Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2007, Article ID 68017, 7 pages doi:10.1155/2007/68017

Research Article Best Simultaneous Approximation in Orlicz Spaces

M. Khandaqji and Sh. Al-Sharif

Received 18 July 2006; Revised 14 January 2007; Accepted 17 April 2007

Recommended by Ricardo Estrada

Let X be a Banach space and let $L^{\Phi}(I,X)$ denote the space of Orlicz X-valued integrable functions on the unit interval I equipped with the Luxemburg norm. In this paper, we present a distance formula $\operatorname{dist}_{\Phi}(f_1, f_2, L^{\Phi}(I, G))$, where G is a closed subspace of X, and $f_1, f_2 \in L^{\Phi}(I,X)$. Moreover, some related results concerning best simultaneous approximation in $L^{\Phi}(I,X)$ are presented.

Copyright © 2007 M. Khandaqji and Sh. Al-Sharif. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A function $\Phi: (-\infty, \infty) \rightarrow [0, \infty)$ is called an Orlicz function if it satisfies the following conditions:

- (1) Φ is even, continuous, convex, and $\Phi(0) = 0$;
- (2) $\Phi(x) > 0$ for all $x \neq 0$;
- (3) $\lim_{x\to 0} \Phi(x)/x = 0$ and $\lim_{x\to\infty} \Phi(x)/x = \infty$.

We say that a function Φ satisfies the Δ_2 condition if there are constants k > 1 and $x_0 > 0$ such that $\Phi(2x) \le k\Phi(x)$ for $x > x_0$. Examples of Orlicz functions that satisfy the Δ_2 conditions are widely available such as $\Phi(x) = |x|^p$, $1 \le p < \infty$, and $\Phi(x) = (1 + |x|)\log(1 + |x|) - |x|$. In fact, Orlicz functions are considered to be a subclass of Young functions defined in [1].

Let *X* be a Banach space and let (I,μ) be a measure space. For an Orlicz function Φ , let $L^{\Phi}(I,X)$ be the Orlicz-Bochner function space that consists of strongly measurable functions $f: I \to X$ with $\int_{I} \Phi(\alpha || f ||) d\mu(t) < \infty$ for some $\alpha > 0$. It is known that $L^{\Phi}(I,X)$ is a Banach space under the Luxemburg norm

2 International Journal of Mathematics and Mathematical Sciences

$$\|f\|_{\Phi} = \inf\left\{k > 0, \int_{I} \Phi\left(\frac{1}{k}\|f\|\right) d\mu(t) \le 1\right\}.$$
(1.1)

It should be remarked that if $\Phi(x) = |x|^p$, $1 \le p < \infty$, the space $L^{\Phi}(I,X)$ is simply the *p*-Lebesgue Bochner function space $L^p(I,X)$ with

$$\|f\|_{\Phi} = \Phi^{-1} \int_{I} \Phi(\|f\|) d\mu(t) = \left(\int_{I} \|f\|^{p} d\mu(t)\right)^{1/p} = \|f\|_{p}.$$
 (1.2)

On the other hand, if $\Phi(x) = (1 + |x|)\log(1 + |x|) - |x|$, then the space $L^{\Phi}(I,X)$ is the well-known Zygmund space, $L\log L^+$. For excellent monographs on $L^{\Phi}(I,X)$, we refer the readers to [1–3].

For a function $F = (f_1, f_2) \in (L^{\Phi}(I, X))^2$, we define ||F|| by

$$||F|| = ||||f_1(\cdot)|| + ||f_2(\cdot)||||_{\Phi}.$$
(1.3)

In this paper, for a given closed subspace *G* of *X* and $F = (f_1, f_2) \in (L^{\Phi}(I, X))^2$, we show the existence of a pair $G_0 = (g_0, g_0) \in (L^{\Phi}(I, G))^2$ such that

$$||F - G_0|| = \inf_{g \in G} ||F - (g,g)||.$$
(1.4)

