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We prove two existence theorems for the integrodifferential equation of mixed type:
x′(t) = f (t,x(t),

∫ t
0k1(t,s)g(s,x(s))ds,

∫ a
0k2(t,s)h(s,x(s))ds), x(0) = x0, where in the first

part of this paper f , g, h, x are functions with values in a Banach space E and inte-
grals are taken in the sense of Henstock-Kurzweil (HK). In the second part f , g, h, x are
weakly-weakly sequentially continuous functions and integrals are taken in the sense of
Henstock-Kurzweil-Pettis (HKP) integral. Additionally, the functions f , g, h, x satisfy
some conditions expressed in terms of the measure of noncompactness or the measure of
weak noncompactness.

Copyright © 2007 A. Sikorska-Nowak and G. Nowak. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The Henstock-Kurzweil integral encompasses the Newton, Riemann, and Lebesgue in-
tegrals [1–3]. A particular feature of this integral is that integrals of highly oscillating
functions such as F′(t), where F(t) = t2 sin t−2 on (0,1] and F(0) = 0, can be defined.
This integral was introduced by Henstock and Kurzweil independently in 1957–1958
and has since proved useful in the study of ordinary differential equations [4–7]. In
the paper, [8] Cao defined the Henstock integral in a Banach space, which is a gen-
eralization of the Bochner integral. The Pettis integral is also a generalization of the
Bochner integral [9]. This notion is strictly relative to weak topologies in Banach
spaces.

In [10], Cichon et al.generalized both concepts of integral introducing the Henstock-
Kurzweil-Pettis integral.
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The paper is divided into two main sections. In Section 1, we prove some existence
theorem for the problem

x′(t)= f
(
t,x(t),

∫ t

0
k1(t,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(t,s)h

(
s,x(s)

)
ds
)

,

x(0)= x0, x0 ∈ E, t ∈ Ia = [0,a], a∈R+,
(1.1)

where E is a Banach space with the norm ‖ · ‖, f , g, h, x are functions with values in a
Banach space E, kj , j = 1,2 are real-valued functions, and integrals are taken in the sense
of HL.

In Section 2, we prove some existence theorem for the problem (1.1), where f , g, h,
x are functions with values in a Banach space E, weakly-weakly sequentially continuous,
and kj , j = 1,2 are real-valued functions. The integrals are taken in the sense of Henstock-
Kurzweil-Pettis.

We should mention that an extensive work has been done in the study of the solutions
of particular cases of (1.1) (see, e.g., [11–18]).

Our fundamental tools are the Kuratowski measure of noncompactness [19] and the
measure of weak noncompactness developed by De Blasi [20].

For any bounded subset A of E, we denote by α(A) the Kuratowski measure of noncom-
pactness ofA, that is, the infimum of all ε > 0, such that there exists a finite covering of A
by sets of diameter smaller than ε.

The De Blasi measure of weak noncompactness β(A) is defined by

β(A)= inf
{
t > 0 : there exists C ∈ Kω such that A⊂ C+ tB0

}
, (1.2)

where Kω is the set of weakly compact subsets of E and B0 is the norm unit ball in E.
The properties of the measure of noncompactness α(A) are as follows:

(i) if A⊂ B then α(A)≤ α(B);
(ii) α(A)= α(A), where A denotes the closure of A;

(iii) α(A)= 0 if and only if A is relatively compact;
(iv) α(A∪B)=max{α(A),α(B)};
(v) α(λA)= |λ|α(A), (λ∈R);

(vi) α(A+B)≤ α(A) +α(B);
(vii) α(conv(A))= α(A), where conv(A) denotes the convex extension of A.
The properties of the weak measure of noncompactness β are analogous to the prop-

erties of the measure of noncompactness α(A) (see [21]).
We now gather some well-known definitions and results from the literature, which we

will use throughout this paper.

Definition 1.1. A function f : Ia × E1 → E2, where E1 and E2 are Banach spaces, is L1-
Carathéodory, if the following conditions hold:

(i) the map s 	→ f (s,x) is measurable for all x ∈ E1;
(ii) the map x 	→ f (s,x) is continuous for almost all s∈ Ia.
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Definition 1.2. A function f : Ia → E is said to be weakly continuous if it is continuous
from Ia to E endowed with its weak topology. A function g : E → E1, where E and E1

are Banach spaces, is said to be weakly-weakly sequentially continuous if for each weakly
convergent sequence (xn) in E, the sequence (g(xn)) is weakly convergent in E1.

