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1. Introduction

Let F be a number field, G the general linear group of degree n defined over F. Let π be
an irreducible cuspidal automorphic representation of G(A). In [1–3], a Rankin-Selberg-
type integral is constructed to represent the L function of π. That the integrals of Jacquet,
Piatetski-Shapiro, and Shalika are Eulerian follows from the uniqueness of Whittaker
models and the fact that cuspidal representations of GLn are always generic. For other
reductive group whose cuspidal representations are not always generic, in [4], Piatetski-
Shapiro and Rallis construct a Rankin-Selberg integral for symplectic group G= Sp2n to
represent the partial L function of a cuspidal representation π of G(A). In this paper, we
apply similar method to the quasi-split unitary group of rank n.

Let F be a number field, E a quadratic field extension of F. Let V be a 2n-dimensional
vector space over E with an anti-Hermitian form

η2n =
(

1n
−1n

)
(1.1)

on it. Let G=U(η2n) be the unitary group of η2n. Let π be an irreducible cuspidal auto-
morphic representation of G(A), f a cusp form belonging to the isotypic space of π. The
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Rankin-Selberg-type integral is defined by∫
G(F)\G(A)

f (g)E(g,s)θ(g)dg, (1.2)

where E(g,s) is an Eisenstein series associated with a degenerate principle series, θ is a
theta series defined by the Weil representation of Sp(V ⊗W), where W is a nondegen-
erate Hermitian space of dimension n. We show in Theorem 6.3 that (1.2) represent the
standard partial L function LS(s,π,σ) of π.

In [4], after showing the Rankin-Selberg integral has a Euler product decomposition,
Piatetski-Shapiro and Rallis continued to show that if n/2 + 1 is a pole of partial L func-
tion, then theta lifting is nonvanishing [4, Proposition on page 120]. There should be a
parallel application of our paper, that is, relate the largest possible pole with nonvanishing
of period integral.

2. Notations and conventions

Let F be a field of characteristic 0, E a commutative F-algebra with rank two. Let ρ be an
F-linear automorphism of E. We are interested in (E,ρ) of the following two types:

(1) E is a quadratic field extension of F, ρ is the nontrivial element of Gal(E/F);
(2) E = F ⊕F, (x, y)ρ = (y,x).

Let tr be the trace of E over F, that is, it is defined by

tr(z)= z+ zρ, z ∈ E. (2.1)

Let V be a left E-module, ϕ : V ×V → E a nonsingular ε-Hermitian form on V , here
ε =±1. The unitary group of ϕ is

U(ϕ)= {α∈GL(V ,E) | ϕ(xα, yα)= ϕ(x, y), ∀x, y ∈V}. (2.2)

Let ε′ = −ε so that εε′ = −1. Let (W ,ϕ′) be a nonsingular ε′-Hermitian space. Put

W=V ⊗W. (2.3)

ThenW is a nonsingular symplectic space over F with symplectic form

φ= tr◦(ϕ⊗ϕ′). (2.4)

Let G=U(ϕ), G′ =U(ϕ′) be the unitary groups corresponding to ϕ and ϕ′, respectively.
It is well known that G×G′ embeds as a dual pair in Sp(φ).

We often express various objects by matrices. For a matrix x with entries in E, put

x∗ = txρ, x−ρ = (xρ)−1
, x̂ = tx−ρ, (2.5)

assuming x to be square and invertible if necessary. Assume thatV ∼= E� for some nonzero
positive integer �. Let ϕ0 be an � × � matrix satisfying ϕ∗0 = εϕ0. We can define an ε-
Hermitian form ϕ on V by requiring

ϕ(x, y)= xϕ0y
∗. (2.6)
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Then the unitary group U(ϕ) is isomorphic to the subgroup of GL�(E) consisting ele-
ments g satisfying

gϕ0g
∗ = ϕ0. (2.7)

In the following we let ε =−1. Then ϕ is a nonsingular skew-Hermitian form, hence
� = 2n for some positive integer n. Let e1, . . . ,e2n be a basis of V such that ϕ is represented
by

η2n =
(

1n
−1n

)
. (2.8)

Put

X =⊕n
i=1Eei, Y =⊕2n

n+1Eei. (2.9)

Then X , Y are maximal isotropic spaces of V . Let P be the maximal parabolic subgroup
of G preserving Y . Then

P(F)=
{(

g gu
ĝ

)
| g ∈GLn(E), u∈ S(F)

}
. (2.10)

Here

S(F)= {b∈Mn×n(E) | b∗ = b} (2.11)

is the set of Hermitian matrices of degree n. Let N be the unipotent radical of P. Then
N(F) consists of elements of the following type:

n(b)=
(

1 b
1

)
, with b ∈ S(F). (2.12)

Let

M = {g ∈ P | Xg ⊂ X , Yg ⊂ Y}. (2.13)

Then M is a Levi subgroup of P. The F-rational points M(F) of M consists of elements
of the following form:

m(a)=
(
a

â

)
, with a∈GLn(E). (2.14)

Define an action of GLn(E) on S(F) by

(a,b)−→ aba∗, with a∈GLn(E), b ∈ S(F). (2.15)

It is equivalent to the adjoint action of M on N , since

m(a)n(b)m(a)−1 = n(aba∗). (2.16)

We will say “the action of M(F) on S(F)” if no confusion is caused.
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Let O be the unique open orbit of M(F)\S(F), then

O= {b ∈ S(F) | detb �= 0
}
. (2.17)

For β ∈O, let Mβ be the stabilizer of β. Since β is a nonsingular Hermitian matrix,

Mβ
∼=U(β) (2.18)

is the unitary group of β.
Let Y= Y ⊗W . For w ∈Y, let us write

w =
n∑
i=1

en+i⊗wi, with wi ∈W , i= 1, . . . ,n. (2.19)

Define the moment map μ :Y→ S(F) by

μ(w)= (ϕ′(wi,wj
))

1≤i, j≤n. (2.20)

It is clear that if m=m(a)∈M(F), then

μ(wm)= taμ(w)aρ. (2.21)

Denote the image of μ by �, then it is invariant underM(F). Let T be a Hermitian matrix
representing ϕ′. If dimW = n, then T ∈�=O. In particular, from (2.18),

MT =G′. (2.22)

3. Localization of various objects

Let F be a number field, E a quadratic field extension of F. Let v be the set of all places
of F, a, f be the sets of Archimedean and non-Archimedean places, respectively. Then
v = a∪ f . For v ∈ v, let Fv be the v-completion of F, �v the valuation ring of Fv if v is
finite. Let A, AE be the rings of adeles of F and E, respectively.

