g4 is harmonic and convex in the direction of the real axis where

h4(z)= z+ 2az2 +
4
3
az3− (1− 4a)

[
Log(1− z) + z

]
,

g4(z)= 2az2 +
4
3
az3 + az4− (1− 4a)

[
Log(1− z) + z

]
.

(3.14)

(iv) For −1/5≤ a≤ 1/25, set f5 = h5− g5, where

h4(z)= z+
5
2
az2 +

5
3
az3 +

5
4
az4− (1− 5a)

[
Log(1− z) + z

]
,

g4(z)= 5
2
az2 +

5
3
az3 +

5
4
az4 + az5− (1− 5a)

[
Log(1− z) + z

]
.

(3.15)

Then J = h4 + g4 is harmonic and convex in the direction of the real axis. �
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We conclude with an example of harmonic function construction where the coanalytic
part of the function is a modification of its analytic part.

Theorem 3.5. Let the function h given by (1.1) be analytic univalent in Δ and set g(z) =
h(z)− z. Then the function F(z) = h(z) +G(z) = h(z) + g(z) + bbzp is convex in the direc-
tion of the real axis if 0 < bp ≤ 1/p2 and

∑∞
k=2 k|ak| ≤ (p− 1)/2p.

Proof. Note that

∣∣G′(z)
∣∣=

∣∣∣∣∣

∞∑

k=2

kakz
k−1 + pbpz

p−1

∣∣∣∣∣

<
∞∑

k=2

k
∣∣ak
∣∣+

1
p
< 1−

∞∑

k=2

k
∣∣ak
∣∣ <

∣∣h′(z)
∣∣

(3.16)

whenever
∑∞

k=2 k|ak| ≤ (p− 1)/2p. Consequently, F is locally univalent and sense-pre-
serving in Δ. Since the image of |z| = r < 1 under F is a closed curve, the function F
is convex in the direction of the real axis if the imaginary part of F has at most one
maximum and one minimum. �

For z = reiθ , we obtain �{F(z)} = r sinθ− bpr p sin(pθ)= �{Q(z)}, where Q(z)= z−
bpzp. The result now follows because |bp| ≤ 1/p2 implies that Q is convex in Δ.
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