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Let n be an integer. A set of m positive integers is called a D(n)-m-tuple if the product of
any two of them increased by n is a perfect square. In this paper, we consider extensions
of some parametric families of D(16)-triples. We prove that if {k − 4,k + 4,4k,d}, for
k ≥ 5, is a D(16)-quadruple, then d = k3 − 4k. Furthermore, if {k− 4,4k,9k− 12}, for
k > 5, is a D(16)-quadruple, then d = 9k3− 48k2 + 76k− 32. But for k = 5, this statement
is not valid. Namely, the D(16)-triple {1,20,33} has exactly two extensions to a D(16)-
quadruple: {1,20,33,105} and {1,20,33,273}.
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1. Introduction

Let n be an integer. A set of m positive integers {a1,a2, . . . ,am} is called a Diophantine
m-tuple with the property D(n) or simply D(n)-m-tuple, if aiaj +n is a perfect square for
1≤ i < j ≤m.

This problem was first studied by Diophantus for the case n = 1. He found a set of
four positive rationals with the property D(1). It was the set {1/16,33/16,17/4,105/16}.
However, the first D(1)-quadruple, {1,3,8,120}, was found by Fermat. Euler was able to
add the fifth positive rational, 777480/8288641, to the Fermat set (see [1, pages 103-
104, 232]). Recently, Gibbs [2] found some examples of sets of six positive rationals
with the property D(1). The conjecture is that there does not exist a D(1)-quintuple.
In 1969, Baker and Davenport [3] proved that the Fermat set cannot be extended to a
D(1)-quintuple. More precisely, they proved that if {1,3,8,d} is a D(1)-quadruple, then
d = 120. Dujella gave one generalization to this result in [4], that only extension of D(1)-
triple {k− 1,k + 1,4k}, for an integer k ≥ 2, to a D(1)-quadruple {k− 1,k + 1,4k,d}, is
given by d = 16k3− 4k. Fujita (see [5]) obtained a result for the case n= 4, which can be
regarded as a generalization of the result from [4]. He proved that only extension of D(4)-
triple {k− 2,k + 2,4k}, for an integer k ≥ 3, to a D(4)-quadruple {k− 2,k + 2,4k,d}, is
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given by d = 4k3− 4k. We will prove a result for the case n= 16, which generalizes results
from [4, 5]. Those results support the strong D(1)-quadruple and D(4)-quadruple con-
jecture, which state that in the D(1)-quadruple, respectively, D(4)-quadruple {a,b,c,d},
such that a < b < c < d, element d is uniquely determined with a, b, and c.

However, in the case n= 16, it is not true. We will prove that only extension of D(16)-
triple of the form {k− 4,4k,9k− 12}, for an integer k > 5, to a D(16)-quadruple {k−
4,4k,9k− 12,d}, is given by d = 9k3− 48k2 + 76k− 32. But for k = 5, we will prove that
D(16)-triple {1,20,33} can be extended to exactly two D(16)-quadruples {1,20,33,105}
and {1,20,33,273}. Perhaps we could say that these results suggest that the strong D(16)-
quadruple conjecture might be valid for a, b, c sufficiently large.

In the proofs, we will use the same strategy and the methods from [4, 5].

2. Extension of D(16)-triples of the form {k− 4,k+ 4,4k}
2.1. System of Pellian equations. Assume that the D(16)-triple {k − 4,k + 4,4k}, for
k ≥ 5, can be extended to a quadruple, {k− 4,k+ 4,4k,d}. We note that because of Fujita’s
result [5] of extension of D(4)-triples of the form {k− 2,k + 2,4k}, it is enough to con-
sider odd k. Then there exist positive integers x, y, z, such that

(k− 4)d+ 16= x2, (k+ 4)d+ 16= y2, 4kd+ 16= 4z2. (2.1)

Eliminating d, we get the following system of Pellian equations:

(k− 4)z2− kx2 =−12k− 16, (2.2)

(k+ 4)z2− ky2 =−12k+ 16. (2.3)

From the theory of Pellian equations, we know that if (z,x) is solution to (2.2), then
there exists an integer m≥ 0 such that

z
√
k− 4 + x

√
k =

(
z(i)

0

√
k− 4 + x(i)

0

√
k
)
(
k− 2 +

√
k(k− 4)

2

)m

, (2.4)

where {(z(i)
0 ,x(i)