When the sequence xn tends weakly to x0 in E, we will write xn
ω−→x0.

Definition 1.3 [1, 3]. A family � of functions F is said to be uniformly absolutely contin-
uous in the restricted sense on A ⊆ [a,b] or in short uniformly AC∗(A) if, for every ε > 0,
there exists η > 0 such that for every F in � and for every finite or infinite sequence of
nonoverlapping intervals {[ai,bi]} with ai,bi ∈ A and satisfying

∑
i |bi− ai| < η, we have

∑
i ω(F, [ai,bi]) < ε, where ω denotes the oscillation of F over [ai,bi] (i.e., ω(F, [ai,bi])=

sup{|F(r)−F(s)| : r,s∈ [ai,bi]}).
A family � of functions F is said to be uniformly generalized absolutely continuous in

the restricted sense on [a,b] or uniformly ACG∗ if [a,b] is the union of a sequence of closed
sets Ai such that on each Ai the family � is uniformly AC∗(Ai).

In the proof of the main theorem in Section 1, we will apply the following fixed point
theorem.

Theorem 1.4 [22]. Let D be a closed convex subset of E, and let F be a continuous map
from D into itself. If for some x ∈D the implication that

V = conv
({x}∪F(V)

)=⇒V is relatively compact (1.3)

holds for every countable subset V of D, then F has a fixed point.

In Section 2 we will apply the following theorem.

Theorem 1.5 [23]. Let X be a metrizable locally convex topological vector space. Let D be
a closed convex subset of X , and let F be a weakly-weakly sequentially continuous map from
D into itself. If for some x ∈D the implication that

V = conv
({x}∪F(V)

)=⇒V is relatively weakly compact (1.4)

holds for every subset V of D, then F has a fixed point.

2. Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals in Banach spaces

In this part, we present the definitions of Henstock-Kurzweil and Henstock-Kurzweil-
Pettis integrals and properties of these integrals which we will use in the proof of the
main theorems.

For more details, you can see [1, 3, 24].

Definition 2.1. Let δ be a positive function defined on the interval [a,b]. A tagged interval
(x, [c,d]) consists of an interval [c,d] ⊂ [a,b] and a point x ∈ [c,d]. The tagged interval
(x, [c,d]) is subordinate to δ if [c,d]⊂ [x− δ(x),x+ δ(x)].
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The letter P will be used to denote finite collections of nonoverlapping tagged intervals.
Let

P = {si,
[
ci,di

]
: 1≤ i≤ n

}
, n∈N, (2.1)

be such a collection in [a,b]. Then,
(i) the points {si : 1≤ i≤ n} are called the tags of P;

(ii) the intervals {[ci,di] : 1≤ i≤ n} are called the intervals of P;
(iii) if (si, [ci,di]) is subordinate to δ for each i, then we write P is sub δ;
(iv) if [a,b]=⋃n

i=1 [ci,di], then P is called a tagged partition of [a,b];
(v) if P is a tagged partition of [a,b] and if P is sub δ, then we write P is sub δ on

[a,b];
(vi) if f : [a,b]→ E, then f (P)=∑n

i=1 f (si)(di− ci);
(vii) if F is defined on the subintervals of [a,b], then

F(P)=
n∑

i=1

F
([
ci,di

])=
n∑

i=1

(
F
(
di
)−F

(
ci
))
. (2.2)

If F : [a,b] → E, then F can be treated as a function of intervals by defining
F([d,c]) = F(d)− F(c). For such a function, F(P) = F(b)− F(a) if P is a tagged
partition of [a,b].

Definition 2.2 [1, 3]. A function f : [a,b]→ R is Henstock-Kurzweil integrable on [a,b]
if there exists a real number L with the following property: for each ε > 0, there exists a
positive function δ on [a,b] such that | f (P)−L| < ε whenever P is a tagged partition of
[a,b] that is subordinate to δ.

The function f is Henstock-Kurzweil integrable on a measurable set A ⊂ [a,b] if f χA
is Henstock-Kurzweil integrable on [a,b]. The number L in Definition 2.2 is called the

Henstock-Kurzweil integral of f and we will denote it by (HK)
∫ b
a f (t)dt.

