Research Article

An Integral Representation of Standard Automorphic L Functions for Unitary Groups

Yujun Qin

Received 29 May 2006; Revised 5 November 2006; Accepted 26 November 2006
Recommended by Dihua Jiang

Let F be a number field, G a quasi-split unitary group of rank n. We show that given an irreducible cuspidal automorphic representation π of $G(\mathbb{A})$, its (partial) L function $L^{S}(s, \pi, \sigma)$ can be represented by a Rankin-Selberg-type integral involving cusp forms of π, Eisenstein series, and theta series.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let F be a number field, G the general linear group of degree n defined over F. Let π be an irreducible cuspidal automorphic representation of $G(\mathbb{A})$. In [1-3], a Rankin-Selbergtype integral is constructed to represent the L function of π. That the integrals of Jacquet, Piatetski-Shapiro, and Shalika are Eulerian follows from the uniqueness of Whittaker models and the fact that cuspidal representations of GL_{n} are always generic. For other reductive group whose cuspidal representations are not always generic, in [4], PiatetskiShapiro and Rallis construct a Rankin-Selberg integral for symplectic group $G=\operatorname{Sp}_{2 n}$ to represent the partial L function of a cuspidal representation π of $G(\mathbb{A})$. In this paper, we apply similar method to the quasi-split unitary group of rank n.

Let F be a number field, E a quadratic field extension of F. Let V be a $2 n$-dimensional vector space over E with an anti-Hermitian form

$$
\eta_{2 n}=\left(\begin{array}{cc}
& 1_{n} \tag{1.1}\\
-1_{n} &
\end{array}\right)
$$

on it. Let $G=U\left(\eta_{2 n}\right)$ be the unitary group of $\eta_{2 n}$. Let π be an irreducible cuspidal automorphic representation of $G(\mathbb{A}), f$ a cusp form belonging to the isotypic space of π. The

Rankin-Selberg-type integral is defined by

$$
\begin{equation*}
\int_{G(F) \backslash G(\mathbb{A})} f(g) E(g, s) \theta(g) d g \tag{1.2}
\end{equation*}
$$

where $E(g, s)$ is an Eisenstein series associated with a degenerate principle series, θ is a theta series defined by the Weil representation of $\operatorname{Sp}(V \otimes W)$, where W is a nondegenerate Hermitian space of dimension n. We show in Theorem 6.3 that (1.2) represent the standard partial L function $L^{S}(s, \pi, \sigma)$ of π.

In [4], after showing the Rankin-Selberg integral has a Euler product decomposition, Piatetski-Shapiro and Rallis continued to show that if $n / 2+1$ is a pole of partial L function, then theta lifting is nonvanishing [4, Proposition on page 120]. There should be a parallel application of our paper, that is, relate the largest possible pole with nonvanishing of period integral.

2. Notations and conventions

Let F be a field of characteristic $0, E$ a commutative F-algebra with rank two. Let ρ be an F-linear automorphism of E. We are interested in (E, ρ) of the following two types:
(1) E is a quadratic field extension of F, ρ is the nontrivial element of $\operatorname{Gal}(E / F)$;
(2) $E=F \oplus F,(x, y)^{\rho}=(y, x)$.

Let tr be the trace of E over F, that is, it is defined by

$$
\begin{equation*}
\operatorname{tr}(z)=z+z^{\rho}, \quad z \in E \tag{2.1}
\end{equation*}
$$

Let V be a left E-module, $\varphi: V \times V \rightarrow E$ a nonsingular ε-Hermitian form on V, here $\varepsilon= \pm 1$. The unitary group of φ is

$$
\begin{equation*}
U(\varphi)=\{\alpha \in \mathrm{GL}(V, E) \mid \varphi(x \alpha, y \alpha)=\varphi(x, y), \forall x, y \in V\} . \tag{2.2}
\end{equation*}
$$

Let $\varepsilon^{\prime}=-\epsilon$ so that $\varepsilon \varepsilon^{\prime}=-1$. Let $\left(W, \varphi^{\prime}\right)$ be a nonsingular ε^{\prime}-Hermitian space. Put

$$
\begin{equation*}
\mathbb{W}=V \otimes W \tag{2.3}
\end{equation*}
$$

Then \mathbb{W} is a nonsingular symplectic space over F with symplectic form

$$
\begin{equation*}
\phi=\operatorname{tr} \circ\left(\varphi \otimes \varphi^{\prime}\right) . \tag{2.4}
\end{equation*}
$$

Let $G=U(\varphi), G^{\prime}=U\left(\varphi^{\prime}\right)$ be the unitary groups corresponding to φ and φ^{\prime}, respectively. It is well known that $G \times G^{\prime}$ embeds as a dual pair in $\operatorname{Sp}(\phi)$.

We often express various objects by matrices. For a matrix x with entries in E, put

$$
\begin{equation*}
x^{*}={ }^{t} x^{\rho}, \quad x^{-\rho}=\left(x^{\rho}\right)^{-1}, \quad \hat{x}={ }^{t} x^{-\rho} \tag{2.5}
\end{equation*}
$$

assuming x to be square and invertible if necessary. Assume that $V \cong E^{\ell}$ for some nonzero positive integer ℓ. Let φ_{0} be an $\ell \times \ell$ matrix satisfying $\varphi_{0}^{*}=\varepsilon \varphi_{0}$. We can define an ε Hermitian form φ on V by requiring

$$
\begin{equation*}
\varphi(x, y)=x \varphi_{0} y^{*} . \tag{2.6}
\end{equation*}
$$

Then the unitary group $U(\varphi)$ is isomorphic to the subgroup of $\mathrm{GL}_{\ell}(E)$ consisting elements g satisfying

$$
\begin{equation*}
g \varphi_{0} g^{*}=\varphi_{0} \tag{2.7}
\end{equation*}
$$

In the following we let $\varepsilon=-1$. Then φ is a nonsingular skew-Hermitian form, hence $\ell=2 n$ for some positive integer n. Let $e_{1}, \ldots, e_{2 n}$ be a basis of V such that φ is represented by

$$
\eta_{2 n}=\left(\begin{array}{ll}
& 1_{n} \tag{2.8}\\
-1_{n} &
\end{array}\right) .
$$

Put

$$
\begin{equation*}
X=\oplus_{i=1}^{n} E e_{i}, \quad Y=\oplus_{n+1}^{2 n} E e_{i} . \tag{2.9}
\end{equation*}
$$

Then X, Y are maximal isotropic spaces of V. Let P be the maximal parabolic subgroup of G preserving Y. Then

$$
P(F)=\left\{\left.\left(\begin{array}{cc}
g & g u \tag{2.10}\\
& \hat{g}
\end{array}\right) \right\rvert\, g \in \mathrm{GL}_{n}(E), u \in S(F)\right\}
$$

Here

$$
\begin{equation*}
S(F)=\left\{b \in M_{n \times n}(E) \mid b^{*}=b\right\} \tag{2.11}
\end{equation*}
$$

is the set of Hermitian matrices of degree n. Let N be the unipotent radical of P. Then $N(F)$ consists of elements of the following type:

$$
n(b)=\left(\begin{array}{ll}
1 & b \tag{2.12}\\
& 1
\end{array}\right), \quad \text { with } b \in S(F) \text {. }
$$

Let

$$
\begin{equation*}
M=\{g \in P \mid X g \subset X, Y g \subset Y\} \tag{2.13}
\end{equation*}
$$

Then M is a Levi subgroup of P. The F-rational points $M(F)$ of M consists of elements of the following form:

$$
m(a)=\left(\begin{array}{ll}
a & \tag{2.14}\\
& \hat{a}
\end{array}\right), \quad \text { with } a \in \mathrm{GL}_{n}(E)
$$

Define an action of $\mathrm{GL}_{n}(E)$ on $S(F)$ by

$$
\begin{equation*}
(a, b) \longrightarrow a b a^{*}, \quad \text { with } a \in \mathrm{GL}_{n}(E), b \in S(F) . \tag{2.15}
\end{equation*}
$$

It is equivalent to the adjoint action of M on N, since

$$
\begin{equation*}
m(a) n(b) m(a)^{-1}=n\left(a b a^{*}\right) \tag{2.16}
\end{equation*}
$$

We will say "the action of $M(F)$ on $S(F)$ " if no confusion is caused.

Let O be the unique open orbit of $M(F) \backslash S(F)$, then

$$
\begin{equation*}
O=\{b \in S(F) \mid \operatorname{det} b \neq 0\} . \tag{2.17}
\end{equation*}
$$

For $\beta \in O$, let M_{β} be the stabilizer of β. Since β is a nonsingular Hermitian matrix,

$$
\begin{equation*}
M_{\beta} \cong U(\beta) \tag{2.18}
\end{equation*}
$$

is the unitary group of β.
Let $\mathbb{Y}=Y \otimes W$. For $w \in \mathbb{Y}$, let us write

$$
\begin{equation*}
w=\sum_{i=1}^{n} e_{n+i} \otimes w_{i}, \quad \text { with } w_{i} \in W, i=1, \ldots, n . \tag{2.19}
\end{equation*}
$$

Define the moment map $\mu: \mathbb{Y} \rightarrow S(F)$ by

$$
\begin{equation*}
\mu(w)=\left(\varphi^{\prime}\left(w_{i}, w_{j}\right)\right)_{1 \leq i, j \leq n} . \tag{2.20}
\end{equation*}
$$

It is clear that if $m=m(a) \in M(F)$, then

$$
\begin{equation*}
\mu(w m)={ }^{t} a \mu(w) a^{\rho} . \tag{2.21}
\end{equation*}
$$

Denote the image of μ by \mathscr{C}, then it is invariant under $M(F)$. Let T be a Hermitian matrix representing φ^{\prime}. If $\operatorname{dim} W=n$, then $T \in \mathscr{C}=O$. In particular, from (2.18),

$$
\begin{equation*}
M_{T}=G^{\prime} . \tag{2.22}
\end{equation*}
$$

3. Localization of various objects

Let F be a number field, E a quadratic field extension of F. Let \mathbf{v} be the set of all places of $F, \mathbf{a}, \mathbf{f}$ be the sets of Archimedean and non-Archimedean places, respectively. Then $\mathbf{v}=\mathbf{a} \cup \mathbf{f}$. For $v \in \mathbf{v}$, let F_{v} be the v-completion of F, \mathcal{O}_{v} the valuation ring of F_{v} if v is finite. Let $\mathbb{A}, \mathbb{A}_{E}$ be the rings of adeles of F and E, respectively.