0 ) : i= 1, . . . , i0} is a finite set of fundamental solutions of (2.2).
Indeed, let (z,x) be a solution of (2.2) in positive integers. Consider all pairs of integers

(z∗,x∗) of the form

z∗
√
k− 4 + x∗

√
k =

(
z
√
k− 4 + x

√
k
)
(
k− 2 +

√
k(k− 4)

2

)m

, (2.5)

for m∈ Z. It is easy to see that (z∗,x∗) is a solution to (2.2) in integers. From z∗
√
k− 4 +

x∗
√
k > 0 and |x∗√k| > |z∗√k− 4|, we conclude that x∗ is a positive integer. Among all

the pairs (z∗,x∗), we chose the one for which x∗ is minimal, and we denote it by (z0,x0).
Define integers z′ and x′ by

z′
√
k− 4 + x′

√
k =

(
z0

√
k− 4 + x0

√
k
)
(
k− 2− ε

√
k(k− 4)

2

)

, (2.6)
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where ε = 1, if z0 ≥ 0, and ε =−1, if z0 < 0. Then from minimality of x0 we get

x′ = 1
2

(
x0(k− 2)− εz0(k− 4)

)≥ x0, (2.7)

which implies, after some calculation, x2
0 ≤ 3k+ 4.

Moreover from x2
0 ≡ 16(mod(k− 4)), we get the following possibilities for x2

0 : x2
0 = 16,

k + 12, 2k + 8, 3k + 4. Inserting that in (2.2) we get the value for z2
0. Then we conclude

that only two possibilities are x0 = 4, z0 =±2, or x2
0 = z2

0 = 3k + 4, because in other cases
fundamental solutions are not integers. At the end it is easy to see that m≥ 0.

In the exactly same way we conclude that the solutions (z, y) of (2.3) are given by

z
√
k+ 4 + y

√
k =

(
z

( j)
1

√
k+ 4 + y

( j)
1

√
k
)
(
k+ 2 +

√
k(k+ 4)

2

)n

, (2.8)

for some integer n≥ 0, and {(z( j)
1 , y

( j)
1 ) : j = 1, . . . , j0} is finite set of fundamental solutions

of (2.3). In this case (omitting the index j), we get only one possibility y1 = 4, z1 = ±2,
except in the case k = 5.

In the case k = 5, we get Pellian equation 9x2 − y2 = 128. It is easy to see that its all
solutions are given by x = 4,6,11. From that we conclude that the only extensions of
the D(16)-pair {1,9} to a triple are {1,9,20} and {1,9,105}, which implies that only
extension of D(16)-triple {1,9,20} to D(16)-quadruple is {1,9,20,105}. So from now
on, we can assume that k ≥ 7 and k is odd.

We have proved the following lemma.

Lemma 2.1. All solutions (z,x) of (2.2) are given by

z
√
k− 4 + x

√
k =

(
z0

√
k− 4 + x0

√
k
)
(
k− 2 +

√
k(k− 4)

2

)m

, (2.9)

where m is a nonnegative integer and (z0,x0)∈ {(±2,4),(±√3k+ 4,
√

3k+ 4)}.
All solutions (z, y) of (2.3) are given by

z
√
k+ 4 + y

√
k =

(
± 2

√
k− 4 + 4

√
k
)(k+ 2 +

√
k(k+ 4)

2

)n

, (2.10)

where n is a nonnegative integer.

2.2. Congruences. From (2.4) we conclude that z = vm, for some m ≥ 0, where the se-
quence (vm)m≥0 is defined by

v0 = z0, v1 = 1
2

(
z0(k− 2) + x0k

)
, vm+2 = (k− 2)vm+1− vm. (2.11)
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From (2.8) we conclude that z =wn, for some n≥ 0, where (wn)n≥0 is defined by

w0 = z1, w1 = 1
2

(
z1(k+ 2) + y1k

)
, wn+2 = (k+ 2)wn+1−wn. (2.12)

We have now transformed the system of (2.2) and (2.3) to finitely many Diophan-
tine equations of the form vm = wn. By induction, from (2.11) and (2.12), we get vm ≡
(−1)mz0(modk) and wn ≡ z1(modk). Then we get z2

0 = 3k+ 4 is possible only in the case
k = 7. And that case will be considered at the end of this section. From now we will as-
sume z0 =±2, z1 =±2. We will consider the equation z = vm = wn for m,n≥ 6, since for
the remaining values of m and n it is easy to check if for some k the equality can hold.