Definition 2.3 [8]. A function f : [a,b]→ E is Henstock-Kurzweil integrable on [a,b] ( f ∈
HK([a,b],E)) if there exists a vector z ∈ E with the following property: for every ε >
0, there exists a positive function δ on [a,b] such that ‖ f (P)− z‖ < ε whenever P is a
tagged partition of [a,b] sub δ. The function f is Henstock-Kurzweil integrable on a
measurable set A⊂ [a,b] if f χA is Henstock-Kurzweil integrable on [a,b]. The vector z is
the Henstock-Kurzweil integral of f .

We remark that this definition includes the generalized Riemann integral defined by
Gordon [25]. In a special case, when δ is a constant function, we get the Riemann integral.

Definition 2.4 [8]. A function f : [a,b]→ E is HL integrable on [a,b] ( f ∈HL([a,b],E))
if there exists a function F : [a,b]→ E, defined on the subintervals of [a,b], satisfying the
following property: given ε > 0, there exists a positive function δ on [a,b] such that if
P = {si, [ci,di] : 1≤ i≤ n} is a tagged partition of [a,b] sub δ, then

n∑

i=1

∥
∥ f
(
si
)(
di− ci

)−F
([
ci,di

])∥∥ < ε. (2.3)
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Remark 2.5. We note by triangle inequality that

f ∈HL
(
[a,b],E

)
implies f ∈HK

(
[a,b],E

)
. (2.4)

In general, the converse is not true. For real-valued functions, the two integrals are equiv-
alent.

Definition 2.6 [9]. The function f : Ia→ E is Pettis integrable (P integrable for short) if
(i) ∀x∗∈E∗ x∗ f is Lebesgue integrable on Ia,

(ii) ∀ A⊂Ia,
A-measurable

∃g∈E∀x∗∈E∗ x∗g = (L)
∫
A x

∗ f (s)ds,

where (L)
∫
Adenotes the Lebesgue integral over A.

Now, we present a definition of an integral which is a generalization for both Pettis
and Henstock-Kurzweil integrals.

Definition 2.7 [26]. The function f : Ia → E is Henstock-Kurzweil-Pettis integrable (HKP
integrable for short) if there exists a function g : Ia→ E with the following properties:

(i) ∀x∗∈E∗ x∗ f is Henstock-Kurzweil integrable on Ia;
(ii) ∀t∈Ia∀x∗∈E∗ x∗g(t)= (HK)

∫ t
0 x

∗ f (s)ds.
This function g will be called a primitive of f and by g(a)= ∫ a0 f (t)dt we will denote the
Henstock-Kurzweil-Pettis integral of f on the interval Ia.

Theorem 2.8 (Mean value theorem). If the function f : Ia→ E is HK (or HKP) integrable,
then

∫

I
f (t)dt ∈ |I| · conv f (I), (2.5)

where I is an arbitrary subinterval of Ia and |I| is the length of I .

If the integral is taken in the sense of HL, then the proof is similar to that of [27,
Lemma 2.1.3]. The proof for HKP integral is presented in [24].

Theorem 2.9 [8]. Let f : [a,b]→ E be HL integrable on [a,b] and let F(x)= ∫ xa f (t)dt for
each x ∈ [a,b]. Then

(i) F is continuous on [a,b],
(ii) F is differentiable almost everywhere on [a,b] and F′ = f ,

(iii) f is measurable.

Theorem 2.10 [28, Theorem 5]. Suppose that fn : [a,b]→ E, n= 1,2, . . . , is a sequence of
HL integrable functions satisfying the following conditions:

(i) fn(x)→ f (x) almost everywhere in [a,b], as n→∞;
(ii) the set of primitives of fn,{Fn(x)}, where Fn(x) = ∫ xa fn(s)ds, is uniformly ACG∗

in n;
(iii) the primitives Fn are equicontinuous on [a,b].

Then, f is HL integrable on [a,b] and
∫ x
a fn→

∫ x
a f uniformly on [a,b], as n→∞.