Let ρ be the generator of $\operatorname{Gal}(E / F)$. For $v \in \mathbf{v}$, let $E_{v}=E \otimes F_{v}$. We may extend ρ to E_{v}, denote it by ρ_{v}. Then E_{v} is a quadratic extension of F_{v}, ρ_{v} is an F_{v}-automorphism of E_{v} of order 2. Corresponding to v is split in E or not, the couple (E_{v}, ρ_{v}) belongs to one of the following two cases.
(1) Case NS: v remains prime in E. Hence E_{v} is a quadratic field extension of $F_{v}, \rho_{v} \in$ $\operatorname{Gal}(E / F)$ is the nontrivial element.
(2) Case S: v splits in E. Then $E_{v}=F_{v} \oplus F_{v}$ and $(x, y)^{\rho_{v}}=(y, x)$ for $(x, y) \in E_{v}$.

Let γ be a nontrivial Hecke character of E, that is, it is a continuous homomorphism

$$
\begin{equation*}
\gamma: \mathbb{A}_{E}^{\times} \longrightarrow \mathbf{S}^{1} \tag{3.1}
\end{equation*}
$$

such that $\gamma\left(E^{\times}\right)=1$. For $v \in \mathbf{v}$, Let γ_{v} be the restriction of γ to E_{v}^{\times}, then $\gamma=\otimes_{v} \gamma_{v}$.
For an algebraic group H defined over F, we let $H\left(F_{v}\right)$ be the set of F_{v}-points of H. Put

$$
\begin{equation*}
H_{\mathbf{a}}=\prod_{v \in \mathbf{a}} H\left(F_{v}\right), \quad H_{\mathbf{f}}=\prod_{v \in \mathbf{f}}{ }^{\prime} H\left(F_{v}\right), \tag{3.2}
\end{equation*}
$$

where the prime indicates restricted product with respect to $H\left(O_{v}\right)$. Then

$$
\begin{equation*}
H(\mathbb{A})=H_{\mathrm{a}} H_{\mathrm{f}} \tag{3.3}
\end{equation*}
$$

Let $G=U\left(\eta_{n}\right)$ be the quasi-split even unitary group of rank n defined over F. We have defined the standard Siegel parabolic subgroup $P=M N$ of G in Section 2. Keep notations of last section. For $v \in \mathbf{f}$, the localization of these algebraic groups are as follows.
(1) Case NS: v remains prime in E. In this case,

$$
\begin{align*}
G\left(F_{v}\right) & =U\left(\eta_{n}\right)\left(F_{v}\right) \\
M\left(F_{v}\right) & =\left\{m(a) \mid a \in \mathrm{GL}_{n}\left(E_{v}\right)\right\} \tag{3.4}\\
N\left(F_{v}\right) & =\left\{n(X) \mid X \in S\left(F_{v}\right)\right\} .
\end{align*}
$$

(2) Case S: v splits in E. In this case,

$$
\begin{gather*}
G\left(F_{v}\right)=\mathrm{GL}_{2 n}\left(F_{v}\right), \\
M\left(F_{v}\right)=\left\{m(A, B) \left\lvert\, m(A, B)=\left(\begin{array}{ll}
A & \\
& B^{-1}
\end{array}\right)\right., A, B \in \mathrm{GL}_{n}\left(F_{v}\right)\right\}, \tag{3.5}\\
N\left(F_{v}\right)=\left\{n(X) \left\lvert\, n(X)=\left(\begin{array}{cc}
1 & X \\
& 1
\end{array}\right)\right., X \in M_{n \times n}\left(F_{v}\right)\right\} .
\end{gather*}
$$

If $v \in \mathbf{f}$ is a finite place, let $K_{0, v}=G\left(O_{v}\right)$ be a maximal open compact subgroup of $G\left(F_{v}\right)$. For $g \in G\left(F_{v}\right)$, we have Iwasawa decomposition

$$
\begin{align*}
(\text { Case NS) } & g=n(X) m(a) k \\
(\text { Case S) } & g=n(X) m(A, B) k \tag{3.6}
\end{align*}
$$

for some $k \in K_{0, v}, n(X) m(a)$ or $n(X) m(A, B)$ belong to $P\left(F_{v}\right)$.

4. Local computation

Our result relies heavily on the L function of unitary group in [5] derived by Li. So in this section, we review the doubling method of Gelbart et al. [6] briefly and the main theorem of [5].

Let F be non-Archimedean local field with characteristic 0,0 the valuation ring of F with uniformizer ω. Let $|\cdot|$ be the normalized absolute value of F. Let (E, ρ) be a couple as in Section 1. If E is a field extension of F, let O_{E} be the ring of integer of E with uniformizer $\omega_{E},|\cdot|_{E}$ the normalized absolute value of E.

Let V be $2 n$-dimensional space over E with skew-Hermitian form $\varphi=\eta_{2 n}, G=U(V)$. Then

$$
\begin{align*}
& G(F)=U\left(\eta_{2 n}\right), \quad \text { Case NS; } \\
& G(F)=\mathrm{GL}_{2 n}, \quad \text { Case S. } \tag{4.1}
\end{align*}
$$

Let $-V$ be the space V with Hermitian form $-\varphi$. Define

$$
\begin{equation*}
V=V \oplus-V \tag{4.2}
\end{equation*}
$$

Then $\varphi \oplus(-\varphi)$ is a nonsingular skew-Hermitian form on \mathbb{V}. Let $H=U(\mathbb{V})$ be the unitary group of \mathbb{V}. Then $K=H(\mathbb{O})$ is a maximal open compact subgroup of $H(F)$. We embed $G \times G$ into H as a closed subgroup.

Define two maximal isotropic subspaces of \mathbb{V} as follows:

$$
\begin{equation*}
\underline{X}=\{(v,-v) \mid v \in V\}, \quad \underline{Y}=\{(v, v) \mid v \in V\} . \tag{4.3}
\end{equation*}
$$

Then $\mathbb{V}=\underline{X} \oplus \underline{Y}$. Let Q be the maximal parabolic subgroup of H preserving \underline{Y}. Following [5], we define a rational character x of Q by

$$
\begin{equation*}
x(p)=\operatorname{det}\left(\left.p\right|_{\underline{Y}}\right)^{-1}, \quad p \in \mathrm{Q} . \tag{4.4}
\end{equation*}
$$

Choose a basis of \mathbb{V} compatible with the decomposition (4.3), we can write p as a matrix:

$$
p=\left(\begin{array}{ll}
a & * \tag{4.5}\\
& \hat{a}
\end{array}\right), \quad \text { with } a \in \mathrm{GL}_{2 n} .
$$

Then $x(p)=\operatorname{det}(a)^{\rho}$.
Let γ be an unramified character of F^{\times}. Then $p \mapsto \gamma(x(p))$ is a character of $\mathrm{Q}(F)$. For $s \in \mathbb{C}$, let $I(s, \gamma)$ be the space of smooth functions $f: H(F) \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
f(p g)=\gamma(x(p))|x(p)|^{s+(4 n+1) / 2} f(g), \quad p \in \mathrm{Q}(F), g \in G(F) . \tag{4.6}
\end{equation*}
$$

$H(F)$ acts on $I(s, \gamma)$ by right multiplication. Let $I(s, \gamma)^{K}$ be the subspace of K-invariant elements of $I(s, \gamma)$. Since γ is unramified, by Frobenius reciprocity,

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} I(s, \gamma)^{K}=1 \tag{4.7}
\end{equation*}
$$

Let $\Phi_{K, s}$ be the unique K-invariant function in $I(s, \gamma)$ such that

$$
\begin{equation*}
\Phi_{K, s}(1)=1 \tag{4.8}
\end{equation*}
$$

One important property of $\Phi_{K, s}$ is the following.
Lemma 4.1 (see [5, Lemma 3.2]). Let $K_{0}=G(0)$ be a maximal open compact subgroup of $G(F)$. Then for $k_{1}, k_{2} \in K_{0}, g \in G(F)$,

$$
\begin{equation*}
\Phi_{K, s}\left(k_{1} g k_{2}, 1\right)=\Phi_{K, s}(g, 1) \tag{4.9}
\end{equation*}
$$

here $(g, 1) \in G \times G \hookrightarrow H$.
4.1. L functions. Let (π, V) be an unramified irreducible representation of $G(F),(\check{\pi}, \check{V})$ the contragredient of π. Let $\langle\cdot, \cdot\rangle_{\pi}$ be the canonical pairing between V and \check{V}. For $v \in V$, $\check{v} \in \check{V}$, define a matrix coefficient of π by

$$
\begin{equation*}
\omega_{\pi}(g ; v, \check{v})=\langle g v, \check{v}\rangle_{\pi}, \quad g \in G(F) . \tag{4.10}
\end{equation*}
$$

If v and \check{v} are K_{0}-fixed elements of π and $\check{\pi}$, respectively, then $\omega_{\pi}(g ; v, \check{v})$ is a spherical function of π. In addition, if $\langle v, \check{v}\rangle_{\pi}=1$, then $\omega_{\pi}(1 ; v, \check{v})=1$, we get the zonal spherical function ω_{π} of π.

Let ${ }^{L} G$ be the dual group of G. Then

$$
\begin{gather*}
{ }^{L} G=\mathrm{GL}_{2 n}(\mathbb{C}) \rtimes \operatorname{Gal}(E / F), \quad \text { Case NS } \\
{ }^{L} G=\mathrm{GL}_{2 n}(\mathbb{C}), \quad \text { Case S. } \tag{4.11}
\end{gather*}
$$

For Case NS, the action of $\operatorname{Gal}(E / F)$ on $\mathrm{GL}_{2 n}$ is given by

$$
\begin{equation*}
g^{\rho}=\Phi_{2 n}{ }^{t} g^{-1} \Phi_{2 n}^{-1}, \quad g \in \mathrm{GL}_{2 n}(\mathbb{C}) \tag{4.12}
\end{equation*}
$$

Here

$$
\Phi_{2 n}=\left(\begin{array}{ccccc}
& & & & 1 \tag{4.13}\\
& & & -1 & \\
& & \vdots & & \\
-1 & & &
\end{array}\right)
$$

Since π is an unramified irreducible representation of $G(F)$, it determines a unique semisimple conjugacy class $\left(a_{\pi}, \rho\right)$ (Case NS) or $a_{\pi}\left(\right.$ Case S) in ${ }^{L} G$ [7]. We can take a representative of a_{π} as follows:

$$
\begin{gather*}
a_{\pi}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right), \quad \text { Case NS, } \\
a_{\pi}=\operatorname{diag}\left(a_{1}, \ldots, a_{2 n}\right), \quad \text { Case } S \tag{4.14}
\end{gather*}
$$

with $a_{i} \in \mathbb{C}^{\times}, i=1, \ldots, 2 n[7$, Section 6.9].
Let r be the natural action of $\mathrm{GL}_{2 n}(\mathbb{C})$ on $\mathbb{C}^{2 n}, \sigma$ the induced representation

$$
\begin{gather*}
\sigma=\operatorname{Ind}_{\mathrm{GL}_{2 n}(\mathbb{C})}^{L_{G}}(r), \quad \text { Case NS }, \\
\sigma=\operatorname{Ind}_{\mathrm{GL}_{2 n}(\mathbb{C})}^{\mathrm{GL}_{2}(\mathbb{C} / 2 \mathbb{Z} \mathbb{Z}} r, \quad \text { Case } \mathrm{S}, \tag{4.15}
\end{gather*}
$$

respectively. Associate a local L function $L(s, \pi, \sigma)$ to π by

$$
\begin{align*}
\text { Case NS }: \begin{aligned}
L(s, \pi, \sigma) & =\operatorname{det}\left(1-\sigma\left(a_{\pi}, \rho\right) q^{-s}\right)^{-1} \\
& =\prod_{i \leq n}\left[\left(1-a_{i} q^{-2 s}\right)\left(1-a_{i}^{-1} q^{-2 s}\right)\right]^{-1} \\
\text { Case S }: L(s, \pi, \sigma) & =\operatorname{det}\left(1-\sigma\left(a_{\pi}\right) q^{-s}\right)^{-1} \\
& =\prod_{i \leq 2 n}\left[\left(1-a_{i} q^{-s}\right)\left(1-a_{i}^{-1} q^{-s}\right)\right]^{-1}
\end{aligned}
\end{align*}
$$

where q is the cardinality of residue field of F.