Let ρ be the generator of Gal(E/F). For v ∈ v, let Ev = E⊗Fv. We may extend ρ to Ev,
denote it by ρv. Then Ev is a quadratic extension of Fv, ρv is an Fv-automorphism of Ev of
order 2. Corresponding to v is split in E or not, the couple (Ev,ρv) belongs to one of the
following two cases.

(1) Case NS: v remains prime in E. Hence Ev is a quadratic field extension of Fv,ρv ∈
Gal(E/F) is the nontrivial element.

(2) Case S: v splits in E. Then Ev = Fv ⊕Fv and (x, y)ρv = (y,x) for (x, y)∈ Ev.
Let γ be a nontrivial Hecke character of E, that is, it is a continuous homomorphism

γ :A×E −→ S1 (3.1)

such that γ(E×)= 1. For v ∈ v, Let γv be the restriction of γ to E×v , then γ =⊗vγv.
For an algebraic groupH defined over F, we letH(Fv) be the set of Fv-points ofH . Put

Ha =
∏
v∈a

H
(
Fv
)
, Hf =

∏
v∈f

′H
(
Fv
)
, (3.2)
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where the prime indicates restricted product with respect to H(�v). Then

H(A)=HaHf . (3.3)

Let G=U(ηn) be the quasi-split even unitary group of rank n defined over F. We have
defined the standard Siegel parabolic subgroup P =MN ofG in Section 2. Keep notations
of last section. For v ∈ f , the localization of these algebraic groups are as follows.

(1) Case NS: v remains prime in E. In this case,

G
(
Fv
)=U(ηn)(Fv),

M
(
Fv
)= {m(a) | a∈GLn

(
Ev
)}

,

N
(
Fv
)= {n(X) | X ∈ S(Fv)}.

(3.4)

(2) Case S: v splits in E. In this case,

G
(
Fv
)=GL2n

(
Fv
)
,

M
(
Fv
)=

{
m(A,B) |m(A,B)=

(
A

B−1

)
, A,B ∈GLn

(
Fv
)}

,

N
(
Fv
)=

{
n(X) | n(X)=

(
1 X

1

)
, X ∈Mn×n

(
Fv
)}
.

(3.5)

If v ∈ f is a finite place, let K0,v = G(�v) be a maximal open compact subgroup of G(Fv).
For g ∈G(Fv), we have Iwasawa decomposition

(Case NS) g = n(X)m(a)k,

(Case S) g = n(X)m(A,B)k
(3.6)

for some k ∈ K0,v, n(X)m(a) or n(X)m(A,B) belong to P(Fv).

4. Local computation

Our result relies heavily on the L function of unitary group in [5] derived by Li. So in this
section, we review the doubling method of Gelbart et al. [6] briefly and the main theorem
of [5].

Let F be non-Archimedean local field with characteristic 0, � the valuation ring of
F with uniformizer �. Let | · | be the normalized absolute value of F. Let (E,ρ) be a
couple as in Section 1. If E is a field extension of F, let �E be the ring of integer of E with
uniformizer �E, | · |E the normalized absolute value of E.

Let V be 2n-dimensional space over E with skew-Hermitian form ϕ= η2n, G=U(V).
Then

G(F)=U(η2n
)
, Case NS;

G(F)=GL2n, Case S.
(4.1)

Let −V be the space V with Hermitian form −ϕ. Define

V=V ⊕−V. (4.2)
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Then ϕ⊕ (−ϕ) is a nonsingular skew-Hermitian form onV. LetH =U(V) be the unitary
group of V. Then K =H(�) is a maximal open compact subgroup of H(F). We embed
G×G into H as a closed subgroup.

Define two maximal isotropic subspaces of V as follows:

X = {(v,−v) | v ∈V}, Y = {(v,v) | v ∈V}. (4.3)

ThenV= X ⊕Y . Let Q be the maximal parabolic subgroup ofH preserving Y . Following
[5], we define a rational character x of Q by

x(p)= det
(
p|Y

)−1
, p ∈Q. (4.4)

Choose a basis of V compatible with the decomposition (4.3), we can write p as a matrix:

p =
(
a ∗

â

)
, with a∈GL2n . (4.5)

Then x(p)= det(a)ρ.
Let γ be an unramified character of F×. Then p �→ γ(x(p)) is a character of Q(F). For

s∈ C, let I(s,γ) be the space of smooth functions f :H(F)→ C satisfying

f (pg)= γ(x(p)
)∣∣x(p)

∣∣s+(4n+1)/2
f (g), p ∈Q(F), g ∈G(F). (4.6)

H(F) acts on I(s,γ) by right multiplication. Let I(s,γ)K be the subspace of K-invariant
elements of I(s,γ). Since γ is unramified, by Frobenius reciprocity,

dimC I(s,γ)K = 1. (4.7)

Let ΦK ,s be the unique K-invariant function in I(s,γ) such that

ΦK ,s(1)= 1. (4.8)

One important property of ΦK ,s is the following.

Lemma 4.1 (see [5, Lemma 3.2]). Let K0 = G(�) be a maximal open compact subgroup of
G(F). Then for k1,k2 ∈ K0, g ∈G(F),

ΦK ,s
(
k1gk2,1

)=ΦK ,s(g,1), (4.9)

here (g,1)∈G×G↩H .

4.1. L functions. Let (π,V) be an unramified irreducible representation of G(F), (π̌,V̌)
the contragredient of π. Let 〈·,·〉π be the canonical pairing between V and V̌ . For v ∈V ,
v̌ ∈ V̌ , define a matrix coefficient of π by

ωπ(g;v, v̌)= 〈gv, v̌〉π , g ∈G(F). (4.10)
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If v and v̌ are K0-fixed elements of π and π̌, respectively, then ωπ(g;v, v̌) is a spherical
function of π. In addition, if 〈v, v̌〉π = 1, then ωπ(1;v, v̌) = 1, we get the zonal spherical
function ωπ of π.