We remark that this theorem for Denjoy-Bochner integrals is mentioned in [28] with-
out proof. It is also true for HL integrals. The proof is similar to that of [3, Theorem 7.6]
(see also [29, Theorem 1.8]).
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Theorem 2.11 [26]. Let f : Ia→ E and assume that fn : Ia→ E, n∈N , are HKP integrable
on Ia. For each n∈N , let Fn be a primitive of fn. If it is assumed that

(i) ∀x∗ ∈ E∗x∗( fn(t))→ x∗( f (t)) a.e. on Ia,
(ii) for each x∗ ∈ E∗, the family G= (x∗Fn : n= 1,2, . . .) is uniformly ACG∗ on Ia (i.e.,

weakly uniformly ACG∗ on Ia),
(iii) for each x∗ ∈ E∗, the set G is equicontinuous on Ia,

then f is HKP integrable on Ia and
∫ t

0 fn(s)ds tends weakly in E to
∫ t

0 f (s)ds for each t ∈ Ia.

3. An existence result for integrodifferential equations

It is well known that Henstock’s lemma plays an important role in the theory of the
Henstock-Kurzweil integral in the real-valued case. On the other hand, in connection
with the Henstock-Kurzweil integral for Banach-space-valued functions, Cao pointed out
in [8] that Henstock’s lemma holds for the case of finite dimensions, but it does not always
hold in infinite dimensions.

In this section, we will use the HL integral which satisfies Henstock’s lemma and which
is more general than the Bochner integral.

Our fundamental tool is a Kuratowski measure of noncompactness α. It is necessary
to remark that the following lemma is true.

Lemma 3.1 [30]. Let H ⊂ C(Ia,E) be a family of strongly equicontinuous functions. Let,
for t ∈ Ia, H(t) = {h(t) ∈ E, h ∈ H}. Then, α(H(Ia)) = supt∈Ia α(H(t)) and the function
t 	→ α(H(t)) is continuous.

Observe that the problem (1.1) is equivalent to the integral equation [31]:

x(t)= x0 +
∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz for t ∈ Ia.

(3.1)

To obtain the existence result, it is necessary to define a notion of a solution.

Definition 3.2. An ACG∗ function x : Ia→ E is said to be a solution of the problem (1.1)
if it satisfies the following conditions:

(i) x(0)= x0;
(ii) x′(t)= f (t,x(t),

∫ t
0 k1(t,s)g(s,x(s))ds,

∫ a
0 k2(t,s)h(s,x(s))ds) for a.e. t ∈ Ia.

Definition 3.3. A continuous function x : Ia → E is said to be a solution of the problem
(3.1) if x(t)= x0 +

∫ t
0 f (z,x(z),

∫ z
0 k1(z,s)g(s,x(s))ds,

∫ a
0 k2(z,s)h(s,x(s))ds)dz for every t ∈

Ia.
For x ∈ C(Ia,E), we define the norm of x by: ‖x‖C = sup{‖x(t)‖, t ∈ Ia}.
Let B(p) = {x ∈ C(Ia,E) : ‖x‖C ≤ ‖x0‖C + p}, p > 0. Note that these sets are closed

and convex.
Define the operator F : C(Ia,E)→ C(Ia,E) by

F(x)(t)= x0 +
∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz,

t ∈ Ia, x ∈ B(p),
(3.2)
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where integrals are in the sense of HL.
Let

Γ(p)= {F(x)∈ C
(
Ia,E

)
: x ∈ B(p)

}
for each p > 0. (3.3)

Let r(K) be the spectral radius of the integral operator K defined by

K(u)(t)=
∫ c

0
k(t,s)u(s)ds, (3.4)

where the kernel k ∈ C(Ia× Ia;R), u∈ C(Ia;E) and c denotes any fixed value in Ia, a > 0.

Theorem 3.4. Assume that for each ACG∗ function x : Ia → E, functions g(·,x(·)),

f (·,x(·)),
∫ (·)

0 (k1(·,s)g(s,x(s)))ds,
∫ a

0 k2(·,s)h(s,x(s))ds) are HL integrable, f , g, and h
are L1-Carathéodory functions. Let k1,k2 : Ia × Ia → R+ be measurable functions such that
k1(t,·), k2(t,·) are continuous.