If such a function g exists, it is called a best simultaneous approximation of $F = (f_1, f_2)$. The problem of best simultaneous approximation can be viewed as a special case of vector-valued approximation. Recent results in this area are due to Pinkus [4], where he considered the problem when a finite-dimensional subspace is a unicity space. Characterization results for linear problems were given in [5] based on the derivation of an expression for the directional derivative, and these results generalize the earlier results presented in [6]. Results on best simultaneous approximation in general Banach spaces may be found in [7, 8]. Related results on $L^p(I,X)$, $1 \le p < \infty$, are given in [9]. In [9], it is shown that if G is a reflexive subspace of a Banach space X, then $L^p(I,G)$ is simultaneously proximinal in $L^p(I,X)$. If $L^{\Phi}(I,X) = L^1(I,X)$, Abu-Sarhan and Khalil [10] proved that if G is a reflexive subspace of the Banach space X or G is a 1-summand subspace of X, then $L^1(I,G)$ is simultaneously proximinal in $L^1(I,X)$.

It is the aim of this work to prove a distance formula $dist_{\Phi}(f_1, f_2, L^{\Phi}(I, G))$, where $f_1, f_2 \in L^{\Phi}(I, X)$, similar to that of best approximation. This will allow us to generalize some recent results on $L^1(I, X)$ to $L^{\Phi}(I, X)$.

Throughout this paper, X is a Banach space, Φ is an Orlicz function, and $L^{\Phi}(I,X)$ is the Orlicz-Bochner function space equipped with the Luxemburg norm.

2. Distance formula

Let *G* be a closed subspace of *X*. For $x, y \in X$, define

$$dist(x, y, G) = \inf_{z \in G} ||x - z|| + ||y - z||.$$
(2.1)

For $f_1, f_2 \in L^{\Phi}(I, X)$, we define dist_{Φ} $(f_1, f_2, L^{\Phi}(I, G))$ by

$$dist_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G)) = \inf_{g \in L^{\Phi}(I, G)} ||(f_{1}, f_{2}) - (g, g)|| = \inf_{g \in L^{\Phi}(I, G)} ||||f_{1}(\cdot) - g(\cdot)|| + ||f_{2}(\cdot) - g(\cdot)||||_{\Phi}.$$
(2.2)

Our main result is the following.

THEOREM 2.1. Let G be a subspace of the Banach space X and let Φ be an Orlicz function that satisfies the Δ_2 condition. If $f_1, f_2 \in L^{\Phi}(I, X)$, then the function dist $(f_1(\cdot), f_2(\cdot), G)$ belongs to $L^{\Phi}(I)$ and

$$\|\operatorname{dist}(f_{1}(\cdot), f_{2}(\cdot), G)\|_{\Phi} = \operatorname{dist}_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G)).$$
(2.3)

Proof. Let $f_1, f_2 \in L^{\Phi}(I, X)$. Then there exist two sequences $(f_{n,1})$, $(f_{n,2})$ of simple functions in $L^{\Phi}(I, X)$ such that

$$||f_{n,1}(t) - f_1(t)|| \longrightarrow 0, \quad ||f_{n,2}(t) - f_2(t)|| \longrightarrow 0, \quad \text{as } n \longrightarrow \infty$$
 (2.4)

for almost all *t* in *I*. The continuity of dist(x, y, G) implies that

$$\left|\operatorname{dist}\left(f_{n,1}(t), f_{n,2}(t), G\right) - \operatorname{dist}\left(f_1(t), f_2(t), G\right)\right| \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$$
(2.5)