Let LG be the dual group of G. Then

LG=GL2n(C) � Gal(E/F), Case NS

LG=GL2n(C), Case S.
(4.11)

For Case NS, the action of Gal(E/F) on GL2n is given by

gρ =Φ2n
tg−1Φ−1

2n , g ∈GL2n(C). (4.12)

Here

Φ2n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

...
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (4.13)

Since π is an unramified irreducible representation of G(F), it determines a unique
semisimple conjugacy class (aπ ,ρ)(Case NS) or aπ(Case S) in LG [7]. We can take a rep-
resentative of aπ as follows:

aπ = diag
(
a1, . . . ,an,1, . . . ,1

)
, Case NS,

aπ = diag
(
a1, . . . ,a2n

)
, Case S,

(4.14)

with ai ∈ C×, i= 1, . . . ,2n [7, Section 6.9].
Let r be the natural action of GL2n(C) on C2n, σ the induced representation

σ = Ind
LG

GL2n(C)(r), Case NS,

σ = IndGL2n(C)×Z/2Z
GL2n(C) r, Case S,

(4.15)

respectively. Associate a local L function L(s,π,σ) to π by

Case NS : L(s,π,σ)= det
(
1− σ(aπ ,ρ

)
q−s
)−1

=
∏
i≤n

[(
1− aiq−2s)(1− a−1

i q−2s)]−1
,

Case S : L(s,π,σ)= det
(
1− σ(aπ)q−s)−1

=
∏
i≤2n

[(
1− aiq−s

)(
1− a−1

i q−s
)]−1

,

(4.16)

where q is the cardinality of residue field of F.
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The relation between the functions ΦK ,s, ωπ , and L(s,π,σ) is as follows.

Theorem 4.2 (see [5, Theorem 3.1]). Notations as above. For s∈ C,

∫
G(F)

ΦK ,s(g,1)ωπ(g)= L(s+ 1/2,π,σ)
dH(s)

. (4.17)

Here

(Case NS) dH(s)= L
(
2s+ 1,εE/F

)
L
(
2s+ 2n+ 1,εE/F

) ∏
0≤ j<n

ξ(2s+ 2n− 2 j)L
(
2s+ 2n− 2 j + 1,εE/F

)
,

(Case S) dH(s)=
2n∏
j=1

(2s+ j).

(4.18)

ξ(s) is the zeta function of F, εE/F is the character of order 2 associated to the extension E/F
by local class field theory, L(s,χ) is the local Hecke L function for a character χ of F×.

We will derive a formula from (4.17) which is applicable for our computation later.
For this purpose, for g ∈G(F), let

(Case NS) δ(g)= diag
(
�l1
E , . . . ,�ln

E

)
, l1 ≥ ··· ≥ ln ≥ 0,

(Case S) δ(g)= diag
(
�l1 , . . . ,�l2n

)
, l1 ≥ ··· ≥ l2n,

(4.19)

such that g ∈ K0m(δ(g))K0(Case NS) or g ∈ K0δ(g)K0(Case S). Define a function Δ(g)
on G(F) by

(Case NS) Δ(g)= ∣∣detδ(g)
∣∣−1
E ,

(Case S) Δ(g)= ∣∣detδ(g)
∣∣−1

.
(4.20)

By Lemma 4.1,

(Case NS) ΦK ,s(g,1)=ΦK ,s
(
m
(
δ(g),1

))
,

(Case S) ΦK ,s(g,1)=ΦK ,s
(
δ(g),1

)
.

(4.21)

Furthermore, reasoning as in [5, page 197], one can show that

ΦK ,s(g,1)= Δ(g)−(s+n). (4.22)

Hence Theorem 4.2 is equivalent to the following.

Theorem 4.3. For s∈ C,
∫
G(F)

Δ(g)−(s+n)(g)ωπ(g)dg = L(s+ 1/2,π,σ)
dH(s)

. (4.23)

Here dH(s) is the meromorphic functions in Theorem 4.2.
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Before we end this section, we record a formula for the value on Δ(g) for some special
elements in G(F). For β ∈Mn×n(F), let L(β) be the set of all minors of β.

Lemma 4.4 (see [8, Proposition 3.9]). (1) (Case NS) Let

g =
(
ŵ

w

)(
1 β

1

)(
v∗

v−1

)
∈G(F) (4.24)

with v,w ∈GLn(E)∩Mn×n(�E). Then

Δ(g)= ∣∣det(vw)
∣∣−1
E max

C∈L(β)
|detC|E. (4.25)

(2) (Case S) Let

g =
(
w−1

v

)(
1 β

1

)(
v′

w′−1

)
∈G(F) (4.26)

with v,v′,w,w′ ∈GLn(F)∩Mn×n(�). Then

Δ(g)= ∣∣det(vv′ww′)
∣∣−1

(
max
C∈L(β)

|detC|
)2

. (4.27)

5. Fourier coefficients

In this section, we will compute Fourier coefficients of Δ(g). Our method is similar to
that of [4].

Notations are as in the last section. Let ψ be a nontrivial additive character of F. Let
(π,V0) be an unramified irreducible admissible representation ofG(F), T a square matrix
such that T ∈ S(F)(Case NS) or T ∈Mn×n(F)(Case S). Let lT be a linear functional on V0

satisfying

lT

(
π

(
1 X

1

)
v

)
= ψ( tr(XT)

)
lT(v) (5.1)

for all v ∈V0, X ∈ S(F)(Case NS) or X ∈Mn×n(F)(Case S).

Example 5.1. Let F be a number field, π an irreducible cuspidal automorphic repre-
sentation of G(A) for a moment [9]. Then π = ⊗′vπv is a restricted product of irre-
ducible admissible representations πv of G(Fv), for almost all v ∈ v, πv is unramified
irreducible admissible representation. Let f be a cusp form in A(G(F) \G(A))π , the iso-
typic space of π. Let v ∈ f such that πv is unramified irreducible admissible representation
of G(Fv). Let Tv ∈ S(Fv)(Case NS) or Tv ∈Mn×n(Fv). Define a linear functional LTv on
A(G(F) \G(A))π by

lTv ( f )=
∫
f

((
1 Xv

1

))
ψ
(

tr
(
XvTv

))
dXv, (5.2)
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where the integral is taken on S(Fv)(Case NS) or Mn×n(Fv)(Case S). We see that lTv ( f ) is
independent of f |G(Fw) for w ∈ v, w �= v. But πv = π|G(Fv), so lTv is a linear functional on
πv satisfying (5.1).

Back to the assumption that F is non-Archimedean local field, (π,V0) is an unrami-
fied irreducible representation of G(F). Define a subset M(�) of M2n(E)(Case NS) or of
M2n(F)(Case S) as follows:

(Case NS) M(�)=
{
m(a)=

(
a

â

)
| a∈Mn×n(�E)∩GLn(E)

}
;

(Case S) M(�)=
{
m(A,B)=

(
A

B−1

)
|A,B ∈Mn×n(�)∩GLn(F)

}
.