Assume that there exist p0 > 0 and positive constants L, L1, and d1, such that

α
(
g(I ,X)

)≤ Lα(X) for I ⊂ Ia, for every X ⊂ B
(
p0
)
,

α
(
h(I ,X)

)≤ L1α(X) for I ⊂ Ia, for every X ⊂ B
(
p0
)
,

α
(
f (t,A,C,D)

)≤ d1 ·max
{
α(A),α(C),α(D)

}
for every A,C,D ⊂ B

(
p0
)
, t ∈ Ia,

(3.5)

where g(I ,X)={g(t,x(t)) : t∈ I , x∈X}, h(I ,X)={h(t,x(t)) : t∈ I , x∈X}, f (t,A,C,D)=
{ f (t,x1,x2,x3) : (x1,x2,x3) ∈ A×C ×D} and α denotes the Kuratowski measure of non-
compactness.

Moreover, let Γ(p0) be equicontinuous, equibounded, and uniformly ACG∗ on Ia. Then,
there exists at least one solution of the problem (1.1) on Ic, for some 0 < c ≤ a, such that
d1 · c ·L · r(K) < 1 and d1 · c < 1.

Proof. By equicontinuity and equiboundedness of Γ(p0) there exists a number c, 0 < c ≤ a
such that

∥
∥
∥
∥

∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∥
∥
∥
∥≤ p0,

where p0 > 0, x ∈ B
(
p0
)
, t ∈ Ic.

(3.6)

By our assumptions the operator F is well defined and maps B(p0) into B(p0):

∥
∥F(x)(t)

∥
∥=

∥
∥
∥
∥x0 +

∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∥
∥
∥
∥

≤∥∥x0
∥
∥+

∥
∥
∥
∥

∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∥
∥
∥
∥

≤ ∥∥x0
∥
∥+ p0, t ∈ Ic, x0 ∈ E.

(3.7)

Using Theorem 2.10, we deduce that F is continuous.
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Suppose that V ⊂ B(p0) satisfies the condition V = conv({x}∪ F(V)), for some x ∈
B(p0). We will prove that V is relatively compact, thus (1.3) is satisfied. Theorem 1.4 will
ensure that F has a fixed point.

Let, for t ∈ Ic, V(t)= {υ(t)∈ E : υ ∈ V}. Since V ⊂ B(p0), F(V)⊂ Γ(p0). Then, V ⊂
V = conv({x}∪F(V)) is equicontinuous. By Lemma 3.1, t 	→ v(t)= α(V(t)) is continu-
ous on Ic.

For fixed t ∈ Ic we divide the interval [0, t] into m parts: 0 = t0 < t1 < ··· < tm = t,
where ti = it/m, i= 0,1, . . . ,m.

Let V([ti, ti+1])= {u(s) : u∈V , ti ≤ s≤ ti+1}, i= 0,1, . . . ,m− 1. By Lemma 3.1 and the
continuity of v there exists si ∈ Ii = [ti, ti+1], such that

α
(
V
([
ti, ti+1

]))= sup
{
α
(
V(s)

)
: ti ≤ s≤ ti+1

}
:= v

(
si
)
. (3.8)

For fixed z ∈ Ic we divide the interval [0,z] into m parts: 0= z0 < z1 < ··· < zm = z, where
zj = jz/m, j = 0,1, . . . ,m.

Let V([zj ,zj+1])= {u(s) : u∈ V , zj ≤ s≤ zj+1}, j = 0,1, . . . ,m− 1. By Lemma 3.1 and
the continuity of v there exists s j ∈ I j = [zj ,zj+1] such that

α
(
V
([
zj ,zj+1

]))= sup
{
α
(
V(s)

)
: zj ≤ s≤ zj+1

}
:= v

(
s j
)
. (3.9)

Furthermore, we divide the interval [0,c] into m parts: 0 = r0 < r1 < ··· < rm = c,
where rk = kc/m, k = 0,1, . . . ,m.

Let V([rk,rk+1])= {u(s) : u∈ V , rk ≤ s≤ rk+1}, k = 0,1, . . . ,m− 1. By Lemma 3.1 and
the continuity of v there exists sk ∈ Ik = [rk,rk+1], such that

α
(
V
([
rk,rk+1

]))= sup
{
α
(
V(s)

)
: rk ≤ s≤ rk+1

}
:= v

(
sk
)
. (3.10)

By Definition 2.7 and the properties of the HL integral, we have

F(x)(t)= x0 +
m−1∑

i=0

∫ ti+1

ti
f
(
z,x(z),

m−1∑

j=0

∫ zj+1

zj
k1(z,s)g

(
s,x(s)