Set $H_n(t) = \text{dist}(f_{n,1}(t), f_{n,2}(t), G)$. Then each H_n is a measurable function. Thus $\text{dist}(f_1(\cdot), f_2(\cdot), G)$ is measurable and

dist
$$(f_1(t), f_2(t), G) \le ||f_1(t) - z|| + ||f_2(t) - z||$$
 (2.6)

for all *z* in *G*. Therefore,

dist
$$(f_1(t), f_2(t), G) \le ||f_1(t) - g(t)|| + ||f_2(t) - g(t)||$$
 (2.7)

for all $g \in L^{\Phi}(I, G)$. Thus

$$\left\| \operatorname{dist} \left(f_1(\cdot), f_2(\cdot), G \right) \right\|_{\Phi} \le \left\| \left\| f_1(t) - g(t) \right\| + \left\| f_2(t) - g(t) \right\| \right\|_{\Phi}$$
(2.8)

for all $g \in L^{\Phi}(I, G)$. Hence dist $(f_1(\cdot), f_2(\cdot), G) \in L^{\Phi}(I)$ and

$$\left\|\operatorname{dist}\left(f_{1}(\cdot), f_{2}(\cdot), G\right)\right\|_{\Phi} \leq \operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right).$$

$$(2.9)$$

Fix $\epsilon > 0$. Since the set of simple functions are dense in $L^{\Phi}(I,X)$, there exist simple functions f_i^* in $L^{\Phi}(I,X)$ such that $||f_i - f_i^*||_{\Phi} \le \epsilon/6$ for i = 1, 2. Assume that $f_i^*(t) = \sum_{k=1}^n x_k^i \chi_{Ak}(t)$ with A_k 's are measurable sets, $x_k^i \in X$, k = 1, 2, ..., n, $i = 1, 2, A_k \cap A_j = \phi$, $k \ne j$, and $\bigcup_{k=1}^n A_k = I$. We can assume that $\mu(A_k) > 0$ and $\Phi(1) \le 1$. For each k = 1, 2, ..., n, let $y_k \in G$ be such that

$$||x_k^1 - y_k|| + ||x_k^2 - y_k|| \le \operatorname{dist}(x_k^1, x_k^2, G) + \frac{\epsilon}{3}.$$
(2.10)

4 International Journal of Mathematics and Mathematical Sciences

Set $g(t) = \sum_{k=1}^{n} y_k \chi_{Ak}(t)$ and $F(t) = \text{dist}(f_1(t), f_2(t), G) + ||f_1(t) - f_1^*(t)|| + ||f_2(t) - f_2^*(t)|| + \frac{\epsilon}{3}.$ (2.11)

Then

$$\begin{split} \int_{I} \Phi \bigg(\frac{||f_{1}^{*}(t) - g(t)|| + ||f_{2}^{*}(t) - g(t)||}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \sum_{k=1}^{n} \int_{A_{k}} \Phi \bigg(\frac{||f_{1}^{*}(t) - g(t)|| + ||f_{2}^{*}(t) - g(t)||}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \sum_{k=1}^{n} \int_{A_{k}} \Phi \bigg(\frac{||x_{k}^{1} - y_{k}|| + ||x_{k}^{2} - y_{k}||}{||F||_{\Phi}} \bigg) d\mu(t) \\ &< \sum_{k=1}^{n} \int_{A_{k}} \Phi \bigg(\frac{\operatorname{dist}(x_{k}^{1}, x_{k}^{2}, G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{\operatorname{dist}(f_{1}^{*}(t), f_{2}^{*}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &\leq \int_{I} \Phi \bigg(\frac{||f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{||f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{||f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{||f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{||f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{|f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{|f_{1}(t) - f_{1}^{*}(t)|| + ||f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{|f_{1}(t) - f_{1}^{*}(t)|| + |f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{|f_{1}(t) - f_{1}^{*}(t)|| + |f_{1}(t) - f_{1}^{*}(t)|| + |f_{2}(t) - f_{2}^{*}(t)|| + \operatorname{dist}(f_{1}(t), f_{2}(t), G) + \epsilon/3}{||F||_{\Phi}} \bigg) d\mu(t) \\ &= \int_{I} \Phi \bigg(\frac{|f_{1}(t) - f_{1}(t)|| + |f_{2}(t) - f_{2}(t)|| + |f_{2}(t) - f_{2}(t)|| + |f_{2}(t) - f_{2}(t)|| + |f_{2}(t) - f_{2}(t) + |f_{2}(t) + |f_{2}(t) + |f_{2}(t) - f_{2}(t) + |f_{2}(t) - f_{2}(t) + |$$