(5.3)

Let γ0 be a function on M(�) defined by

(Case NS) γ0
(
m(a)

)= |deta|E,

(Case S) γ0
(
m(A,B)

)= |detAdetB|. (5.4)

Lemma 5.2. Let ψ be an unramified additive character of F. Let T be a square matrix such
that T ∈ S(F)(Case NS ) or T ∈Mn×n(F)(Case S). Let (π,V0) be an unramified irreducible
admissible representation of G(F). Take 0 �= f0 ∈ VK0

0 , where K0 =G(�) is a maximal com-
pact subgroup of G(F). Let lT be a linear functional on V0 satisfying (5.1). Then for s∈ C,∫

G(F)
Δ−(s+n)(g)lT

(
π(g) f0

)
dg = lT

(
f0
)L(s+ 1/2,π,σ)

dH(s)
. (5.5)

Proof. As in [3], the convergence of left-hand side of the equation when Res is sufficiently
large comes from the vanishing of lT(π(a) f0) when a is sufficiently large, here a belongs
to the maximal F-torus consisting of diagonal elements in G(F).

Since both sides are meromorphic functions of s, we only need to show the equation
for Res sufficiently large. We first claim that∫

K0

lT
(
π(kg) f0

)
dk = lT

(
f0
)
ωπ(g), g ∈G(F). (5.6)

In fact, the left-hand side is a bi-K0-invariant matrix coefficient of π, so there is some
λ∈ C such that ∫

K0

lT
(
π(kg) f0

)
dk = λωπ(g), g ∈G(F). (5.7)

Let g = 1, then λ= lT( f0).
Back to the proof of the lemma. If Re s is sufficiently large, the left-hand side of (5.5)

converges absolutely. Hence

L.H.S of (5.5)=
∫
G(F)

∫
K0

Δ−(s+n)(kg)lT
(
π(g) f0

)
dkdg

=
∫
G(F)

∫
K0

Δ−(s+n)(g)lT
(
π(kg) f0

)
dkdg

(5.8)
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we have computed the inside integral in (5.6), so

(5.8)= lT
(
f0
)∫

G(F)
Δ−(s+n)(g)ωπ(g)dg

= lT
(
f0
)L(s+ 1/2,π,σ)

dH(s)
, by Theorem 4.3.

(5.9)

�

Apply Iwasawa decomposition (3.6) g = n(X)m(a)k in the integrand of (5.5). When
Res is sufficiently large,

∫
G(F)

Δ−(s+n)(g)lT
(
π(g) f0

)
df =

∫
K0×M(F)×N(F)

Δ−(s+n)(n(X)m(a)k
)
lT
(
π
(
n(X)m(a)k

)
f0
)

× δP
(
m(a)

)−1
dn(X)dm(a)dk.

(5.10)

Here δP(m(a)) is the modular function of P(F), hence δP(m(a))= |deta|nE(Case NS) or
δP(m(A,B))= |detAdetB|n(Case S). Note that f0 is K0 invariant, Δ is bi-K0 invariant,

(5.10)=
∫
M(F)×N(F)

Δ−(s+n)(n(X)m(a)
)
ψ
(

tr(XT)
)

× lT
(
π
(
m(a)

)
f0
)
δP
(
m(a)

)−1
dn(X)dm(a).

(5.11)

If we let

JT(s,a)=
∫
N(F)

Δ−(s+n)(n(X)m(a)
)
ψ
(

tr(XT)
)
dn(X), (5.12)

for m(a)∈M(F), then

(5.11)=
∫
M(F)

JT(s,a)lT
(
π
(
m(a)

)
f0
)
δ−1
P

(
m(a)

)
dm(a). (5.13)

Properties of JT(s,a), such as convergent when s sufficiently large, having meromorphic
continuation to C, is discussed by Shimura [10], for example, Proposition 3.3 there.

Lemma 5.3. Let ψ be an unramified character of F. Let T be a square matrix such that
T ∈GLn×n(�E)∩ S(F) or T ∈GLn(�)(Case S). Then

JT(s,a)=
⎧⎨
⎩γ0

(
m(a)

)s+n
jT(s), a∈M(�),

0, if else .
(5.14)
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Here

(Case NS) jT(s)=
∫
S(F)

Δ−(s+n)(n(X)
)
ψ
(

tr(TX)
)
dX

=
n−1∏
r=0

L
(
2s+ 2n− r,εrE/F

)
,

(Case S) jT(s)=
∫
Mn×n(F)

Δ−(s+n)(n(X)
)
ψ
(

tr(TX)
)
dX

=
n−1∏
r=0

ζ(2s+ 2n− r).

(5.15)

Proof. Both sides of (5.14) are meromorphic functions for a givenm(a)∈M(F). We only
need to prove this lemma for Res sufficiently large.

(Case NS). Let a ∈ GLn(E). By the principle of elementary divisors, a = tw−1 tv with
v,w ∈Mn×n(�E), v = kδ1,w = k′δ2 with k,k′ ∈GLn(�E) and

δ1 = diag
(
�m1
E , . . . ,�mi

E ,1, . . . ,1
)
,

δ2 = diag
(
1, . . . ,1,�mi+1

E , . . . ,ϕmn
E

) (5.16)

with m1 ≥ ··· ≥mi ≥ 0, mi+1 ≥ ··· ≥mn ≥ 0 for some 0≤ i≤ n. Then

JT(s,a)= JT
(
s, tw−1tv

)
=
∫
S(F)

Δ−(s+n)(n(X)m
(
tw−1tv

))
ψ
(

tr(XT)
)
dX

=
∫
S(F)

Δ−(s+n)(m(tw−1)m(tw−1)−1
n(X)m

(
tw−1tv

))
×ψ( tr(XT)

)
dX

= ∣∣det(w)
∣∣−n
E

∫
S(F)

Δ−(s+n)(m(tw−1)n(X)m
(
tv
))

×ψ( tr
(
Xw−ρTtw−1

))
dX.

(5.17)

Let S(�) be the set of elements in S(F) with entries in �E. Let � be a set of representative
of S(F)/S(�). Decompose the integral in (5.17) as a sum of integrals indexed by �:

(5.17)= |detw|−nE
∑
ξ∈�

∫
ξ+S(�)

Δ−(s+n)(m(tw−1)n(X)m
(
tv
))×ψ( tr

(
Xw−ρTtw−1

))
dX.