)
ds,

m−1∑

k=0

∫ rk+1

rk
k2(z,s)h

(
s,x(s)

)
ds
)
dz ∈ x0

+
m−1∑

i=0

(
ti+1− ti

)
conv f

(
Ii,V

(
Ii
)
,
m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))

,

m−1∑

k=0

(
rk+1− rk

)
conv

(
k2
(
Ii,Ik

)
h
(
Ik,V

(
Ik
)))
)

,

(3.11)

where k(I , J)= {k(t,s) : t ∈ I , s∈ J} and g(I ,V(I))= {g(t,x(t)) : t ∈ I , x ∈V}.
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Using (3.5) and the properties of measure of noncompactness α, we have

α
(
F(V)(t)

)

≤
m−1∑

i=0

(
ti+1− ti

)
convα

(
f
(
Ii,V

(
Ii
)
,
m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))

,

m−1∑

k=0

(
rk+1− rk

)
conv

(
k2
(
Ii,Ik

)
h
(
Ik,V

(
Ik
)))
))

≤
m−1∑

i=0

(
ti+1− ti

)
d1 max

(
α
(
V
(
Ii
))

,α

(m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))
)

,

α

(m−1∑

k=0

(
rk+1− rk

)
conv

(
k2
(
Ii,Ik

)
h
(
Ik,V

(
Ik
)))
))

.

(3.12)

Let us observe that if

α
(
V
(
Ii
))=max

(

α
(
V
(
Ii
))

,α

(m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))
)

,

α

(m−1∑

k=0

(
rk+1− rk

)
convk2

(
Ii,Ik

)
h
(
Ik,V

(
Ik
))
))

,

(3.13)

then

α
(
V(t)

)=α
(
conv

({
x(t)

}∪F(V(t)
))≤α

(
F
(
V(t)

))
<d1 · c ·α

(
V(t)

))
for every t∈Ic.

(3.14)

Because d1 · c < 1, so α(V(t)) < α(V(t)), a contradiction.
If

α

(m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))
)

=max

(

α
(
V
(
Ii
))

,α

(m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))
)

,

α

(m−1∑

k=0

(
rk+1− rk

)
conv

(
k2
(
Ii,Ik

)
h
(
Ik,V

(
Ik
)))
))

,

(3.15)
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then

α
(
F(V)(t)

)≤
m−1∑

i=0

(
ti+1− ti

) ·d1 ·
m−1∑

j=0

(
zj+1− zj

)
k1
(
Ii,I j

)
α
(
g
(
I j ,V

(
I j
)))

≤
m−1∑

i=0

(
ti+1− ti

) ·d1 ·L ·
m−1∑

j=0

(
zj+1− zj

)
k1
(
Ii,I j

)
α
(
V
(
I j
))

≤ d1 ·L · c

m
·
m−1∑

j=0

(
zj+1− zj

)
α
(
V
(
I j
))m−1∑

i=0

k1
(
Ii,I j

)
.

(3.16)

For j = 0,1, . . . ,m− 1 there exists qj = 0,1, . . . ,m− 1 such that k1(Ii,I j)≤ k1(Iqj ,I j). So

α(F(V)(t))≤ d1 · c ·L ·
m−1∑

j=0

(
zj+1− zj

)
k1
(
Iqj ,I j

)
v
(
s j
)
, where s j ∈ I j . (3.17)

Hence,

α
(
F(V)(t)

)≤ d1 · c ·L ·
m−1∑

j=0

(
zj+1− zj

)
k1
(
Iqj ,I j

)(
v
(
s j
)− v

(
pj
))

+d1 ·L · c ·
m−1∑

j=0

(
zj+1− zj

)
k1
(
Iqj ,I j

)
v
(
pj
)
.

(3.18)

By the continuity of v we have v(s j)− v(pj) < ε1 and ε1 → 0 as m→∞.
Therefore,

α
(
F(V)(t)

)≤ d1 · c ·L ·
∫ c

0
k1(t,s)v(s)ds for t ∈ Ic. (3.19)

SinceV = conv({x}∪F(V)), by the property of the measure of noncompactness, we have
α(V(t))≤ α(F(V)(t)), so v(t)≤ d1 · c ·L ·

∫ c
0 k1(t,s)v(s)ds for t ∈ Ic. Because this inequal-

ity holds for every t∈ Ic and L · d1 · c · r(K) < 1, so by applying Gronwall’s inequality, we
conclude that α(V(t)) = 0 for t ∈ Ic. Hence Arzela-Ascoli’s theorem implies that the set
V is relatively compact. Consequently, by Theorem 1.4, F has a fixed point which is a
solution of the problem (1.1).