The relation between the functions $\Phi_{K, s}, \omega_{\pi}$, and $L(s, \pi, \sigma)$ is as follows.
Theorem 4.2 (see [5, Theorem 3.1]). Notations as above. For $s \in \mathbb{C}$,

$$
\begin{equation*}
\int_{G(F)} \Phi_{K, s}(g, 1) \omega_{\pi}(g)=\frac{L(s+1 / 2, \pi, \sigma)}{d_{H}(s)} \tag{4.17}
\end{equation*}
$$

Here

$$
\begin{gather*}
\text { (Case NS) } d_{H}(s)=\frac{L\left(2 s+1, \epsilon_{E / F}\right)}{L\left(2 s+2 n+1, \epsilon_{E / F}\right)} \prod_{0 \leq j<n} \xi(2 s+2 n-2 j) L\left(2 s+2 n-2 j+1, \epsilon_{E / F}\right), \\
\left(\text { Case S) } d_{H}(s)=\prod_{j=1}^{2 n}(2 s+j) .\right. \tag{4.18}
\end{gather*}
$$

$\xi(s)$ is the zeta function of $F, \epsilon_{E / F}$ is the character of order 2 associated to the extension E / F by local class field theory, $L(s, \chi)$ is the local Hecke L function for a character χ of F^{\times}.

We will derive a formula from (4.17) which is applicable for our computation later. For this purpose, for $g \in G(F)$, let

$$
\begin{align*}
(\text { Case NS }) & \delta(g)=\operatorname{diag}\left(\omega_{E}^{l_{1}}, \ldots, \omega_{E}^{l_{n}}\right), \quad l_{1} \geq \cdots \geq l_{n} \geq 0 \\
(\text { Case S) } & \delta(g)=\operatorname{diag}\left(\omega^{l_{1}}, \ldots, \omega^{l_{2 n}}\right), \quad l_{1} \geq \cdots \geq l_{2 n} \tag{4.19}
\end{align*}
$$

such that $g \in K_{0} m(\delta(g)) K_{0}\left(\right.$ Case NS) or $g \in K_{0} \delta(g) K_{0}$ (Case S). Define a function $\Delta(g)$ on $G(F)$ by

$$
\begin{align*}
(\text { Case NS) } & \Delta(g)=|\operatorname{det} \delta(g)|_{E}^{-1} \\
(\text { Case S) } & \Delta(g)=|\operatorname{det} \delta(g)|^{-1} \tag{4.20}
\end{align*}
$$

By Lemma 4.1,

$$
\begin{align*}
(\text { Case NS }) & \Phi_{K, s}(g, 1)=\Phi_{K, s}(m(\delta(g), 1)) \tag{4.21}\\
(\text { Case } S) & \Phi_{K, s}(g, 1)=\Phi_{K, s}(\delta(g), 1)
\end{align*}
$$

Furthermore, reasoning as in [5, page 197], one can show that

$$
\begin{equation*}
\Phi_{K, s}(g, 1)=\Delta(g)^{-(s+n)} \tag{4.22}
\end{equation*}
$$

Hence Theorem 4.2 is equivalent to the following.
Theorem 4.3. For $s \in \mathbb{C}$,

$$
\begin{equation*}
\int_{G(F)} \Delta(g)^{-(s+n)}(g) \omega_{\pi}(g) d g=\frac{L(s+1 / 2, \pi, \sigma)}{d_{H}(s)} \tag{4.23}
\end{equation*}
$$

Here $d_{H}(s)$ is the meromorphic functions in Theorem 4.2.

Before we end this section, we record a formula for the value on $\Delta(g)$ for some special elements in $G(F)$. For $\beta \in M_{n \times n}(F)$, let $L(\beta)$ be the set of all minors of β.

Lemma 4.4 (see [8, Proposition 3.9]). (1) (Case NS) Let

$$
g=\left(\begin{array}{ll}
\widehat{w} & \tag{4.24}\\
& w
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
& 1
\end{array}\right)\left(\begin{array}{ll}
v^{*} & \\
& v^{-1}
\end{array}\right) \in G(F)
$$

with $v, w \in \mathrm{GL}_{n}(E) \cap M_{n \times n}\left(\mathcal{O}_{E}\right)$. Then

$$
\begin{equation*}
\Delta(g)=|\operatorname{det}(v w)|_{E}^{-1} \max _{C \in L(\beta)}|\operatorname{det} C|_{E} . \tag{4.25}
\end{equation*}
$$

(2) (Case S) Let

$$
g=\left(\begin{array}{ll}
w^{-1} & \tag{4.26}\\
& v
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
& 1
\end{array}\right)\left(\begin{array}{ll}
v^{\prime} & \\
& w^{\prime-1}
\end{array}\right) \in G(F)
$$

with $v, v^{\prime}, w, w^{\prime} \in \mathrm{GL}_{n}(F) \cap M_{n \times n}(0)$. Then

$$
\begin{equation*}
\Delta(g)=\left|\operatorname{det}\left(v v^{\prime} w w^{\prime}\right)\right|^{-1}\left(\max _{C \in L(\beta)}|\operatorname{det} C|\right)^{2} . \tag{4.27}
\end{equation*}
$$

5. Fourier coefficients

In this section, we will compute Fourier coefficients of $\Delta(g)$. Our method is similar to that of [4].

Notations are as in the last section. Let ψ be a nontrivial additive character of F. Let (π, V_{0}) be an unramified irreducible admissible representation of $G(F), T$ a square matrix such that $T \in S(F)$ (Case NS) or $T \in M_{n \times n}(F)$ (Case S). Let l_{T} be a linear functional on V_{0} satisfying

$$
l_{T}\left(\pi\left(\begin{array}{rr}
1 & X \tag{5.1}\\
& 1
\end{array}\right) v\right)=\overline{\psi(\operatorname{tr}(X T))} l_{T}(v)
$$

for all $v \in V_{0}, X \in S(F)$ (Case NS) or $X \in M_{n \times n}(F)$ (Case S).
Example 5.1. Let F be a number field, π an irreducible cuspidal automorphic representation of $G(\mathbb{A})$ for a moment [9]. Then $\pi=\otimes_{v}^{\prime} \pi_{v}$ is a restricted product of irreducible admissible representations π_{v} of $G\left(F_{v}\right)$, for almost all $v \in \mathbf{v}, \pi_{v}$ is unramified irreducible admissible representation. Let f be a cusp form in $A(G(F) \backslash G(\mathbb{A}))_{\pi}$, the isotypic space of π. Let $v \in \mathbf{f}$ such that π_{v} is unramified irreducible admissible representation of $G\left(F_{v}\right)$. Let $T_{v} \in S\left(F_{v}\right)$ (Case NS) or $T_{v} \in M_{n \times n}\left(F_{v}\right)$. Define a linear functional $L_{T_{v}}$ on $A(G(F) \backslash G(\mathbb{A}))_{\pi}$ by

$$
l_{T_{v}}(f)=\int f\left(\left(\begin{array}{cc}
1 & X_{v} \tag{5.2}\\
& 1
\end{array}\right)\right) \psi\left(\operatorname{tr}\left(X_{v} T_{v}\right)\right) d X_{v}
$$

where the integral is taken on $S\left(F_{v}\right)$ (Case NS) or $M_{n \times n}\left(F_{v}\right)$ (Case S). We see that $l_{T_{v}}(f)$ is independent of $\left.f\right|_{G\left(F_{w}\right)}$ for $w \in \mathbf{v}, w \neq v$. But $\pi_{v}=\left.\pi\right|_{G\left(F_{v}\right)}$, so $l_{T_{v}}$ is a linear functional on π_{v} satisfying (5.1).

Back to the assumption that F is non-Archimedean local field, $\left(\pi, V_{0}\right)$ is an unramified irreducible representation of $G(F)$. Define a subset $M(O)$ of $M_{2 n}(E)$ (Case NS) or of $M_{2 n}(F)$ (Case S) as follows:

$$
\begin{gather*}
\text { (Case NS) } \quad M(0)=\left\{\left.m(a)=\left(\begin{array}{ll}
a & \\
& \hat{a}
\end{array}\right) \right\rvert\, a \in M_{n \times n}\left(\mathrm{O}_{E}\right) \cap \mathrm{GL}_{n}(E)\right\} \\
\left(\text { Case S) } \quad M(0)=\left\{\left.m(A, B)=\left(\begin{array}{ll}
A & \\
& B^{-1}
\end{array}\right) \right\rvert\, A, B \in M_{n \times n}(0) \cap \mathrm{GL}_{n}(F)\right\} .\right. \tag{5.3}
\end{gather*}
$$

Let γ_{0} be a function on $M(\mathbb{O})$ defined by

$$
\begin{gather*}
\left(\text { Case NS) } \quad \gamma_{0}(m(a))=|\operatorname{det} a|_{E}\right. \\
\left(\text { Case S) } \quad \gamma_{0}(m(A, B))=|\operatorname{det} A \operatorname{det} B| .\right. \tag{5.4}
\end{gather*}
$$

Lemma 5.2. Let ψ be an unramified additive character of F. Let T be a square matrix such that $T \in S(F)$ (Case NS) or $T \in M_{n \times n}(F)($ Case $S)$. Let $\left(\pi, V_{0}\right)$ be an unramified irreducible admissible representation of $G(F)$. Take $0 \neq f_{0} \in V_{0}^{K_{0}}$, where $K_{0}=G(O)$ is a maximal compact subgroup of $G(F)$. Let l_{T} be a linear functional on V_{0} satisfying (5.1). Then for $s \in \mathbb{C}$,

$$
\begin{equation*}
\int_{G(F)} \Delta^{-(s+n)}(g) l_{T}\left(\pi(g) f_{0}\right) d g=l_{T}\left(f_{0}\right) \frac{L(s+1 / 2, \pi, \sigma)}{d_{H}(s)} \tag{5.5}
\end{equation*}
$$

Proof. As in [3], the convergence of left-hand side of the equation when Res is sufficiently large comes from the vanishing of $l_{T}\left(\pi(a) f_{0}\right)$ when a is sufficiently large, here a belongs to the maximal F-torus consisting of diagonal elements in $G(F)$.