Consequently,

$$||||f_{1}^{*}(\cdot) - g(\cdot)|| + ||f_{2}^{*}(\cdot) - g(\cdot)||||_{\Phi} \leq \left| \left| ||f_{1}(\cdot) - f_{1}^{*}(\cdot)|| + ||f_{2}(\cdot) - f_{2}^{*}(\cdot)|| \right| + \operatorname{dist}(f_{1}(\cdot), f_{2}(\cdot), G) + \frac{\epsilon}{3} \right|_{\Phi}.$$
(2.13)

Notice that

$$dist_{\Phi} (f_{1}, f_{2}, L^{\Phi}(I, G)) \leq dist_{\Phi} (f_{1}^{*}, f_{2}^{*}, L^{\Phi}(I, G)) + ||f_{1} - f_{1}^{*}||_{\Phi} + ||f_{2} - f_{2}^{*}||_{\Phi}$$

$$< \frac{\epsilon}{3} + |||f_{1}^{*}(\cdot) - g(\cdot)|| + ||f_{2}^{*}(\cdot) - g(\cdot)||||_{\Phi}$$

$$\leq \frac{\epsilon}{3} + \left\| \frac{dist(f_{1}(\cdot), f_{2}(\cdot), G) + ||f_{1}(\cdot) - f_{1}^{*}(\cdot)|||}{+||f_{2}(\cdot) - f_{2}^{*}(\cdot)|| + \frac{\epsilon}{3}} \right\|_{\Phi}$$
(2.14)
$$\leq \frac{2\epsilon}{3} + ||dist(f_{1}(\cdot), f_{2}(\cdot), G)||_{\Phi}$$

$$+ ||f_{1}(\cdot) - f_{1}^{*}(\cdot)||_{\Phi} + ||f_{2}(\cdot) - f_{2}^{*}(\cdot)||_{\Phi}$$

$$\leq \epsilon + ||dist(f_{1}(\cdot), f_{2}(\cdot), G)||_{\Phi},$$

which (since ϵ is arbitrary) implies that

$$\operatorname{dist}_{\Phi}\left(f_{1}, f_{2}, L^{\Phi}(I, G)\right) \leq \left\|\operatorname{dist}\left(f_{1}(\cdot), f_{2}(\cdot), G\right)\right\|_{\Phi}.$$
(2.15)

Hence by (2.9) and (2.15) the proof is complete.

A direct consequence of Theorem 2.1 is the following result.

THEOREM 2.2. Let G be a closed subspace of the Banach space X and let Φ be an Orlicz function that satisfies the Δ_2 condition. For $g \in L^{\Phi}(I,G)$ to be a best simultaneous approximation of a pair of elements (f_1, f_2) in $L^{\Phi}(I,G)$, it is necessary and sufficient that g(t) is a best simultaneous approximation of $(f_1(t), f_2(t))$ in G for almost all $t \in I$.

3. Proximinality of $L^{\Phi}(I,G)$ in $L^{\Phi}(I,X)$

A closed subspace *G* of *X* is called 1-summand in *X* if there exists a closed subspace *Y* such that $X = G \bigoplus_{i} Y$, that is, any element $x \in X$ can be written as $x = g + y, g \in G, y \in Y$, and ||x|| = ||g|| + ||y||. It is known that a 1-summand subspace *G* of *X* is proximinal in *X*, and $L^{1}(I, G)$ is proximinal in $L^{1}(I, X)$, [11].

Our first result in this section is the following.

THEOREM 3.1. If G is simultaneously proximinal in X, then every pair of simple functions admits a best simultaneous approximation in $L^{\Phi}(I,G)$.