Similarly, if

α

(m−1∑

k=0

(
rk+1− rk

)
conv

(
k2
(
Ii,Ik

)
h
(
Ik,V

(
Ik
)))
)

=max

(

α
(
V
(
Ii
))

,α

(m−1∑

j=0

(
zj+1− zj

)
conv

(
k1
(
Ii,I j

)
g
(
I j ,V

(
I j
)))

,

α

(m−1∑

k=0

(
rk+1− rk

)
convk2

(
Ii,Ik

)
h
(
Ik,V

(
Ik
))
)))

,

(3.20)
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then we prove that α(F(V)(t))≤ d1 · c ·L1 ·
∫ c

0 k2(t,s)v(s)ds and we conclude that the set
V is relatively compact. By Theorem 1.4, F has a fixed point which is a solution of the
problem (1.1). �

4. An existence result for integrodifferential equations in weak sense

In this part, we prove a theorem for the existence of pseudosolutions to the Cauchy prob-
lem

x′(t)= f
(
t,x(t),

∫ t

0
k1(t,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(t,s)h

(
s,x(s)

)
ds
)

, x(0)= x0 (4.1)

in Banach spaces. Functions f , g, h, x will be assumed Henstock-Kurzweil-Pettis inte-
grable but this assumption is not sufficient for the existence of solutions. We impose a
weak compactness-type conditions expressed in terms of measures of weak noncompact-
ness. Throughout this part, (E,‖ · ‖) will denote a real Banach space, E∗ the dual space.
Unless otherwise stated, we assume that “

∫
” denotes the Henstock-Kurzweil-Pettis inte-

gral.
Fix x∗ ∈ E∗ and consider the equation

(
x∗x

)′
(t)= x∗ f

(
t,x(t),

∫ t

0
k1(t,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(t,s)h

(
s,x(s)

)
ds
)

, t ∈ Ia. (4.2)

Now, we can introduce the following definition.

Definition 4.1. A function x : Ia→ E is said to be a pseudosolution of the Cauchy problem
(1.1) if it satisfies the following conditions:

(i) x(·) is absolutely continuous;
(ii) x(0)= x0;

(iii) for each x∗ ∈ E∗ there exists a negligible set A(x∗) (i.e., mes A(x∗)= 0) such that
for each t /∈ A(x∗),

(
x∗x

)′
(t)= x∗ f

(
t,x(t),

∫ t

0
k1(t,s)g

(
s,x(s)

)
ds,
∫ a

0
k2(t,s)h

(
s,x(s)

)
ds
)
. (4.3)

In this part, we use a weak measure of noncompactness of De Blasi β.

It is necessary to remark that the following lemma is true.

Lemma 4.2 [32]. Let H ⊂ C(Ia,E) be a family of strongly equicontinuous functions. Let,
for t ∈ Ia,H(t) = {h(t) ∈ E, h ∈ H}. Then, β(H(Ia)) = supt∈Ia β(H(t)) and the function
t 	→ β(H(t)) is continuous.

Theorem 4.3. Assume that for each ACG∗ function x : Ia → E, functions: g(·,x(·)),

h(·,x(·)), f (·,x(·)),
∫ (·)

0 (k1(·,s)g(s,x(s)))ds,
∫ a

0 k2(·,s)h(s,x(s))ds) are Henstock-Kurzweil-
Pettis integrable, f , g, and h are weakly-weakly sequentially continuous functions. Let k1,
k2 : Ia× Ia→R+ be measurable functions such that k1(t,·), k2(t,·) are continuous.
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Assume that there exist p0 > 0 and positive constants L, L1, and d such that

β
(
g(I ,X)

)≤ Lβ(X) for I ⊂ Ia, for every X ⊂ B
(
p0
)
,

β
(
h(I ,X)

)≤ L1β(X) for I ⊂ Ia, for every X ⊂ B(p0),

β
(
f (t,A,C,D)

)≤ d ·max
{
β(A),β(C),β(D)

}
for every A,C,D ⊂ B

(
p0
)
, t ∈ Ia,

(4.4)

where the sets g(I ,X)h(I ,X) and f (t,A,C,D) are defined as in Theorem 3.4 and β denotes
the De Blasi measure of weak noncompactness.