Since both sides are meromorphic functions of s, we only need to show the equation for Res sufficiently large. We first claim that

$$
\begin{equation*}
\int_{K_{0}} l_{T}\left(\pi(k g) f_{0}\right) d k=l_{T}\left(f_{0}\right) \omega_{\pi}(g), \quad g \in G(F) \tag{5.6}
\end{equation*}
$$

In fact, the left-hand side is a bi- K_{0}-invariant matrix coefficient of π, so there is some $\lambda \in \mathbb{C}$ such that

$$
\begin{equation*}
\int_{K_{0}} l_{T}\left(\pi(k g) f_{0}\right) d k=\lambda \omega_{\pi}(g), \quad g \in G(F) \tag{5.7}
\end{equation*}
$$

Let $g=1$, then $\lambda=l_{T}\left(f_{0}\right)$.
Back to the proof of the lemma. If Res is sufficiently large, the left-hand side of (5.5) converges absolutely. Hence

$$
\begin{align*}
\text { L.H.S of }(5.5) & =\int_{G(F)} \int_{K_{0}} \Delta^{-(s+n)}(k g) l_{T}\left(\pi(g) f_{0}\right) d k d g \tag{5.8}\\
& =\int_{G(F)} \int_{K_{0}} \Delta^{-(s+n)}(g) l_{T}\left(\pi(k g) f_{0}\right) d k d g
\end{align*}
$$

we have computed the inside integral in (5.6), so

$$
\begin{align*}
(5.8) & =l_{T}\left(f_{0}\right) \int_{G(F)} \Delta^{-(s+n)}(g) \omega_{\pi}(g) d g \\
& =l_{T}\left(f_{0}\right) \frac{L(s+1 / 2, \pi, \sigma)}{d_{H}(s)}, \quad \text { by Theorem 4.3. } \tag{5.9}
\end{align*}
$$

Apply Iwasawa decomposition (3.6) $g=n(X) m(a) k$ in the integrand of (5.5). When Res is sufficiently large,

$$
\begin{align*}
\int_{G(F)} \Delta^{-(s+n)}(g) l_{T}\left(\pi(g) f_{0}\right) d f= & \int_{K_{0} \times M(F) \times N(F)} \Delta^{-(s+n)}(n(X) m(a) k) l_{T}\left(\pi(n(X) m(a) k) f_{0}\right) \\
& \times \delta_{P}(m(a))^{-1} d n(X) d m(a) d k \tag{5.10}
\end{align*}
$$

Here $\delta_{P}(m(a))$ is the modular function of $P(F)$, hence $\delta_{P}(m(a))=|\operatorname{det} a|_{E}^{n}$ (Case NS) or $\delta_{P}(m(A, B))=|\operatorname{det} A \operatorname{det} B|^{n}($ Case $S)$. Note that f_{0} is K_{0} invariant, Δ is bi- K_{0} invariant,

$$
\begin{align*}
(5.10)= & \int_{M(F) \times N(F)} \Delta^{-(s+n)}(n(X) m(a)) \overline{\psi(\operatorname{tr}(X T))} \tag{5.11}\\
& \times l_{T}\left(\pi(m(a)) f_{0}\right) \delta_{P}(m(a))^{-1} d n(X) d m(a)
\end{align*}
$$

If we let

$$
\begin{equation*}
J_{T}(s, a)=\int_{N(F)} \Delta^{-(s+n)}(n(X) m(a)) \overline{\psi(\operatorname{tr}(X T))} d n(X), \tag{5.12}
\end{equation*}
$$

for $m(a) \in M(F)$, then

$$
\begin{equation*}
(5.11)=\int_{M(F)} J_{T}(s, a) l_{T}\left(\pi(m(a)) f_{0}\right) \delta_{P}^{-1}(m(a)) d m(a) \tag{5.13}
\end{equation*}
$$

Properties of $J_{T}(s, a)$, such as convergent when s sufficiently large, having meromorphic continuation to \mathbb{C}, is discussed by Shimura [10], for example, Proposition 3.3 there.
Lemma 5.3. Let ψ be an unramified character of F. Let T be a square matrix such that $T \in \mathrm{GL}_{n \times n}\left(\mathrm{O}_{E}\right) \cap S(F)$ or $T \in \mathrm{GL}_{n}(\mathbb{O})($ Case $S)$. Then

$$
J_{T}(s, a)= \begin{cases}y_{0}(m(a))^{s+n} j_{T}(s), & a \in M(\mathbb{O}), \tag{5.14}\\ 0, & \text { if else }\end{cases}
$$

Here

$$
\begin{align*}
\text { (Case NS) } \quad j_{T}(s) & =\int_{S(F)} \Delta^{-(s+n)}(n(X)) \overline{\psi(\operatorname{tr}(T X))} d X \\
& =\prod_{r=0}^{n-1} L\left(2 s+2 n-r, \epsilon_{E / F}^{r}\right), \\
\left(\text { Case S) } \quad j_{T}(s)\right. & =\int_{M_{n \times n}(F)} \Delta^{-(s+n)}(n(X)) \overline{\psi(\operatorname{tr}(T X))} d X \tag{5.15}\\
& =\prod_{r=0}^{n-1} \zeta(2 s+2 n-r) .
\end{align*}
$$

Proof. Both sides of (5.14) are meromorphic functions for a given $m(a) \in M(F)$. We only need to prove this lemma for Res sufficiently large.
(Case NS). Let $a \in \mathrm{GL}_{n}(E)$. By the principle of elementary divisors, $a={ }^{t} w^{-1}{ }^{t} v$ with $v, w \in M_{n \times n}\left(\mathcal{O}_{E}\right), v=k \delta_{1}, w=k^{\prime} \delta_{2}$ with $k, k^{\prime} \in \mathrm{GL}_{n}\left(\mathrm{O}_{E}\right)$ and

$$
\begin{align*}
& \delta_{1}=\operatorname{diag}\left(\omega_{E}^{m_{1}}, \ldots, \omega_{E}^{m_{i}}, 1, \ldots, 1\right), \\
& \delta_{2}=\operatorname{diag}\left(1, \ldots, 1, \omega_{E}^{m_{i+1}}, \ldots, \varphi_{E}^{m_{n}}\right) \tag{5.16}
\end{align*}
$$

with $m_{1} \geq \cdots \geq m_{i} \geq 0, m_{i+1} \geq \cdots \geq m_{n} \geq 0$ for some $0 \leq i \leq n$. Then

$$
\begin{align*}
J_{T}(s, a)= & J_{T}\left(s,{ }^{t} w^{-1 t} v\right) \\
= & \int_{S(F)} \Delta^{-(s+n)}\left(n(X) m\left({ }^{t} w^{-1 t} v\right)\right) \overline{\psi(\operatorname{tr}(X T))} d X \\
= & \int_{S(F)} \Delta^{-(s+n)}\left(m\left({ }^{t} w^{-1}\right) m\left({ }^{t} w^{-1}\right)^{-1} n(X) m\left({ }^{t} w^{-1 t} v\right)\right) \tag{5.17}\\
& \times \overline{\psi(\operatorname{tr}(X T))} d X \\
= & |\operatorname{det}(w)|_{E}^{-n} \int_{S(F)} \Delta^{-(s+n)}\left(m\left({ }^{t} w^{-1}\right) n(X) m\left({ }^{t} v\right)\right) \\
& \quad \times \overline{\psi\left(\operatorname{tr}\left(X w^{-\rho} T^{t} w^{-1}\right)\right)} d X .
\end{align*}
$$

Let $S(\mathbb{O})$ be the set of elements in $S(F)$ with entries in \mathcal{O}_{E}. Let \mathscr{I} be a set of representative of $S(F) / S(O)$. Decompose the integral in (5.17) as a sum of integrals indexed by \mathscr{F} :

$$
\begin{equation*}
\text { (5.17) }=|\operatorname{det} w|_{E}^{-n} \sum_{\xi \in \mathscr{Y}} \int_{\xi+S(0)} \Delta^{-(s+n)}\left(m\left(^{t} w^{-1}\right) n(X) m\left({ }^{t} v\right)\right) \times \overline{\psi\left(\operatorname{tr}\left(X w^{-\rho} T^{t} w^{-1}\right)\right)} d X \tag{5.18}
\end{equation*}
$$

Let $\xi \in S(F)$. If $\xi \notin S(O)$, by Lemma 4.4,

$$
\begin{equation*}
\Delta^{-(s+n)}\left(m\left({ }^{t} w^{-1}\right) n(\xi+X) m\left({ }^{t} v\right)\right)=\left|\operatorname{det} v^{\rho} \mathcal{W}^{\rho}\right|_{E}^{s+n} \Delta^{-(s+n)}(n(\xi)) \tag{5.19}
\end{equation*}
$$

for all $X \in S(0)$, since

$$
\begin{equation*}
\max _{C \in L(\xi+X)}|\operatorname{det} C|_{E}=\max _{C \in L(\xi)}|\operatorname{det} C|_{E} \tag{5.20}
\end{equation*}
$$

for $\xi \notin S(0)$. If $\xi \in S(0)$, then $\Delta(n(\xi))=1$,

$$
\begin{equation*}
\Delta^{-(s+n)}\left(m\left({ }^{t} w^{-1}\right) n(\xi+X) m\left({ }^{t} v\right)\right)=\left|\operatorname{det}(v w)^{\rho}\right|_{E}^{s+n} \Delta^{-(s+n)}(n(\xi))=\left|\operatorname{det}(v w)^{\rho}\right|_{E}^{s+n} \tag{5.21}
\end{equation*}
$$

Hence for all $\xi \in S(F), X \in S(0)$,

$$
\begin{equation*}
\Delta^{-(s+n)}\left(m\left({ }^{t} w^{-1}\right) n(\xi+X) m\left({ }^{t} v\right)\right)=\left|\operatorname{det}(v w)^{\rho}\right|_{E}^{s+n} \Delta^{-(s+n)}(n(\xi)) \tag{5.22}
\end{equation*}
$$