Proof. Let f_1 , f_2 be two simple functions in $L^{\Phi}(I, X)$. Then f_1 , f_2 can be written as $f_1(s) = \sum_{k=1}^{n} u_k^1 \chi_{I_k}(s)$, $f_2(s) = \sum_{k=1}^{n} u_k^2 \chi_{I_k}(s)$, where I_k 's are disjoint measurable subsets of I satisfying $\bigcup_{k=1}^{n} I_k = I$, and χ_{I_k} is the characteristic function of I_k . Since f_1 and f_2 represent classes of functions, we may assume that $\mu(I_k) > 0$ for each $1 \le k \le n$. By assumption, we know that for each $1 \le k \le n$ there exists a best simultaneous approximation w_k in G of the pair of elements $(u_k^1, u_k^2) \in X^2$ such that

dist
$$(u_k^1, u_k^2, G) = ||u_k^1 - w_k|| + ||u_k^2 - w_k||.$$
 (3.1)

Set $g = \sum_{k=1}^{n} w_k \chi_{I_k}(s)$. Then, for any $\alpha > 0$ and $h \in L^{\Phi}(I, G)$, we obtain that

$$\begin{split} \int_{I} \Phi\bigg(\frac{||f_{1}(t) - h(t)|| + ||f_{2}(t) - h(t)||}{\alpha}\bigg) d\mu(t) &= \sum_{k=1}^{n} \int_{I_{k}} \Phi\bigg(\frac{||u_{k}^{1} - h(t)|| + ||u_{k}^{2} - h(t)||}{\alpha}\bigg) d\mu(t) \\ &\geq \sum_{k=1}^{n} \int_{I_{k}} \Phi\bigg(\frac{||u_{k}^{1} - w_{k}|| + ||u_{k}^{2} - w_{k}||}{\alpha}\bigg) d\mu(t) \\ &= \int_{I} \Phi\bigg(\frac{||f_{1}(t) - g(t)|| + ||f_{2}(t) - g(t)||}{\alpha}\bigg) d\mu(t). \end{split}$$

$$(3.2)$$

Taking the infimum over all such α 's, we have that

$$\left|\left|\left|\left|f_{1}(\cdot)-h(\cdot)\right|\right|+\left|\left|f_{2}(t)-h(\cdot)\right|\right|\right|\right|_{\Phi} \ge \left|\left|\left|\left|f_{1}(\cdot)-g(\cdot)\right|\right|+\left|\left|f_{2}(t)-g(\cdot)\right|\right|\right|\right|_{\Phi}$$
(3.3)

$$\square$$

for all $h \in L^{\Phi}(I, G)$. Hence

$$dist_{\Phi}(f_{1}, f_{2}, L^{\Phi}(I, G)) = || ||f_{1}(\cdot) - g(\cdot)|| + ||f_{2}(t) - g(\cdot)|| ||_{\Phi}$$

$$\geq || ||f_{1}(\cdot) - h(\cdot)|| + ||f_{2}(\cdot) - h(\cdot)|| ||_{\Phi}.$$
(3.4)

Now we prove the following 2-dimensional analogous of [12, Theorem 4].

THEOREM 3.2. Let G be a closed subspace of the Banach space X and let Φ be an Orlicz function that satisfies the Δ_2 condition. If $L^1(I,G)$ is simultaneously proximinal in $L^1(I,X)$, then $L^{\Phi}(I,G)$ is simultaneously proximinal in $L^{\Phi}(I,X)$.

Proof. Let $f_1, f_2 \in L^{\Phi}(I, X)$. Then $f_1, f_2 \in L^1(I, X)$; see [13]. By assumption, there exists $g \in L^1(I, G)$ such that

$$\left|\left|\left|\left|f_{1}(\cdot) - g(\cdot)\right|\right| + \left|\left|f_{2}(\cdot) - g(\cdot)\right|\right|\right|\right|_{1} \le \left|\left|\left|\left|f_{1}(\cdot) - h(\cdot)\right|\right| + \left|\left|f_{2}(\cdot) - h(\cdot)\right|\right|\right|\right|_{1}$$
(3.5)

for every $h \in L^1(I, G)$. By Theorem 2.2 [10],

$$||f_1(t) - g(t)|| + ||f_2(t) - g(t)|| \le ||f_1(t) - h(t)|| + ||f_2(t) - h(t)||$$
(3.6)

for almost all *t* in *I*. But $0 \in G$. Thus

$$||f_1(t) - g(t)|| + ||f_2(t) - g(t)|| \le ||f_1(t)|| + ||f_2(t)||$$
(3.7)

or

$$||g(t)|| \le ||f_1(t)|| + ||f_2(t)||.$$
(3.8)