(5.18)

Let ξ ∈ S(F). If ξ �∈ S(�), by Lemma 4.4,

Δ−(s+n)(m( tw−1)n(ξ +X)m
(
tv
))= ∣∣detvρwρ

∣∣s+n
E Δ−(s+n)(n(ξ)

)
(5.19)

for all X ∈ S(�), since

max
C∈L(ξ+X)

|detC|E = max
C∈L(ξ)

|detC|E (5.20)
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for ξ �∈ S(�). If ξ ∈ S(�), then Δ(n(ξ))= 1,

Δ−(s+n)(m( tw−1)n(ξ +X)m
(
tv
))= ∣∣det(vw)ρ

∣∣s+n
E Δ−(s+n)(n(ξ)

)= ∣∣det(vw)ρ
∣∣s+n
E .
(5.21)

Hence for all ξ ∈ S(F), X ∈ S(�),

Δ−(s+n)(m( tw−1)n(ξ +X)m
(
tv
))= ∣∣det(vw)ρ

∣∣s+n
E Δ−(s+n)(n(ξ)

)
. (5.22)

Apply (5.22) to (5.18), we then get

(5.18)= |detw|−nE
∣∣det(vw)ρ

∣∣s+n
E

∑
ξ∈�

Δ−(s+n)(n(ξ)
)

×ψ( tr
(
ξw−ρTtw−1

))∫
S(�)

ψ
(

tr
(
Xw−ρTtw−1

))
dX.

(5.23)

If a �∈Mn×n(�E), then |detw|E < 1 and w−ρT tw−1 ∈ S(�). Hence
∫
S(�)

ψ
(

tr
(
Xw−ρT tw−1

))
dX = 0, (5.24)

and JT(s,a)= 0. If a∈GLn(E)∩Mn×n(�E), we compute JT(s,a) directly:

JT(s,a)=
∫
S(F)

Δ−(s+n)(n(X)m(a)
)
ψ
(

tr(XT)
)
dX

= |deta|s+nE

∫
S(F)

Δ−(s+n)(n(X)
)
ψ
(

tr(XT)
)
dX , by Lemma 4.4

= |deta|s+nE jT(s),

(5.25)

here

jT(s)=
∫
S(F)

Δ−(s+n)(n(X)
)
ψ
(

tr(TX)
)
dX

=
n−1∏
r=0

L
(
2s+ 2n− r,εrE/F

)
,

(5.26)

where the second equality comes from [10, Proposition 6.2] by Shimura.
The proof for Case S is similar, and we omit it here. �

Theorem 5.4. Let ψ be an unramified character of F, (π,V0) an unramified irreducible
admissible representation of G(F). Let T be a square matrix such that T ∈ GLn(�E)∩
S(F)(Case NS) or T ∈GLn(�)(Case S). Let lT be a linear functional on V0 satisfying (5.1).
Then for 0 �= f0 ∈VK0

0 ,

∫
M(�)

γs0
(
m(a)

)
lT
(
π
(
m(a)

)
f0
)
dm(a)= lT

(
f0
)L(s+ 1/2,π,σ)

jT(s)dH(s)
, (5.27)

where dH(s) and jT(s) are given in Theorem 4.2 and Lemma 5.3.
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Proof. Lemma 5.2 and the paragraph after Lemma 5.2 have shown that

lT
(
f0
)L(s+ 1/2,π,σ)

dH(s)
=
∫
G(F)

Δ−(s+n)(g)lT
(
π(g) f0

)
dg

=
∫
M(F)

JT(s,a)lT
(
π
(
m(a)

)
f0
)
δ−1
P

(
m(a)

)
dm(a).

(5.28)

By Lemma 5.3, JT(s,a) vanishes when a �∈M(�). Substitute the formula of JT(s,a) for
a∈M(�) and δ−1

P , the conclusion follows. �

6. Global computation

Let F be a number field, E a quadratic field extension of F. As usual, let v be the set of all
places of F, a, f the set of archimedean and non-archimedean places of F respectively. Let
Fv be the localization of F at the place v of v, Ev = E⊗ Fv. If v ∈ f , let �v be the ring of
integers of Fv. If v remains prime in E, then Ev is a quadratic field extension of Fv, let �Ev

be the ring of integer of Ev. The ring of adeles of F (resp., E) is denoted by A (resp., AE).
Denote by | · | (resp., | · |E) the normalized absolute value of A× (resp., A×E ). Let ψ be a
nontrivial continuous character of A trivial on F.

Let V be a 2n-dimensional vector space over E with an anti-Hermitian form η2n on it.
LetW be an n-dimensional vector space over E with a nonsingular Hermitian form T . Let
G=U(η2n), G′ =U(T) be the corresponding unitary groups. Then G×G′ is a dual pair
in Sp(W), whereW=V ⊗W is symplectic space with symplectic form trE/F(η2n⊗T).

Let P =MN be the maximal parabolic subgroup of G defined in Section 2. For v ∈ v,
let Kv be a maximal compact subgroup of G(Fv) such that for almost all v ∈ v, Kv =
G(�v). Let KA =

∏
v∈vKv. Then G(A) = P(A)KA. For v ∈ v, let dkv be the Haar mea-

sure on Kv such that
∫
Kv dkv = 1. Then dk =∏v dkv is an Haar measure on KA such that∫

KA dk = 1. Let dl(pv) be a left Haar measure on P(Fv) for v ∈ v. Then dl p =
∏

v dl(pv)
is a left Haar measure on P(A). Since P(A) =M(A)N(A), dl p = |deta|−nE d×adX if p =
m(a)n(X) for a ∈ GLn(AE), X ∈ S(A), where d×a, dX are Haar measure on GLn(AE),
S(A), respectively. We then let dg = dl pdk be an Haar measure on G(A).

Let s∈ C, let γ be a Hecke character of E. Denote by I(s,γ) the set of smooth functions
f :G(A)→ C satisfying

(i) f (pg)= γ(x(p))|x(p)|s+n/2E f (g), for p ∈ P(A), g ∈G(A),
(ii) f is Kv-finite for all v ∈ a.