Apply (5.22) to (5.18), we then get

$$
\begin{align*}
(5.18)= & |\operatorname{det} w|_{E}^{-n}\left|\operatorname{det}(v w)^{\rho}\right|_{E}^{s+n} \sum_{\xi \in \mathscr{I}} \Delta^{-(s+n)}(n(\xi)) \\
& \times \overline{\psi\left(\operatorname{tr}\left(\xi w^{-\rho} T^{t} w^{-1}\right)\right)} \int_{S(0)} \overline{\psi\left(\operatorname{tr}\left(X w^{-\rho} T^{t} w^{-1}\right)\right)} d X . \tag{5.23}
\end{align*}
$$

If $a \notin M_{n \times n}\left(\mathcal{O}_{E}\right)$, then $|\operatorname{det} w|_{E}<1$ and $w^{-\rho} T^{t} w^{-1} \in S(0)$. Hence

$$
\begin{equation*}
\int_{S(0)} \overline{\psi\left(\operatorname{tr}\left(X w^{-\rho} T^{t} w^{-1}\right)\right)} d X=0 \tag{5.24}
\end{equation*}
$$

and $J_{T}(s, a)=0$. If $a \in \mathrm{GL}_{n}(E) \cap M_{n \times n}\left(\mathcal{O}_{E}\right)$, we compute $J_{T}(s, a)$ directly:

$$
\begin{align*}
J_{T}(s, a) & =\int_{S(F)} \Delta^{-(s+n)}(n(X) m(a)) \overline{\psi(\operatorname{tr}(X T))} d X \\
& =|\operatorname{det} a|_{E}^{s+n} \int_{S(F)} \Delta^{-(s+n)}(n(X)) \overline{\psi(\operatorname{tr}(X T))} d X, \quad \text { by Lemma } 4.4 \tag{5.25}\\
& =|\operatorname{det} a|_{E}^{s+n} j_{T}(s)
\end{align*}
$$

here

$$
\begin{align*}
j_{T}(s) & =\int_{S(F)} \Delta^{-(s+n)}(n(X)) \overline{\psi(\operatorname{tr}(T X))} d X \\
& =\prod_{r=0}^{n-1} L\left(2 s+2 n-r, \epsilon_{E / F}^{r}\right), \tag{5.26}
\end{align*}
$$

where the second equality comes from [10, Proposition 6.2] by Shimura.
The proof for Case S is similar, and we omit it here.
Theorem 5.4. Let ψ be an unramified character of $F,\left(\pi, V_{0}\right)$ an unramified irreducible admissible representation of $G(F)$. Let T be a square matrix such that $T \in \mathrm{GL}_{n}\left(\mathrm{O}_{E}\right) \cap$ $S(F)($ Case $N S)$ or $T \in \mathrm{GL}_{n}(0)($ Case $S)$. Let l_{T} be a linear functional on V_{0} satisfying (5.1). Then for $0 \neq f_{0} \in V_{0}^{K_{0}}$,

$$
\begin{equation*}
\int_{M(0)} \gamma_{0}^{s}(m(a)) l_{T}\left(\pi(m(a)) f_{0}\right) d m(a)=l_{T}\left(f_{0}\right) \frac{L(s+1 / 2, \pi, \sigma)}{j_{T}(s) d_{H}(s)} \tag{5.27}
\end{equation*}
$$

where $d_{H}(s)$ and $j_{T}(s)$ are given in Theorem 4.2 and Lemma 5.3.

Proof. Lemma 5.2 and the paragraph after Lemma 5.2 have shown that

$$
\begin{align*}
l_{T}\left(f_{0}\right) \frac{L(s+1 / 2, \pi, \sigma)}{d_{H}(s)} & =\int_{G(F)} \Delta^{-(s+n)}(g) l_{T}\left(\pi(g) f_{0}\right) d g \tag{5.28}\\
& =\int_{M(F)} J_{T}(s, a) l_{T}\left(\pi(m(a)) f_{0}\right) \delta_{P}^{-1}(m(a)) d m(a) .
\end{align*}
$$

By Lemma 5.3, $J_{T}(s, a)$ vanishes when $a \notin M(0)$. Substitute the formula of $J_{T}(s, a)$ for $a \in M(0)$ and δ_{P}^{-1}, the conclusion follows.

6. Global computation

Let F be a number field, E a quadratic field extension of F. As usual, let \mathbf{v} be the set of all places of $F, \mathbf{a}, \mathbf{f}$ the set of archimedean and non-archimedean places of F respectively. Let F_{v} be the localization of F at the place v of $\mathbf{v}, E_{v}=E \otimes F_{v}$. If $v \in \mathbf{f}$, let O_{v} be the ring of integers of F_{v}. If v remains prime in E, then E_{v} is a quadratic field extension of F_{v}, let $\mathcal{O}_{E_{v}}$ be the ring of integer of E_{v}. The ring of adeles of F (resp., E) is denoted by $\mathbb{A}\left(\right.$ resp., $\left.\mathbb{A}_{E}\right)$. Denote by $|\cdot|$ (resp., $|\cdot|_{E}$) the normalized absolute value of \mathbb{A}^{\times}(resp., \mathbb{A}_{E}^{\times}). Let ψ be a nontrivial continuous character of \mathbb{A} trivial on F.

Let V be a $2 n$-dimensional vector space over E with an anti-Hermitian form $\eta_{2 n}$ on it. Let W be an n-dimensional vector space over E with a nonsingular Hermitian form T. Let $G=U\left(\eta_{2 n}\right), G^{\prime}=U(T)$ be the corresponding unitary groups. Then $G \times G^{\prime}$ is a dual pair in $\operatorname{Sp}(\mathbb{W})$, where $\mathbb{W}=V \otimes W$ is symplectic space with symplectic form $\operatorname{tr}_{E / F}\left(\eta_{2 n} \otimes T\right)$.

Let $P=M N$ be the maximal parabolic subgroup of G defined in Section 2. For $v \in \mathbf{v}$, let K_{v} be a maximal compact subgroup of $G\left(F_{v}\right)$ such that for almost all $v \in \mathbf{v}, K_{v}=$ $G\left(O_{v}\right)$. Let $K_{\mathbb{A}}=\prod_{v \in \mathbf{v}} K_{v}$. Then $G(\mathbb{A})=P(\mathbb{A}) K_{\mathbb{A}}$. For $v \in \mathbf{v}$, let $d k_{v}$ be the Haar measure on K_{v} such that $\int_{K_{v}} d k_{v}=1$. Then $d k=\prod_{v} d k_{v}$ is an Haar measure on $K_{\mathbb{A}}$ such that $\int_{K_{\mathrm{A}}} d k=1$. Let $d_{l}\left(p_{v}\right)$ be a left Haar measure on $P\left(F_{v}\right)$ for $v \in \mathbf{v}$. Then $d_{l} p=\prod_{v} d_{l}\left(p_{v}\right)$ is a left Haar measure on $P(\mathbb{A})$. Since $P(\mathbb{A})=M(\mathbb{A}) N(\mathbb{A}), d_{l} p=|\operatorname{det} a|_{E}^{-n} d^{\times} a d X$ if $p=$ $m(a) n(X)$ for $a \in \mathrm{GL}_{n}\left(\mathbb{A}_{E}\right), X \in S(\mathbb{A})$, where $d^{\times} a, d X$ are Haar measure on $\mathrm{GL}_{n}\left(\mathbb{A}_{E}\right)$, $S(\mathbb{A})$, respectively. We then let $d g=d_{l} p d k$ be an Haar measure on $G(\mathbb{A})$.

Let $s \in \mathbb{C}$, let γ be a Hecke character of E. Denote by $I(s, \gamma)$ the set of smooth functions $f: G(\mathbb{A}) \rightarrow \mathbb{C}$ satisfying
(i) $f(p g)=\gamma(x(p))|x(p)|_{E}^{s+n / 2} f(g)$, for $p \in P(\mathbb{A}), g \in G(\mathbb{A})$,
(ii) f is K_{v}-finite for all $v \in \mathbf{a}$.
$G(\mathbb{A})$ acts on $I(s, \gamma)$ by right multiplication. Let $\Phi(g, s)$ be a smooth function in $I(s, \gamma)$ holomorphic at s. The Eisenstein series associated to $\Phi(g, s)$ is given by

$$
\begin{equation*}
E(g, s ; \gamma, \Phi)=\sum_{\xi \in P(F) \backslash G(F)} \Phi(\xi g, s) . \tag{6.1}
\end{equation*}
$$

In [9], it has been shown that (6.1) is convergent when $\operatorname{Re} s>n / 2$ and has a meromorphic continuation to the whole complex plane.

Let π be a cusp automorphic representation of $G(\mathbb{A})$ (cf. [9]). Let f be cusp form in the isotypic space of π. Let $\beta \in S(F)$. The β th Fourier coefficient of f is

$$
\begin{equation*}
f_{\beta}(g)=\int_{S(F) \backslash S(\mathbb{A})} f(n(X) g) \psi(\operatorname{tr}(X \beta)) d X, \quad g \in G(\mathbb{A}) . \tag{6.2}
\end{equation*}
$$

If $\beta_{1}, \beta_{2} \in S(F), \beta_{1}={ }^{t} a^{\rho} \beta_{2} a$ for some $a \in \mathrm{GL}_{n}(E)$, then

$$
\begin{equation*}
f_{\beta_{1}}(g)=f_{\beta_{2}}(m(a) g), \quad g \in G(\mathbb{A}) \tag{6.3}
\end{equation*}
$$

Let χ be a Hecke character of E satisfying $\left.\chi\right|_{\mathbb{A}^{\times} / F^{\times}}=\epsilon_{E / F}^{n}$, where $\epsilon_{E / F}$ is the quadratic character of $\mathbb{A}^{\times} / F^{\times}$by global class field theory. Associate with ψ a Weil representation ω_{ψ} of $G(\mathbb{A})$ acting on $\mathscr{S}(\mathbb{Y}(\mathbb{A}))$, the set of Schwartz-Bruhat functions on $\mathbb{Y}(\mathbb{A})$. In fact, ω_{ψ} is the restriction of Weil representation (associated with ψ) of $\widetilde{\operatorname{Sp}(\mathbb{W})(\mathbb{A}) \text { to } G(\mathbb{A}) \text { (see }}$ Section 2 for the definition of $\mathbb{Y}, \mathbb{W})$. We will omit the subscript ψ when ψ is clear from the context. The explicit formula of ω is given in [11], we cite here the formula on $P(\mathbb{A})$. Let $\phi \in \mathscr{S}(\mathbb{Y}(\mathbb{A})), a \in \mathrm{GL}_{n}\left(\mathbb{A}_{E}\right), n(X) \in N(\mathbb{A})$, then

$$
\begin{gather*}
\omega(m(a)) \phi(y)=\chi(\operatorname{det} a)|\operatorname{det} a|_{E}^{n / 2} \phi(y a), \\
\omega(n(X)) \phi(y)=\psi(\operatorname{tr}(b \mu(y))) \phi(y), \quad y \in \mathbb{Y}(\mathbb{A}) . \tag{6.4}
\end{gather*}
$$

Here $\mu=\prod_{v} \mu_{v}: \mathbb{Y}(\mathbb{A}) \rightarrow \mathscr{(}(\mathbb{A}), \mu_{v}$ is the moment map defined at Section 2 for local field F_{v}.