 \square

Hence $g \in L^{\Phi}(I, G)$ and

$$\left\| \left\| f_{1}(\cdot) - g(\cdot) \right\| + \left\| f_{2}(\cdot) - g(\cdot) \right\| \right\|_{\Phi} \le \left\| \left\| f_{1}(\cdot) - h(\cdot) \right\| + \left\| f_{2}(\cdot) - h(\cdot) \right\| \right\|_{\Phi}$$
(3.9)

for all $h \in L^1(I, G)$.

THEOREM 3.3. Let G be a 1-summand subspace of the Banach space X. Then $L^{\Phi}(I,G)$ is simultaneously proximinal in $L^{\Phi}(I,X)$.

The proof follows from Theorem 3.2 and [10, Theorem 2.4].

THEOREM 3.4. Let G be a reflexive subspace of the Banach space X. Then $L^{\Phi}(I,G)$ is simultaneously proximinal in $L^{\Phi}(I,X)$.

The proof follows from Theorem 3.2 and [10, Theorem 3.2].

References

- [1] J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983.
- [2] M. A. Krasnosel'skii and Y. B. Rutickii, *Convex Functions and Orlicz Spaces*, P. Noordhoff, Groningen, The Netherlands, 1961.

- [3] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, vol. 146 of *Monographs and Textbooks in Pure and Applied Mathematics*, Marcel Dekker, New York, NY, USA, 1991.
- [4] A. Pinkus, "Uniqueness in vector-valued approximation," *Journal of Approximation Theory*, vol. 73, no. 1, pp. 17–92, 1993.
- [5] G. A. Watson, "A characterization of best simultaneous approximations," *Journal of Approximation Theory*, vol. 75, no. 2, pp. 175–182, 1993.
- [6] S. Tanimoto, "On best simultaneous approximation," *Mathematica Japonica*, vol. 48, no. 2, pp. 275–279, 1998.
- [7] P. D. Milman, "On best simultaneous approximation in normed linear spaces," *Journal of Approximation Theory*, vol. 20, no. 2, pp. 223–238, 1977.
- [8] B. N. Sahney and S. P. Singh, "On best simultaneous approximation in Banach spaces," *Journal of Approximation Theory*, vol. 35, no. 3, pp. 222–224, 1982.
- [9] F. B. Saidi, D. Hussein, and R. Khalil, "Best simultaneous approximation in L^p(I,E)," Journal of Approximation Theory, vol. 116, no. 2, pp. 369–379, 2002.
- [10] I. Abu-Sarhan and R. Khalil, "Best simultaneous approximation in function spaces," to appear in *Journal of Nonlinear Functional Analysis and Differential Equations*.
- [11] R. Khalil, "Best approximation in L^p(I, X)," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 94, no. 2, pp. 277–279, 1983.
- [12] M. Khandaqji, R. Khalil, and D. Hussein, "Proximinality in Orlicz-Bochner function spaces," *Tamkang Journal of Mathematics*, vol. 34, no. 1, pp. 71–75, 2003.
- [13] M. Khandaqji, *Certain properties of Orlicz Bochner function spaces*, Ph.D. thesis, Jordan University, Amman, Jordan, 2000.

M. Khandaqji: Mathematics Department, Hashimia University, P.O. Box 150459, 13115 Zarqa, Jordan *Email address*: mkhan@hu.edu.jo

Sh. Al-Sharif: Mathematics Department, Yarmouk University, 21163 Irbed, Jordan *Email address*: sharifa@yu.edu.jo