From (2.11) and (2.12) we get the following lemma by induction.

Lemma 2.2. If m,n≥ 6, then

(k+ 2)(k− 3)m−1 < vm < (3k− 2)(k− 2)m−1,

(k− 2)(k+ 1)n−1 < wn < (3k+ 2)(k+ 2)n−1.
(2.13)

Lemma 2.3. If vm =wn, and m,n≥ 6, then n≤m< 1.73n.

Proof. From Lemma 2.2, vm =wn implies

(k+ 2)(k− 3)m−1 < (3k+ 2)(k+ 1)n−1, (2.14)

and (k− 3)m < 3(k+ 2)n. Then

m

n
<

log3
n log(k− 3)

+
log(k+ 2)
log(k− 3)

, (2.15)

which implies m< 0.8 + 1.59n < 1.73n. Lemma 2.2 also implies

(k− 2)(k+ 1)n−1 < (3k− 2)(k− 2)m−1, (2.16)

and (k+ 1)n−2 < 3(k− 2)m−2. Then

n− 2
m− 2

<
log3

(m− 2)log(k+ 1)
+

log(k− 2)
log(k+ 1)

, (2.17)

which implies n− 2 < 0.53 +m− 2, and n <m+ 1, which proves the statement. �

The following lemma can also be proved by induction.

Lemma 2.4.
(i) If z0 = 2, then vm ≡ (−1)m+1(m2 + 2m)k+ (−1)m · 2(modk2).

(ii) If z0 =−2, then vm ≡ (−1)m(m2− 2m)k+ (−1)m+1 · 2(modk2).
(iii) If z1 = 2, then wn ≡ (n2 + 2n)k+ 2(modk2).
(iv) If z1 =−2, then wn ≡−(n2− 2n)k− 2(modk2).

Lemma 2.5 gives us the lower bound of m, depending on k.

Lemma 2.5. If vm =wn, and m,n≥ 6, then m>
√
k/3.
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Proof. Assume vm = wn, for m,n ≥ 6 and m ≤ √k/3. Then using Lemma 2.4, when we
consider the congruence relations, absolute values of both hand sides are less than k2, so
we actually have the equalities. In the case z0 = z1 = 2, we have

(
m2 + 2m

)
k = k2− (n2 + 2n

)
k, (2.18)

and m2 + 2m+ n2 + 2n = k, which is obviously impossible because the left-hand side is
less than k (we also use Lemma 2.3). On the same way, we get the contradiction in the
remaining three cases. �

2.3. Large parameters. In this section we prove that, for k > 2.67 · 107, the equation
vm =wn, for n,m≥ 6, has no solution. First we have to estimate logz, where z = vm =wn.

Lemma 2.6. Let z = vm =wn, n,m≥ 6. Then

logz >

√
k

3
log(k− 3)− log3. (2.19)

Proof. Let z = vm. We can now consider both cases at the same time, if we define z = |v′m|,
where (v′m)m∈Z is a sequence defined by

v′0 = 2, v′1 = 3k− 2, v′m+2 = (k− 2)v′m+1− v′m, m∈ Z. (2.20)

If ϕ = (k− 2 +
√
k(k− 4))/2, it is not hard to see that for m ≥ 0 we have v′m ≥ ϕm, and

|v′m| ≥ (1/3)ϕ|m|.
Then if z = vm, and m≥ 6, we have

z ≥ 1
3
ϕm = 1

3

(
k− 2 +

√
k(k− 4)

2

)m

>
1
3

(k− 3)m >
1
3

(k− 3)
√
k/3. (2.21)

The last inequality follows from Lemma 2.5. �

We will now apply Bennett’s theorem [6, Theorem 3.2], to obtain the upper bound for
logz. Let us first define θ1 =

√
(k− 4)/k, θ2 =

√
(k+ 4)/k.