The theta series θ_{ϕ} for $\phi \in \mathscr{S}(\mathbb{Y}(\mathbb{A}))$ is a smooth function on $G(\mathbb{A})$ of moderate growth

$$
\begin{equation*}
\theta_{\phi}(g)=\sum_{\xi \in S(F)} \omega(g) \phi(\xi), \quad g \in G(\mathbb{A}) . \tag{6.5}
\end{equation*}
$$

6.1. Vanishing lemma. Let π be a cuspidal automorphic representation of $G(\mathbb{A})$. We make the following assumption: There is some cusp form f in the isotypic space of π such that

$$
\begin{equation*}
\int_{N(F) \backslash N(\mathrm{~A})} f(n(X) g) \psi(\operatorname{tr}(X T)) \neq 0 . \tag{6.6}
\end{equation*}
$$

In [4], Piatetski-Shapiro and Rallis do not propose this assumption, because Li has shown in [12] that every cusp forms supports some nonsingular symmetric matrix.

For $\phi \in \mathscr{S}(\mathbb{Y}(\mathbb{A})), \Phi(g, s) \in I(s, \gamma), f \in A(G(F) \backslash G(\mathbb{A}))_{\pi}$ the isotypic space of π in the space of automorphic forms on $G(A)$, define

$$
\begin{equation*}
I(s, \phi, \Phi, f)=\int_{G(F) \backslash G(\mathbb{A})} f(g) E(g, s, \Phi) \theta_{\phi}(g) d g . \tag{6.7}
\end{equation*}
$$

Although θ_{ϕ} is slowly increasing function on $G(\mathbb{A}), E(g, s, \Phi)$ is of moderate growth, but f is rapidly decreasing on $G(\mathbb{A}),(6.7)$ is convergent at s where the Eisenstein series is holomorphic. We will show that when we choose appropriate $\phi, \Phi, f, I(s, \phi, \Phi, f)$ is product of meromorphic function with partial L function of π.

Substitute Eisenstein series (6.1), theta series (6.5) into (6.7), then

$$
\begin{align*}
(6.7) & =\int_{P(F) \backslash G(\mathbb{A})} f(g) \Phi(g, s) \sum_{\xi \in \mathbb{Y}(F)} \omega(g) \phi(\xi) d g \tag{6.8}\\
& =\int_{K_{\mathrm{A}}} \int_{P(F) \backslash P(\mathrm{~A})} f(p k) \Phi(p k, s) \sum_{\xi \in \mathbb{Y}(F)} \omega(p k) \phi(\xi) d_{l} p d k
\end{align*}
$$

By the assumption that $\Phi(g, s) \in I(s, \gamma), \Phi(p k, s)=\gamma(x(p))|x(p)|_{E}^{s+n / 2} \Phi(k, s)$. Apply the formula of Weil representation (6.4) to (6.8), then

$$
\begin{align*}
(6.8)= & \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathbb{A})} \int_{N(F) \backslash N(\mathbb{A})} f(n(X) m(a) k) \Phi(k, s) \\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \sum_{\xi \in \mathbb{Y}(F)} \psi(\operatorname{tr}(b \mu(\xi))) \omega(k) \phi(\xi a) d X d^{\times} a d k . \tag{6.9}
\end{align*}
$$

Recall that in Section 2, we let $\mathscr{C} \subset S(F)$ be the image of moment map, which is invariant under the action of $M(F)$. Let \mathscr{F} be a set of representatives of orbits $\mathscr{C} / M(F)$ such that $T \in \mathscr{F}$. We then write (6.9) as a sum of integrals indexed by \mathscr{F} :

$$
\begin{align*}
(6.9)= & \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathrm{~A})} \sum_{\beta \in \mathscr{C}} \sum_{\xi \in \mu^{-1}(\beta)} f_{\beta}(m(a) k) \Phi(k, s) \\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \omega(k) \phi(\xi a) d^{\times} a d k \\
= & \sum_{\beta \in \mathscr{F}} \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathrm{~A})} \sum_{a^{\prime} \in M_{\beta}(F) \backslash M(F)} \sum_{\xi \in \mu^{-1}(\beta)} f_{\beta}\left(m\left(a^{\prime}\right) m(a) k\right) \Phi(k, s) \tag{6.10}\\
& \quad \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \omega(k) \phi\left(\xi a^{\prime} a\right) d^{\times} a d k .
\end{align*}
$$

Here f_{β} is β th Fourier coefficient of f, M_{β} is the stabilizer of β under the action of M (cf. Section 2). For $\beta \in \mathscr{F}$, let

$$
\begin{align*}
I_{\beta}(s)= & \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathrm{~A})} \sum_{a^{\prime} \in M_{\beta}(F) \backslash M(F)} \sum_{\xi \in \mu^{-1}(\beta)} f_{\beta}\left(m\left(a^{\prime}\right) m(a) k\right) \Phi(k, s) \tag{6.11}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \omega(k) \phi\left(\xi a^{\prime} a\right) d^{\times} a d k .
\end{align*}
$$

Then

$$
\begin{equation*}
I(s, \phi, \Phi, f)=\sum_{\beta \in \mathscr{\mathscr { F }}} I_{\beta}(s) . \tag{6.12}
\end{equation*}
$$

Lemma 6.1. $I_{\beta}(s)=0$ for all $\beta \in \mathscr{F}$ with $\operatorname{det} \beta=0$.
Proof. If $\beta=0$, then for all $g \in G(\mathbb{A})$,

$$
\begin{equation*}
f_{\beta}(g)=\int_{N(F) \backslash N(\mathbb{A})} f(n g) d n=0 \tag{6.13}
\end{equation*}
$$

since f is a cusp form. Hence

$$
\begin{align*}
I_{\beta}(s)=\int_{K_{\mathrm{A}}} & \int_{M(F) \backslash M(\mathrm{~A})} \sum_{a^{\prime} \in M_{\beta}(F) \backslash M(F)} \sum_{\xi \in \mu^{-1}(\beta)} f_{\beta}\left(m\left(a^{\prime}\right) m(a) k\right) \Phi(k, s) \tag{6.14}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \omega(k) \phi\left(\xi a^{\prime} a\right) d^{\times} a d k=0 .
\end{align*}
$$

Let $0 \neq \beta \in \mathscr{F}$ with $\operatorname{det} \beta=0$. Then

$$
\begin{align*}
I_{\beta}(s)= & \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathrm{~A})} \sum_{a^{\prime} \in M_{\beta}(F) \backslash M(F)} \sum_{\xi \in \mu^{-1}(\beta)} f_{\beta}\left(m\left(a^{\prime}\right) m(a) k\right) \Phi(k, s) \\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \omega(k) \phi\left(\xi a^{\prime} a\right) d^{\times} a d k \\
= & \int_{K_{\mathrm{A}}} \int_{M_{\beta}(\mathbb{A}) \backslash M(\mathrm{~A})} \int_{M_{\beta}(F) \backslash M_{\beta}(\mathbb{A})} f_{\beta}\left(m_{1} m k\right) \Phi(k, s) \tag{6.15}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(x\left(m_{1} m\right)\right) \sum_{\xi \in \mu^{-1}(\beta)} \omega(k) \phi\left(\xi m_{1} m\right) d m_{1} d m d k .
\end{align*}
$$

Let $x \in \mathbb{Y}$ such that $\beta=\mu(x)={ }^{t} x^{\rho} T x, r=\operatorname{rank}(\beta)$. Then $r<n$. Let $a \in \mathrm{GL}_{n}(F)$ such that

$$
{ }^{t} A^{\rho} \beta A=\left(\begin{array}{cc}
0 & 0 \tag{6.16}\\
0 & T^{\prime}
\end{array}\right)
$$

where T^{\prime} is a nondegenerate $r \times r$ Hermitian matrix. So without loss of generality, we assume that $\beta=\operatorname{diag}\left(0_{n-r}, T^{\prime}\right)$. Then

$$
M_{\beta}=\left\{\left.m\left(\left(\begin{array}{ll}
A & B \tag{6.17}\\
C & D
\end{array}\right)\right) \in M \right\rvert\, D \in U\left(T^{\prime}\right),{ }^{t} C^{\rho} T^{\prime} C=0,{ }^{t} C^{\rho} T^{\prime} D=0\right\} .
$$

Define two subgroups M_{1}, L of M_{β} :

$$
\begin{gather*}
M_{1}=\left\{\left.m\left(\left(\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right)\right) \in M \right\rvert\, D \in U\left(T^{\prime}\right),{ }^{t} C^{\rho} T^{\prime} C=0,{ }^{t} C^{\rho} T^{\prime} D=0\right\}, \\
\mathrm{L}=\left\{\left.m\left(\left(\begin{array}{cc}
1_{n-r} & B \\
0 & 1_{r}
\end{array}\right)\right) \in M \right\rvert\, B \in M_{n-r \times n-r}(E)\right\} . \tag{6.18}
\end{gather*}
$$

Then $M_{\beta}=M_{1} \cdot$ L. We use this decomposition to compute the inner integral over $M_{\beta}(F) \backslash$ $M_{\beta}(\mathbb{A})$ of (6.15),

$$
\begin{equation*}
\int_{M_{\beta}(F) \backslash M(\mathbb{A})} f_{\beta}\left(m_{1} m k\right)\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(x\left(m_{1} m\right)\right) \sum_{\xi \in \mu^{-1}(\beta)} \omega(k) \phi\left(\xi m_{1} m\right) d m_{1} . \tag{6.19}
\end{equation*}
$$

(Here because $\Phi(k, s)$ is independent of m_{1} so we remove it from the integral over $M_{\beta}(F) \backslash$ $M(\mathbb{A})$.) The above integral equals to

$$
\begin{align*}
& \int_{M_{1}(F) \backslash M_{1}(\mathbb{A})} \int_{L(F) \backslash L(\mathbb{A})} \int_{S(F) \backslash S(A)} f\left(n(X) \ell m_{1} m k\right) \psi(\operatorname{tr}(X \beta)) \\
& \quad \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(x\left(\ell m_{1} m\right)\right) \sum_{\xi \in \mu^{-1}(\beta)} \omega(k) \phi\left(\xi \ell m_{1} m\right) d X d \ell d m_{1} . \tag{6.20}
\end{align*}
$$

Let U be the subgroup of N consisting of elements of the following form:

$$
n\left(\left(\begin{array}{cc}
c & d \tag{6.21}\\
t d^{\rho} & 0
\end{array}\right)\right) \quad \text { with } c \in M_{(n-r) \times(n-r)} .
$$