Moreover, let Γ(p0) be equicontinuous and uniformly ACG∗ on Ia. Then, there exists at
least one pseudosolution of the problem (1.1) on Ic, for some 0 < c ≤ a, such that d · c · L ·
r(K) < 1 and d · c < 1.

Proof. By equicontinuity of Γ(p0), there exists a number c, 0 < c ≤ a, such that
∥
∥
∥
∥

∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∥
∥
∥
∥≤ p0,

where x ∈ B
(
p0
)
, t ∈ Ic.

(4.5)

Indeed, for any x∗ ∈ E∗, such that ‖x∗‖ ≤ 1 and for any x ∈ B(p0), we have
∣
∣x∗F(x)(t)

∣
∣

= ∣∣x∗x0
∣
∣+

∣
∣
∣
∣x

∗
∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∣
∣
∣
∣

≤ ∥∥x∗∥∥∥∥x0
∥
∥+

∥
∥x∗

∥
∥
∥
∥
∥
∥

∫ t

0
f
(
z,x(z),

∫ z

0
k1(z,s)g

(
s,x(s)

)
ds,
∫ c

0
k2(z,s)h

(
s,x(s)

)
ds
)
dz
∥
∥
∥
∥

≤ ∥∥x0
∥
∥+ p0.

(4.6)

From here

sup{∣∣x∗F(x)(t)
∣
∣ : x∗ ∈ E∗,

∥
∥x∗

∥
∥≤ 1

}≤ ∥∥x0
∥
∥+ p0,

∥
∥F(x)(t)

∥
∥≤ ∥∥x0

∥
∥+ p0,

(4.7)

so F(x)(t)∈ B(p0).
We will show, that the operator F is weakly-weakly sequentially continuous.
By [32, Lemma 9], a sequence xn(·) is weakly convergent in C(Ic,E) to x(·) if and

only if xn(t) tends weakly to x(t) for each t ∈ Ic. Because g(s,·) and h(s,·) are weakly-
weakly sequentially continuous, so if xn

ω−→x in (C(Ic,E),ω), then g(s,xn(s))
ω−→g(s,x(s))

and h(s,xn(s))
ω−→h(s,x(s))in E for t ∈ Ic and by Theorem 2.11 we have

lim
n→∞

∫ z

0
k1(t,s)g

(
s,xn(s)

)
ds=

∫ z

0
k1(t,s)g

(
s,x(s)

)
ds (4.8)

weakly in E for each t ∈ Ic and

lim
n→∞

∫ c

0
k2(t,s)h

(
s,xn(s)

)
ds=

∫ c

0
k2(t,s)h

(
s,x(s)

)
ds (4.9)
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weakly in E for each t ∈ Ic. Moreover, because f is weakly-weakly sequentially continu-
ous, so f (t,xn(t)),

∫ t
0 k1(t,s)g(s,xn(s))ds,

∫ c
0 k2(t,s)h(s,xn(s))ds) tends to f (t,x(t),

∫ t
0 k1(t,

s)g(s,x(s))ds,
∫ c

0 k2(t,s)h(s,x(s))ds) weakly in E for each t ∈ Ic.
Suppose that V ⊂ B(p0) satisfies the condition V = conv({x} ∪ F(V)) for some x ∈

B(p0). We will prove that V is relatively compact, thus (1.4) is satisfied. Theorem 1.5 will
ensure that F has a fixed point.

Let, for t ∈ Ic, V(t) = {υ(t) ∈ E : υ ∈ V}. Since V ⊂ B(p0), F(V) ⊂ Γ(p0). Then V ⊂
V = conv({x}∪F(V)) is equicontinuous. By Lemma 4.2, t 	→ v(t)= β(V(t)) is continu-
ous on Ic.

Therefore, as in Theorem 3.4, we prove that β(V(t))= 0, for t∈ Ic, so that the set V is
relatively weakly compact. Consequently, by Theorem 1.5 F has a fixed point which is a
pseudosolution of the problem (1.1). �
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