Lemma 2.7. Let x, y, z be positive solutions of the system of (2.2) and (2.3). Then

max
{∣∣
∣
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z

∣
∣
∣
∣,
∣
∣
∣
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z

∣
∣
∣
∣

}
< 11z−2. (2.22)

Proof. Using (2.2) and (2.3) we get

∣
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√
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k
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z

∣
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<
1
kz2
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2

√
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k
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∣
∣
∣
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z

∣
∣
∣
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∣
∣
∣
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k+ 4
k
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∣
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∣ ·
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∣
∣
∣
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k

+
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∣
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1
kz2
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(

2

√

1 +
4
k
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(2.23)
�
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Theorem 2.8 [6, Theorem 3.2]. Let ai, pi, q, and N be integers for 0 ≤ i ≤ 2 such that
a0 < a1 < a2, aj = 0 for some 0≤ j ≤ 2, q 	= 0, and N >M9, where M =max{|ai| : 0≤ i≤
2} ≥ 3. Then

max

{∣∣
∣
∣
∣

√

1 +
ai
N
− pi

q

∣
∣
∣
∣
∣ : 0≤ i≤ 2

}

> (130Nγ)−1q−λ, (2.24)

where

λ= 1 +
log(32.04Nγ)

log
(

1.68N2
∏

0≤i< j≤2

(
ai− aj

)−2
) ,

γ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
a2− a0

)2(
a2− a0

)2

2a2− a0− a1
, if a2− a1 ≥ a1− a0,

(
a2− a0

)2(
a1− a0

)2

a1 + a2− 2a0
, if a2− a1 < a1− a0.

(2.25)

We will now apply Theorem 2.8 to the following numbers:

a0 =−4, a1 = 0, a2 = 4, N = k, p0 = x, p2 = y, q = z,
(2.26)

for k > 2.67 · 107 > 49, because then the condition of the theorem is satisfied. Then

max
{∣∣
∣
∣θ1− x

z

∣
∣
∣
∣,
∣
∣
∣
∣θ2− y

z

∣
∣
∣
∣

}
> (130kγ)−1z−λ, (2.27)

where

λ= 1 +
log(2734.08k)

log
(
0.0001025k2

) , γ = 256
3

. (2.28)

From Lemma 2.7, we get (11094k)−1z−λ < 11z−2, and logz < log(122034k)/(2− λ). More-
over,

1
2− λ

= 1
1− log(2734.08k)/log

(
0.0001025k2

) <
2log(0.01k)

log
(
3.75 · 10−8k

) . (2.29)

Lemma 2.6 now implies

√
k

3
log(k− 3)− log3 <

2log(112034k) log(0.01k)
log(3.75 · 10−8k)

. (2.30)

Function on the left-hand side is increasing faster, and for k > 2.67 · 107, the inequality
is not satisfied, so we proved the following proposition.

Proposition 2.9. If k > 2.67 · 107, then vm =wn has no solution for m,n≥ 6.
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2.4. Linear form in logarithms. In this section we will prepare everything for Baker-
Davenport reduction. We want to prove that the statement of Proposition 2.9 holds for
k ≤ 2.67 · 107.

Lemma 2.10. If vm =wn, m,n≥ 6, then

0 <m logα1−n logα2 + logα3 < 20α−2n
2 , (2.31)

where

α1 = k− 2 +
√
k(k− 4)

2
, α2 = k+ 2 +

√
k(k+ 4)

2
, α3 =

√
k+ 4

(
2
√
k±√k− 4

)

√
k− 4

(
2
√
k±√k+ 4

) .

(2.32)

Proof. From relations (2.4) and (2.8) we get

vm = 2
√
k±√k− 4√
k− 4

(
k− 2 +

√
k(k− 4)

2

)m

− 2
√
k∓√k− 4√
k− 4

(
k− 2−√k(k− 4)

2

)m

,

wn = 2
√
k±√k+ 4√
k+ 4

(
k+ 2 +

√
k(k+ 4)

2

)n

− 2
√
k∓√k+ 4√
k+ 4

(
k+ 2−√k(k+ 4)

2

)n

.

(2.33)

Then if we define

P = 2
√
k±√k− 4√
k− 4

(
k− 2 +

√
k(k− 4)

2

)m

, Q = 2
√
k±√k+ 4√
k+ 4

(
k+ 2 +

√
k(k+ 4)

2

)n

,

(2.34)

then vm = wn, m,n ≥ 6, implies P − ((3k + 4)/(k − 4))P−1 = Q− ((3k− 4)/(k+ 4))Q−1.
Obviously P,Q > 1. Furthermore,

P−Q= 3k+ 4
k− 4

P−1− 3k− 4
k+ 4

Q−1 >
3k+ 4
k− 4

(Q−P)P−1Q−1, (2.35)

implies P > Q. We also have

Q ≥ 2
√
k−√k+ 4√
k+ 4

(
k+ 2 +

√
k(k+ 4)

2

)6

> 0.59(k+ 1)6. (2.36)

From P > Q − (3k− 4)/(k+ 4), we conclude P−1 < ((1 − (3k − 4)/(k + 4))Q−1)−1Q−1.
Hence

P−Q= 3k+ 4
k− 4

P−1− 3k− 4
k+ 4

Q−1 <
3k+ 4
k− 4

(
1− 3k− 4

k+ 4
Q−1

)−1

Q−1− 3k− 4
k+ 4

Q−1

<
3k+ 4
k− 4

(
1− 3k− 4

k+ 4
· 1

0.59(k+ 1)6

)−1

Q−1− 3k− 4
k+ 4

Q−1 < 6.8Q−1.