Then $\mathrm{L} U$ is the unipotent radical of the maximal parabolic group P^{\prime} preserving the flag $0 \subset \otimes_{i=1}^{n-r} E e_{n+i} \subset Y$ (see Section 2 for the choice of basis of V). On the other hand, let Δ_{+} be the set of positive roots of G with respect to the Borel subgroup of G consisting of element of following form:

$$
\left(\begin{array}{ll}
A & B \tag{6.22}\\
& \hat{A}
\end{array}\right) \quad \text { with } A \text { be upper triangular matrix. }
$$

For $\alpha \in \Delta_{+}$, let N_{α} be the 1-parameter unipotent subgroup of G corresponding to α. Set $\Gamma=\left\{\alpha \in \Delta_{+} \mid N_{\alpha} \subset N\right\}$. Let α_{0} be the simple root corresponding to $P^{\prime}, w=s_{\alpha_{0}}$ be the simple reflection of α_{0}. Then $U=\prod_{\beta \in \Gamma, w \beta \in \Gamma} N_{\beta}$. If we put $U_{1}=\prod_{\beta \in \Gamma, w \beta \in-\Gamma} N_{\beta}$, then $N=$ $U \cdot U_{1}$. Hence we have decomposition

$$
\begin{equation*}
N(F) \backslash N(\mathbb{A})=U(F) \backslash U(\mathbb{A}) \cdot U_{1}(F) \backslash U_{1}(\mathbb{A}) . \tag{6.23}
\end{equation*}
$$

Corresponding to the decomposition of N, we have a decomposition of $S(F)$:

$$
\begin{gather*}
S_{U}(F)=\left\{\left.\left(\begin{array}{cc}
c & d \\
t d^{\rho} & 0
\end{array}\right) \in S(F) \right\rvert\, c \in M_{(n-r) \times(n-r)}(F)\right\}, \\
S_{U_{1}}(F)=\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) \in S(F) \right\rvert\, d \in M_{r \times r}(F)\right\} . \tag{6.24}
\end{gather*}
$$

Then the isomorphism $n: S(F) \rightarrow N$ send S_{U} and $S_{U_{1}}$ onto U and U_{1}, respectively.
Substitute the decomposition of $S(F)$ into (6.20), then

$$
\begin{align*}
(6.20)= & \int_{M_{1}(F) \backslash M_{1}(\mathrm{~A})} \int_{\mathrm{L}(F) \backslash L(\mathrm{~A})} \int_{S_{U_{1}(F) \backslash S_{U_{1}}(\mathrm{~A})}} \int_{S_{U}(F) \backslash S_{U}(\mathrm{~A})} \\
& \times f\left(n\left(X_{U}+X_{U_{1}}\right) \ell m_{1} m k\right) \psi\left(\operatorname{tr}\left(\left(X_{U}+X_{U_{1}}\right) \beta\right)\right) \tag{6.25}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(x\left(\ell m_{1} m\right)\right) \sum_{\xi \in \mu^{-1}(\beta)} \omega(k) \phi\left(\xi \ell m_{1} m\right) d X_{U} d X_{U_{1}} d \ell d m_{1} d m .
\end{align*}
$$

Direct computation shows that L centralizes U_{1}. We can change the order of the above integration, then

$$
\begin{align*}
(6.20)= & \int_{M_{1}(F) \backslash M_{1}(\mathbb{A})} \int_{S_{U_{1}(F) \backslash S_{U_{1}}(\mathbb{A})}} \int_{L(F) \backslash L(A)} \int_{S_{U}(F) \backslash S_{U}(A)} \\
& \times f\left(n\left(X_{U}\right) \ln \left(X_{U_{1}}\right) m_{1} m k\right) \psi\left(\operatorname{tr}\left(\left(X_{U}+X_{U_{1}}\right) \beta\right)\right) \tag{6.26}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(x\left(\ell m_{1} m\right)\right) \sum_{\xi \in \mu^{-1}(\beta)} \omega(k) \phi\left(\xi \ell m_{1} m\right) d X_{U} \ell d X_{U_{1}} d d m_{1} d m .
\end{align*}
$$

Let $X_{U}=\left(\begin{array}{cc}c & d \\ t_{d} & 0\end{array}\right)$ be an element of $S_{U}(\mathbb{A})$. Then

$$
\beta X_{U}=\left(\begin{array}{cc}
0 & 0 \tag{6.27}\\
0 & T^{\prime}
\end{array}\right)\left(\begin{array}{cc}
c & d \\
t^{t} d^{\rho} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
T^{\prime} d^{\rho} & 0
\end{array}\right) .
$$

So

$$
\begin{equation*}
\operatorname{tr}\left(\beta\left(X_{U}+X_{U_{1}}\right)\right)=\operatorname{tr}\left(\beta X_{U_{1}}\right) \tag{6.28}
\end{equation*}
$$

which is independent of X_{U}. Since $x(\ell)=1$ for $\ell \in \mathrm{L}(\mathbb{A})$, we see that

$$
\begin{equation*}
\left(\gamma \chi|\cdot|_{E}^{s}\right)(\ell)=1, \quad \ell \in \mathrm{~L}(\mathbb{A}) . \tag{6.29}
\end{equation*}
$$

If $\xi \in \mu^{-1}(\beta)$, then $\operatorname{rank}(\xi)=r$. Let a_{1}, \ldots, a_{n} be the column vectors of ξ. Recall that the right lower corner of ξ is an $r \times r$ nonsingular matrix T^{\prime}, the space generated by a_{n-r+1}, \ldots, a_{n} is of rank r. Hence there is $a \in M_{\beta}$ (depends on ξ, but it does not affect our computation) such that

$$
\xi^{\prime}=\xi a^{-1}=\left(\begin{array}{ll}
0 & v \tag{6.30}\\
0 & u
\end{array}\right)
$$

for some nonsingular $r \times r$ matrix u. If $\ell=m\binom{1 x}{1} \in \mathrm{~L}$, then

$$
\xi^{\prime} \ell=\left(\begin{array}{ll}
0 & v \tag{6.31}\\
0 & u
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)=\xi^{\prime}
$$

The integral for fixed $\xi \in \mu^{-1}(\beta)$ on $\mathrm{L}(F) \backslash \mathrm{L}(\mathbb{A}) \times U(F) \backslash U(\mathbb{A})$ in (6.26) is

$$
\begin{align*}
& \int_{\mathrm{L}(F) \backslash \mathrm{L}(\mathrm{~A})} \int_{U(F) \backslash U(A)} f\left(n\left(X_{U}\right) \ell n\left(X_{U_{1}}\right) m_{1} m k\right) \psi\left(\operatorname{tr}\left(\left(X_{U}+X_{U_{1}}\right) \beta\right)\right) \tag{6.32}\\
& \quad \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(\ell m_{1} m\right) \omega(k) \phi\left(\xi \ell_{m_{1}} m\right) d X_{U} d \ell .
\end{align*}
$$

By (6.28), (6.29), and (6.31),

$$
\begin{align*}
(6.32)= & \int_{L(F) \backslash \mathrm{L}(\mathrm{~A})} \int_{U(F) \backslash U(A)} f\left(n\left(X_{U}\right) \ell n\left(X_{U_{1}}\right) m_{1} m k\right) \psi\left(\operatorname{tr}\left(X_{U_{1}} \beta\right)\right) \tag{6.33}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(m_{1} m\right) \omega(k) \phi\left(\xi^{\prime} m_{1} m\right) d X_{U} d \ell
\end{align*}
$$

which is 0 , since $L U$ is the unipotent radical of P^{\prime}. This finishes the proof of the lemma.

By Lemma 6.1, $I_{\beta}(s)=0$ if β is singular. Recall that we choose T to be the representative of the open orbit of \mathscr{C} / M. The stabilizer M_{T} is isomorphic to $G^{\prime}=U(T)$ the unitary group of W. Then (6.12) reduces to

$$
\begin{align*}
I(s, \phi, \Phi, f)= & \int_{K_{\mathrm{A}}} \int_{M(F) \backslash M(\mathrm{~A})} \sum_{a^{\prime} \in G^{\prime}(F) \backslash M(F)} f_{T}\left(m\left(a^{\prime}\right) m(a) k\right) \Phi(k, s) \\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) \sum_{\xi \in G^{\prime}(F)} \omega(k) \phi\left(\xi a^{\prime} a\right) d^{\times} a d k \tag{6.34}\\
= & \int_{K_{\mathrm{A}}} \int_{M(\mathrm{~A})} f_{T}(m(a) k) \Phi(k, s) \omega(k) \phi(\xi a)\left(\gamma \chi|\cdot|_{E}^{s}\right) d^{\times} a d k .
\end{align*}
$$

6.2. Main theorem. Let $\gamma_{v}=\left.\gamma\right|_{E_{v}}$, then $\gamma=\prod_{v} \gamma_{v}$. Similarly, $\chi=\prod_{v} \chi_{v}$. Let Φ_{v} be a standard section of $I(\gamma, s)$ of $G\left(F_{v}\right)$ for all $v \in \mathbf{v}$. Set $\Phi=\prod_{v} \Phi_{v}$. Assume that $\phi=\prod_{v} \phi_{v}$ in $\mathscr{S}(\mathbb{Y})$. Let f be a cusp form in the isotypic space of a cuspidal automorphic representation of $G(\mathbb{A})$. Let S be a finite subset of \mathbf{v} containing all archimedean places such that if $v \notin S, \chi_{v}, \gamma_{v}$ are unramified, $T_{v} \in \mathrm{GL}_{n \times n}\left(\mathcal{O}_{E}\right) \cap S\left(F_{v}\right)$ and ψ_{v} is unramified character of F_{v}. Since $\pi=\otimes_{v}^{\prime} \pi_{v}$ for almost all $v \in \mathbf{v}, \pi_{v}$ is unramified for almost all places. Assume that π_{v} is unramified if $v \notin S$ and f is K_{v} fixed. Moreover, $\phi_{v}=\operatorname{char}\left(\mathbb{Y}\left(O_{v}\right)\right)$ if $v \notin S$.