G(A) acts on I(s,γ) by right multiplication. Let Φ(g,s) be a smooth function in I(s,γ)
holomorphic at s. The Eisenstein series associated to Φ(g,s) is given by

E(g,s;γ,Φ)=
∑

ξ∈P(F)\G(F)

Φ(ξg,s). (6.1)

In [9], it has been shown that (6.1) is convergent when Res > n/2 and has a meromorphic
continuation to the whole complex plane.
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Let π be a cusp automorphic representation of G(A) (cf. [9]). Let f be cusp form in
the isotypic space of π. Let β ∈ S(F). The βth Fourier coefficient of f is

fβ(g)=
∫
S(F)\S(A)

f
(
n(X)g

)
ψ
(

tr(Xβ)
)
dX , g ∈G(A). (6.2)

If β1,β2 ∈ S(F), β1 = taρβ2a for some a∈GLn(E), then

fβ1 (g)= fβ2

(
m(a)g

)
, g ∈G(A). (6.3)

Let χ be a Hecke character of E satisfying χ|A×/F× = εnE/F , where εE/F is the quadratic
character of A×/F× by global class field theory. Associate with ψ a Weil representation
ωψ of G(A) acting on �(Y(A)), the set of Schwartz-Bruhat functions on Y(A). In fact,

ωψ is the restriction of Weil representation (associated with ψ) of ˜Sp(W)(A) to G(A) (see
Section 2 for the definition of Y,W). We will omit the subscript ψ when ψ is clear from
the context. The explicit formula of ω is given in [11], we cite here the formula on P(A).
Let φ ∈�(Y(A)), a∈GLn(AE), n(X)∈N(A), then

ω
(
m(a)

)
φ(y)= χ(deta)|deta|n/2E φ(ya),

ω
(
n(X)

)
φ(y)= ψ( tr

(
bμ(y)

))
φ(y), y ∈Y(A).

(6.4)

Here μ=∏v μv :Y(A)→�(A), μv is the moment map defined at Section 2 for local field
Fv.

The theta series θφ for φ ∈�(Y(A)) is a smooth function onG(A) of moderate growth

θφ(g)=
∑

ξ∈S(F)

ω(g)φ(ξ), g ∈G(A). (6.5)

6.1. Vanishing lemma. Let π be a cuspidal automorphic representation of G(A). We
make the following assumption: There is some cusp form f in the isotypic space of π
such that ∫

N(F)\N(A)
f
(
n(X)g

)
ψ
(

tr(XT)
) �= 0. (6.6)

In [4], Piatetski-Shapiro and Rallis do not propose this assumption, because Li has shown
in [12] that every cusp forms supports some nonsingular symmetric matrix.

For φ∈�(Y(A)), Φ(g,s)∈ I(s,γ), f ∈ A(G(F) \G(A))π the isotypic space of π in the
space of automorphic forms on G(A), define

I(s,φ,Φ, f )=
∫
G(F)\G(A)

f (g)E(g,s,Φ)θφ(g)dg. (6.7)

Although θφ is slowly increasing function onG(A), E(g,s,Φ) is of moderate growth, but f
is rapidly decreasing on G(A), (6.7) is convergent at s where the Eisenstein series is holo-
morphic. We will show that when we choose appropriate φ, Φ, f , I(s,φ,Φ, f ) is product
of meromorphic function with partial L function of π.



16 International Journal of Mathematics and Mathematical Sciences

Substitute Eisenstein series (6.1), theta series (6.5) into (6.7), then

(6.7)=
∫
P(F)\G(A)

f (g)Φ(g,s)
∑

ξ∈Y(F)

ω(g)φ(ξ)dg

=
∫
KA

∫
P(F)\P(A)

f (pk)Φ(pk,s)
∑

ξ∈Y(F)

ω(pk)φ(ξ)dl pdk.
(6.8)

By the assumption that Φ(g,s) ∈ I(s,γ), Φ(pk,s) = γ(x(p))|x(p)|s+n/2E Φ(k,s). Apply the
formula of Weil representation (6.4) to (6.8), then

(6.8)=
∫
KA

∫
M(F)\M(A)

∫
N(F)\N(A)

f
(
n(X)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)
∑

ξ∈Y(F)

ψ
(

tr
(
bμ(ξ)

))
ω(k)φ(ξa)dX d×adk.

(6.9)

Recall that in Section 2, we let �⊂ S(F) be the image of moment map, which is invariant
under the action of M(F). Let � be a set of representatives of orbits �/M(F) such that
T ∈�. We then write (6.9) as a sum of integrals indexed by �:

(6.9)=
∫
KA

∫
M(F)\M(A)

∑
β∈�

∑
ξ∈μ−1(β)

fβ
(
m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)ω(k)φ(ξa)d×adk

=
∑
β∈�

∫
KA

∫
M(F)\M(A)

∑
a′∈Mβ(F)\M(F)

∑
ξ∈μ−1(β)

fβ
(
m(a′)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)ω(k)φ(ξa′a)d×adk.

(6.10)

Here fβ is βth Fourier coefficient of f , Mβ is the stabilizer of β under the action of M (cf.
Section 2). For β ∈�, let

Iβ(s)=
∫
KA

∫
M(F)\M(A)

∑
a′∈Mβ(F)\M(F)

∑
ξ∈μ−1(β)

fβ
(
m(a′)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)ω(k)φ(ξa′a)d×adk.
(6.11)

Then

I(s,φ,Φ, f )=
∑
β∈�

Iβ(s). (6.12)

Lemma 6.1. Iβ(s)= 0 for all β ∈� with detβ = 0.

Proof. If β = 0, then for all g ∈G(A),

fβ(g)=
∫
N(F)\N(A)

f (ng)dn= 0 (6.13)
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since f is a cusp form. Hence

Iβ(s)=
∫
KA

∫
M(F)\M(A)

∑
a′∈Mβ(F)\M(F)

∑
ξ∈μ−1(β)

fβ
(
m(a′)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)ω(k)φ(ξa′a)d×adk = 0.

(6.14)

Let 0 �= β ∈� with detβ = 0. Then

Iβ(s)=
∫
KA

∫
M(F)\M(A)

∑
a′∈Mβ(F)\M(F)

∑
ξ∈μ−1(β)

fβ
(
m(a′)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)ω(k)φ(ξa′a)d×adk

=
∫
KA

∫
Mβ(A)\M(A)

∫
Mβ(F)\Mβ(A)

fβ
(
m1mk

)
Φ(k,s)

× (γχ| · |sE)(x(m1m
)) ∑

ξ∈μ−1(β)

ω(k)φ
(
ξm1m

)
dm1dmdk.

(6.15)

Let x ∈Y such that β = μ(x)= txρTx, r = rank(β). Then r < n. Let a∈GLn(F) such that

tAρβA=
(

0 0
0 T′

)
, (6.16)

where T′ is a nondegenerate r × r Hermitian matrix. So without loss of generality, we
assume that β = diag(0n−r ,T′). Then

Mβ =
{
m

((
A B
C D

))
∈M |D ∈U(T′), tCρT′C = 0, tCρT′D = 0

}
. (6.17)

Define two subgroups M1, L of Mβ:

M1 =
{
m

((
A 0
C D

))
∈M |D ∈U(T′), tCρT′C = 0, tCρT′D = 0

}
,

L=
{
m

((
1n−r B

0 1r

))
∈M | B ∈Mn−r×n−r(E)

}
.