Let Ω be a finite subset of \mathbf{v} containing S. Put

$$
\begin{equation*}
G_{\Omega}=\prod_{v \in \Omega}, \quad K_{\Omega}=\prod_{v \in \Omega} K_{v}, \quad M_{\Omega}=\prod_{v \in \Omega} M_{v} . \tag{6.35}
\end{equation*}
$$

They embed naturally into $G(\mathbb{A}), K_{\mathbb{A}}, M(\mathbb{A})$, respectively. If $a \in M(\mathbb{A}), a=\prod_{v} a_{v}$, put $a_{\Omega}=\prod_{v^{\prime} \in \Omega} a_{v^{\prime}}$. Similarly, if $k \in K_{\Omega \cup\{v\}}$, then $k=k_{\Omega} \cdot k_{v}$, for $k_{\Omega} \in K_{\Omega}, k_{v} \in K_{v}$. To compute (6.34), we define

$$
\begin{equation*}
I_{\Omega}(s)=\int_{K_{\Omega}} \int_{M_{\Omega}} f_{T}(m(a) k) \Phi(k, s) \omega(k) \phi(a)\left(\gamma \chi|\cdot|_{E}^{s}\right)(a) d^{\times} a d k . \tag{6.36}
\end{equation*}
$$

Theorem 6.2. Notations as above. Then

$$
\begin{equation*}
I_{\Omega \cup\{v\}}(s)=\frac{L\left(s+1 / 2, \pi_{v}, \gamma_{v} \chi_{v}, \sigma\right)}{j_{T_{v}}(s) d_{H_{v}}(s)} I_{\Omega}(s), \tag{6.37}
\end{equation*}
$$

where $j_{T_{v}}, d_{H_{v}}(s)$ are $j_{T}(s), d_{H}(s)$ in Theorem 5.4 for T_{v}, H_{v}, respectively,

$$
\begin{equation*}
L\left(s+\frac{1}{2}, \pi_{v}, \gamma_{v} \chi_{v}, \sigma\right)=L\left(s+\frac{1}{2}+\lambda_{v}, \pi_{v}, \sigma\right) \tag{6.38}
\end{equation*}
$$

where $\lambda_{v} \in \mathbb{C}$ such that $\left(\gamma_{v} \chi_{v}\right)(a)=|a|_{E}^{\lambda_{v}}$ for all $a \in E_{v}^{\times}($Case NS $)$, or $\left(\gamma_{v} \chi_{v}\right)(a)=|a|^{\lambda_{v}}$ for all $a \in F_{v}^{\times}($Case $S)$ (See Section 3 for the definition of Case NS and Case S).

Proof. We will apply results in Section $5, F_{v}$ will be F there,

$$
\begin{align*}
I_{\Omega \cup\{v\}}(s)= & \int_{K_{\Omega \cup\{v\}}} \int_{M_{\Omega \cup\{v\}}} f_{T}(m(a) k) \Phi(k, s) \omega(k) \phi(a)\left(\gamma \chi|\cdot|_{E}^{s}\right)(\operatorname{det} a) d^{\times} a d k \\
= & \int_{K_{\Omega} M_{\Omega}} \int_{K_{v} M\left(F_{v}\right)} \Phi\left(K_{\Omega}, s\right) \Phi_{v}\left(k_{v}, s\right) f_{T}^{\prime}\left(m\left(a_{v}\right) m\left(a_{\Omega}\right) k_{v} k_{\Omega}\right) \tag{6.39}\\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(\operatorname{det} a_{\Omega} a_{v}\right) \omega\left(k_{\Omega}\right) \phi_{\Omega}\left(a_{\Omega}\right) \omega\left(k_{v}\right) \phi_{v}\left(a_{v}\right) d^{\times} a_{v} d^{\times} d k_{v} a_{\Omega} d k_{\Omega} .
\end{align*}
$$

Φ_{v} is the standard section, then $\Phi_{v}\left(k_{v}, s\right)=1$ for all $k_{v} \in K_{v}$. Moreover, f is K_{v}-fixed, hence $f_{T}\left(m\left(a_{v} a_{\Omega}\right) k_{v} k_{\Omega}\right)=f_{T}\left(m\left(a_{v} a_{\Omega}\right) k_{\Omega}\right)$ for all $k_{v} \in K_{v} . \phi_{v}=\operatorname{char}\left(\mathbb{Y}\left(O_{v}\right)\right)$ which is K_{v} fixed element for the Weil representation, hence $\omega\left(k_{v}\right) \phi_{v}=\phi_{v}$,

$$
\begin{align*}
(6.39)= & \int_{K_{\Omega} M_{\Omega}} \int_{K_{v} M\left(F_{v}\right)} \Phi_{\Omega}\left(k_{\Omega}, s\right) f_{T}\left(m\left(a_{v} a_{\Omega} k_{\Omega}\right)\right) \\
& \times\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(\operatorname{det} a_{v} a_{\Omega}\right) \omega\left(k_{\Omega}\right) \phi\left(a_{\Omega}\right) \phi\left(a_{v}\right) d^{\times} a_{v} d k_{v} d a_{\Omega} d k_{\Omega} \\
= & \int_{K_{\Omega} M_{\Omega}} \Phi_{\Omega}\left(k_{\Omega}, s\right) \omega\left(k_{\Omega}\right) \phi\left(a_{\Omega}\right)\left(\gamma \chi|\cdot|_{E}^{s}\right)\left(\operatorname{det} a_{\Omega}\right) \int_{M\left(F_{v}\right)} \tag{6.40}\\
& \times f_{T}\left(m\left(a_{v}\right) m\left(a_{\Omega}\right) k_{\Omega}\right) \phi\left(a_{v}\right) \gamma_{0}\left(a_{v}\right)^{s}(\gamma \chi)\left(\operatorname{det} a_{v}\right) d^{\times} a_{v} d^{\times} a_{\Omega} d k_{\Omega} .
\end{align*}
$$

As $\phi_{v}=\operatorname{char}\left(\mathbb{Y}\left(\mathbb{O}_{v}\right)\right), M_{v} \cap \mathbb{Y}(\mathbb{O})=M\left(\mathbb{O}_{v}\right)$ (cf. Section 5$)$,

$$
\begin{align*}
\int_{M\left(F_{v}\right)} & f_{T}\left(m\left(a_{v}\right) m\left(a_{\Omega}\right) k_{\Omega}\right) \phi\left(a_{v}\right) \gamma_{0}^{s}\left(a_{v}\right)(\gamma \chi)\left(\operatorname{det} a_{v}\right) d^{\times} a_{v} \\
& =\int_{M\left(O_{v}\right)} f_{T}\left(m\left(a_{v}\right) m\left(a_{\Omega}\right) k_{\Omega}\right) \gamma_{0}^{s}\left(a_{v}\right)(\gamma \chi)\left(\operatorname{det} a_{v}\right) d^{\times} a_{v} \tag{6.41}\\
& =\frac{L\left(s+1 / 2, \pi_{v}, \gamma_{v} \chi_{v}, \sigma\right)}{j_{T_{v}}(s) d_{H_{v}}(s)} f_{T}\left(m\left(a_{\Omega}\right) k_{\Omega}\right), \quad \text { by Theorem 5.4. }
\end{align*}
$$

Here we are viewing $f_{T}\left(m\left(a_{v}\right) m\left(a_{\Omega}\right) k_{\Omega}\right)$ as a functional $l_{T_{v}}$ on π_{v} by Example 5.1 in Section 5. Hence

$$
\begin{equation*}
I_{\Omega \cup\{v\}}=\frac{L\left(s+1 / 2, \pi_{v}, \gamma_{v} \chi_{v}, \sigma\right)}{j_{T_{v}}(s) d_{H_{v}}(s)} I_{\Omega}(s) . \tag{6.42}
\end{equation*}
$$

To complete the computation of our global integral, let

$$
\begin{equation*}
j_{T}^{S}(s)=\prod_{v \notin S} j_{T_{v}}(s), \quad d_{H}^{S}(s)=\prod_{v \notin S} d_{H_{v}}(s) . \tag{6.43}
\end{equation*}
$$

Define partial L function of π as

$$
\begin{equation*}
L^{S}\left(s+\frac{1}{2}, \pi, \gamma \chi, \sigma\right)=\prod_{v \notin S} L\left(s+\frac{1}{2}, \pi_{v},\left(\gamma_{v} \chi_{v}\right), \sigma\right) . \tag{6.44}
\end{equation*}
$$

Since $I(s)=\lim _{\Omega} I_{\Omega}(s)$, by Theorem 6.2, let Ω be a finite set of \mathbf{v} approaching to \mathbf{v} by adding one place each time, then the following holds.

Theorem 6.3. Choose f, ϕ, Φ and $S \subset \mathbf{v}$ as in Section 6.1. Then for all $s \in \mathbb{C}$,

$$
\begin{equation*}
I(s, \phi, \Phi, f)=\frac{R(s)}{j_{T}^{S}(s) d_{H}^{S}(s)} L^{S}\left(s+\frac{1}{2}, \pi, \gamma \chi, \sigma\right) \tag{6.45}
\end{equation*}
$$

where $R(s)=I_{S}(s)$ is a meromorphic function of s.
Proof. Argue as [6, Theorem 6.1], the partial L function is a meromorphic function. Also by the analytic property of Eisenstein series, $I(s, \phi, \Phi, f)$ itself is a meromorphic function, hence $R(s)=I_{S}(s)$ is a meromorphic function of s.

Remark 6.4. We remark here that following [4, pages 118-119], under our assumption one can show that by choosing appropriate ϕ, Φ, f, we can let that $R(s) \neq 0$.

Acknowledgments

The author is grateful to J.-S. Li for his generosity and encouragement in these years. He also thanks the referee for the careful reading and for pointing out mistakes in an earlier version of this paper.

References

[1] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, "Automorphic forms on GL(3). I," Annals of Mathematics. Second Series, vol. 109, no. 1, pp. 169-212, 1979.
[2] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, "Automorphic forms on GL(3). II," Annals of Mathematics. Second Series, vol. 109, no. 2, pp. 213-258, 1979.
[3] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, "Rankin-Selberg convolutions," American Journal of Mathematics, vol. 105, no. 2, pp. 367-464, 1983.
[4] I. I. Piatetski-Shapiro and S. Rallis, "A new way to get Euler products," Journal für die reine und angewandte Mathematik, vol. 392, pp. 110-124, 1988.
[5] J.-S. Li, "Nonvanishing theorems for the cohomology of certain arithmetic quotients," Journal für die reine und angewandte Mathematik, vol. 428, pp. 177-217, 1992.
[6] S. Gelbart, I. I. Piatetski-Shapiro, and S. Rallis, Explicit constructions of automorphic L-functions, vol. 1254 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1987.
[7] A. Borel, "Automorphic L-functions," in Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977)—Part 2, vol. 33 of Proc. Sympos. Pure Math., pp. 27-61, American Mathematical Society, Providence, RI, USA, 1979.
[8] G. Shimura, Euler Products and Eisenstein Series, vol. 93 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1997.
[9] C. Moeglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, vol. 113 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 1995.
[10] G. Shimura, "On Eisenstein series," Duke Mathematical Journal, vol. 50, no. 2, pp. 417-476, 1983.
[11] R. Ranga Rao, "On some explicit formulas in the theory of Weil representation," Pacific Journal of Mathematics, vol. 157, no. 2, pp. 335-371, 1993.
[12] J.-S. Li, "Nonexistence of singular cusp forms," Compositio Mathematica, vol. 83, no. 1, pp. 4351, 1992.

Yujun Qin: Department of Mathematics, East China Normal University, Shanghai 200062, China Email address: yjqin@math.ecnu.edu.cn