(6.18)

ThenMβ =M1 ·L. We use this decomposition to compute the inner integral overMβ(F)\
Mβ(A) of (6.15),

∫
Mβ(F)\M(A)

fβ
(
m1mk

)(
γχ| · |sE

)(
x
(
m1m

)) ∑
ξ∈μ−1(β)

ω(k)φ
(
ξm1m

)
dm1. (6.19)
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(Here because Φ(k,s) is independent ofm1 so we remove it from the integral overMβ(F)\
M(A).) The above integral equals to

∫
M1(F)\M1(A)

∫
L(F)\L(A)

∫
S(F)\S(A)

f
(
n(X)�m1mk

)
ψ
(

tr(Xβ)
)

× (γχ| · |sE)(x(�m1m
)) ∑

ξ∈μ−1(β)

ω(k)φ
(
ξ�m1m

)
dX d�dm1.

(6.20)

Let U be the subgroup of N consisting of elements of the following form:

n

((
c d
tdρ 0

))
with c ∈M(n−r)×(n−r). (6.21)

Then LU is the unipotent radical of the maximal parabolic group P′ preserving the flag
0⊂⊗n−r

i=1 Een+i ⊂ Y (see Section 2 for the choice of basis of V). On the other hand, let Δ+

be the set of positive roots of G with respect to the Borel subgroup of G consisting of
element of following form:

(
A B

Â

)
with A be upper triangular matrix. (6.22)

For α∈ Δ+, let Nα be the 1-parameter unipotent subgroup of G corresponding to α. Set
Γ = {α ∈ Δ+ | Nα ⊂ N}. Let α0 be the simple root corresponding to P′, w = sα0 be the
simple reflection of α0. Then U =∏β∈Γ,wβ∈ΓNβ. If we put U1 =

∏
β∈Γ,wβ∈−ΓNβ, then N =

U ·U1. Hence we have decomposition

N(F)\N(A)=U(F)\U(A) ·U1(F)\U1(A). (6.23)

Corresponding to the decomposition of N , we have a decomposition of S(F):

SU(F)=
{(

c d
tdρ 0

)
∈ S(F) | c ∈M(n−r)×(n−r)(F)

}
,

SU1 (F)=
{(

0 0
0 d

)
∈ S(F) | d ∈Mr×r(F)

}
.

(6.24)

Then the isomorphism n : S(F)→N send SU and SU1 onto U and U1, respectively.
Substitute the decomposition of S(F) into (6.20), then

(6.20)=
∫
M1(F)\M1(A)

∫
L(F)\L(A)

∫
SU1 (F)\SU1 (A)

∫
SU (F)\SU (A)

× f (n(XU +XU1

)
�m1mk

)
ψ
(

tr
((
XU +XU1

)
β
))

× (γχ| · |sE)(x(�m1m
)) ∑

ξ∈μ−1(β)

ω(k)φ
(
ξ�m1m

)
dXUdXU1d�dm1dm.

(6.25)
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Direct computation shows that L centralizes U1. We can change the order of the above
integration, then

(6.20)=
∫
M1(F)\M1(A)

∫
SU1 (F)\SU1 (A)

∫
L(F)\L(A)

∫
SU (F)\SU (A)

× f
(
n
(
XU
)
�n
(
XU1

)
m1mk

)
ψ
(

tr
((
XU +XU1

)
β
))

× (γχ| · |sE)(x(�m1m
)) ∑

ξ∈μ−1(β)

ω(k)φ
(
ξ�m1m

)
dXU�dXU1ddm1dm.

(6.26)

Let XU = ( c d
tdρ 0 ) be an element of SU(A). Then

βXU =
(

0 0
0 T′

)(
c d
tdρ 0

)
=
(

0 0
T′ tdρ 0

)
. (6.27)

So

tr
(
β
(
XU +XU1

))= tr
(
βXU1

)
(6.28)

which is independent of XU . Since x(�)= 1 for � ∈ L(A), we see that

(
γχ| · |sE

)
(�)= 1, � ∈ L(A). (6.29)

If ξ ∈ μ−1(β), then rank(ξ) = r. Let a1, . . . ,an be the column vectors of ξ. Recall that
the right lower corner of ξ is an r × r nonsingular matrix T′, the space generated by
an−r+1, . . . ,an is of rank r. Hence there is a∈Mβ (depends on ξ, but it does not affect our
computation) such that

ξ′ = ξa−1 =
(

0 v
0 u

)
(6.30)

for some nonsingular r× r matrix u. If � =m( 1 x
1 )∈ L, then

ξ′� =
(

0 v
0 u

)(
1 x

1

)
= ξ′. (6.31)

The integral for fixed ξ ∈ μ−1(β) on L(F)\L(A)×U(F)\U(A) in (6.26) is∫
L(F)\L(A)

∫
U(F)\U(A)

f
(
n
(
XU
)
�n
(
XU1

)
m1mk

)
ψ
(

tr
((
XU +XU1

)
β
))

× (γχ| · |sE)(�m1m
)
ω(k)φ

(
ξ�m1m

)
dXU d�.

(6.32)

By (6.28), (6.29), and (6.31),

(6.32)=
∫

L(F)\L(A)

∫
U(F)\U(A)

f
(
n
(
XU
)
� n
(
XU1

)
m1mk

)
ψ
(

tr
(
XU1β

))
× (γχ| · |sE)(m1m

)
ω(k)φ

(
ξ′m1m

)
dXU d�,

(6.33)

which is 0, since LU is the unipotent radical of P′. This finishes the proof of the lemma.
�
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By Lemma 6.1, Iβ(s)= 0 if β is singular. Recall that we choose T to be the representative
of the open orbit of �/M. The stabilizerMT is isomorphic toG′ =U(T) the unitary group
of W . Then (6.12) reduces to

I(s,φ,Φ, f )=
∫
KA

∫
M(F)\M(A)

∑
a′∈G′(F)\M(F)

fT
(
m(a′)m(a)k

)
Φ(k,s)

× (γχ| · |sE)(deta)
∑

ξ∈G′(F)

ω(k)φ(ξa′a)d×adk

=
∫
KA

∫
M(A)

fT
(
m(a)k

)
Φ(k,s)ω(k)φ(ξa)

(
γχ| · |sE

)
d×adk.

(6.34)

6.2. Main theorem. Let γv = γ|Ev , then γ =∏v γv. Similarly, χ =∏v χv. Let Φv be a stan-
dard section of I(γ,s) of G(Fv) for all v ∈ v. Set Φ =∏vΦv. Assume that φ =∏v φv in
�(Y). Let f be a cusp form in the isotypic space of a cuspidal automorphic representa-
tion of G(A). Let S be a finite subset of v containing all archimedean places such that if
v �∈ S, χv,γv are unramified, Tv ∈GLn×n(�E)∩ S(Fv) and ψv is unramified character of Fv.
Since π =⊗′vπv for almost all v ∈ v, πv is unramified for almost all places. Assume that πv
is unramified if v �∈ S and f is Kv fixed. Moreover, φv = char(Y(�v)) if v �∈ S.

Let Ω be a finite subset of v containing S. Put

GΩ =
∏
v∈Ω

, KΩ =
∏
v∈Ω

Kv, MΩ =
∏
v∈Ω

Mv. (6.35)

They embed naturally into G(A), KA, M(A), respectively. If a ∈M(A), a =∏v av, put
aΩ =

∏
v′∈Ω av′ . Similarly, if k ∈ KΩ∪{v}, then k = kΩ · kv, for kΩ ∈ KΩ, kv ∈ Kv. To com-

pute (6.34), we define

IΩ(s)=
∫
KΩ

∫
MΩ

fT
(
m(a)k

)
Φ(k,s)ω(k)φ(a)

(
γχ| · |sE

)
(a)d×adk. (6.36)

Theorem 6.2. Notations as above. Then

IΩ∪{v}(s)= L
(
s+ 1/2,πv,γvχv,σ

)
jTv (s)dHv (s)

IΩ(s), (6.37)

where jTv , dHv (s) are jT(s), dH(s) in Theorem 5.4 for Tv, Hv, respectively,

L
(
s+

1
2

,πv,γvχv,σ
)
= L

(
s+

1
2

+ λv,πv,σ
)

, (6.38)

where λv ∈ C such that (γvχv)(a) = |a|λvE for all a ∈ E×v (Case NS), or (γvχv)(a) = |a|λv for
all a∈ F×v (Case S) (See Section 3 for the definition of Case NS and Case S).
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Proof. We will apply results in Section 5, Fv will be F there,

IΩ∪{v}(s)=
∫
KΩ∪{v}

∫
MΩ∪{v}

fT
(
m(a)k

)
Φ(k,s)ω(k)φ(a)

(
γχ| · |sE

)
(deta)d×adk

=
∫
KΩMΩ

∫
KvM(Fv)

Φ
(
KΩ,s

)
Φv
(
kv,s

)
f ′T
(
m
(
av)m

(
aΩ
)
kvkΩ

)
× (γχ| · |sE)(detaΩav

)
ω
(
kΩ
)
φΩ
(
aΩ
)
ω
(
kv
)
φv
(
av
)
d×av d×dkvaΩdkΩ.

(6.39)

Φv is the standard section, then Φv(kv,s) = 1 for all kv ∈ Kv. Moreover, f is Kv-fixed,
hence fT(m(avaΩ)kvkΩ)= fT(m(avaΩ)kΩ) for all kv ∈ Kv. φv = char(Y(�v)) which is Kv
fixed element for the Weil representation, hence ω(kv)φv = φv,

(6.39)=
∫
KΩMΩ

∫
KvM(Fv)

ΦΩ
(
kΩ,s

)
fT
(
m
(
avaΩkΩ

))
× (γχ| · |sE)(detavaΩ

)
ω
(
kΩ
)
φ
(
aΩ
)
φ
(
av
)
d×av dkv daΩdkΩ

=
∫
KΩMΩ

ΦΩ
(
kΩ,s

)
ω
(
kΩ
)
φ
(
aΩ
)(
γχ| · |sE

)(
detaΩ

)∫
M(Fv)

× fT
(
m
(
av
)
m
(
aΩ
)
kΩ
)
φ
(
av
)
γ0
(
av
)s

(γχ)
(

detav
)
d×av d×aΩdkΩ.

(6.40)

As φv = char(Y(�v)), Mv ∩Y(�)=M(�v) (cf. Section 5),

∫
M(Fv)

fT
(
m
(
av
)
m
(
aΩ
)
kΩ
)
φ
(
av
)
γs0
(
av
)
(γχ)

(
detav

)
d×av

=
∫
M(�v)

fT
(
m
(
av
)
m
(
aΩ
)
kΩ
)
γs0
(
av
)
(γχ)

(
detav

)
d×av

= L
(
s+ 1/2,πv,γvχv,σ

)
jTv (s)dHv (s)

fT
(
m
(
aΩ
)
kΩ
)
, by Theorem 5.4.

(6.41)

Here we are viewing fT(m(av)m(aΩ)kΩ) as a functional lTv on πv by Example 5.1 in
Section 5. Hence

IΩ∪{v} = L
(
s+ 1/2,πv,γvχv,σ

)
jTv (s)dHv (s)

IΩ(s). (6.42)

�

To complete the computation of our global integral, let

jST(s)=
∏
v �∈S

jTv (s), dSH(s)=
∏
v �∈S

dHv (s). (6.43)

Define partial L function of π as

LS
(
s+

1
2

,π,γχ,σ
)
=
∏
v �∈S

L
(
s+

1
2

,πv,
(
γvχv

)
,σ
)
. (6.44)

Since I(s) = limΩ IΩ(s), by Theorem 6.2, let Ω be a finite set of v approaching to v by
adding one place each time, then the following holds.
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Theorem 6.3. Choose f ,φ,Φ and S⊂ v as in Section 6.1. Then for all s∈ C,

I(s,φ,Φ, f )= R(s)
jST(s)dSH(s)

LS
(
s+

1
2

,π,γχ,σ
)

, (6.45)

where R(s)= IS(s) is a meromorphic function of s.

Proof. Argue as [6, Theorem 6.1], the partial L function is a meromorphic function. Also
by the analytic property of Eisenstein series, I(s,φ,Φ, f ) itself is a meromorphic function,
hence R(s)= IS(s) is a meromorphic function of s. �

Remark 6.4. We remark here that following [4, pages 118-119], under our assumption
one can show that by choosing appropriate φ, Φ, f , we can let that R(s) �= 0.
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