(2.37)
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We have 0 < (P−Q)/P < 6.8P−1Q−1 < 6.8Q−2. It implies

0 < log
P

Q
=− log

(

1− P−Q

P

)

< 6.8Q−2 +
(
6.8Q−2)2

< 6.8Q−2
(

1 + 6.8 · 1
0.592(k+ 1)12

)
< 7Q−2.

(2.38)

The statement of the lemma follows from

7Q−2 ≤ 7
( √

k+ 4

2
√
k−√k+ 4

)2

α−2n
2 < 20α−2n

2 . (2.39)
�

2.5. Reduction. To complete reduction, we will use Baker-Wüstholz theorem from [7].

Theorem 2.11 [7]. Let Λ= b1 logα1 + ···+ bl logαl 	= 0 be a linear form of l logarithms of
algebraic numbers α1, . . . ,αl with integer coefficients b1, . . . ,bl. Then

logΛ >−18(l+ 1)!ll+1(32d)l+2h′
(
α1
)···h′(αl

)
log(2ld) logB, (2.40)

where B = max{|bj| : 1 ≤ j ≤ l}, d is a degree of the extension of algebraic number field
generated by α1, . . . ,αl, and h′(α)= (1/d)max{h(α), log|α|,1}. h(α) denotes standard log-
arithmic Weil height of α.

In the notation of the last theorem, we have d = 4, l = 3, B =m, and minimal polyno-
mials of α1, α2, α3 are given by

α2
1− (k− 2)α1 + 1= 0, α2

2− (k+ 2)α2 + 1= 0,

(3k− 4)2(k− 4)2α4
3± 4(k+ 4)(3k− 4)(k− 4)2α3

3− 6
(
k2− 16

)(
7k2 + 16

)
α2

3

± 4(k− 4)(3k+ 4)(k+ 4)2α3 + (k+ 4)2(3k+ 4)2 = 0.

(2.41)

Then we have the estimates

h′
(
α1
)= 1

2
logα1 <

1
2

log(k− 1), h′
(
α2
)= 1

2
logα2 <

1
2

log(k+ 2),

h′
(
α3
)= 1

4

{
log(3k− 4)2(k− 4)2 + log

(3k+ 4)(k+ 4)
√
k+ 4

(
2
√
k+
√
k− 4

)

(3k− 4)(k− 4)
√
k− 4

(
2
√
k−√k+ 4

)
}

<
1
4

{
log(3k− 4)2(k− 4)2 + log

5.54(3k+ 4)(k+ 4)
(3k− 4)(k− 4)

}

= 1
4

log5.54(3k− 4)(k− 4)(3k+ 4)(k+ 4) <
1
4

log49.86k4.

(2.42)

If we apply this to Lemma 2.10, and use m< 2n, we get

m

logm
< 2.4 · 1014 log(k− 1)log49.86k4. (2.43)

Using k < 2.67 · 107, we conclude m< 2 · 1019.
Now we need one version of Baker-Davenport lemma (see [3, 8]).
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Lemma 2.12. LetM be a positive integer and let p/q be a convergent of the continued fraction
expansion of the number κ such that q > 6M. Furthermore, let ε = ‖μq‖−M‖κq‖, where
‖ · ‖ denotes the distance to the nearest integer. If ε > 0, then the inequality

0 <mκ−n+μ < AB−m (2.44)

in integers m and n has no solution for

log(Aq/ε)
logB

≤m≤M. (2.45)

In the notation of the Lemma 2.12, we have

κ= logα1

logα2
, μ= logα3

logα2
, A= 20

logα2
, B = α2, M = 2 · 1019. (2.46)

We have implemented this method in Mathematica 5.0, and we got m ≤ 6 for all k <
2.67 · 107. Now we have to see what is happening for m≤ 6. But it is easy to check, because
we get polynomial equations, that it gives us two extensions d = 0, and d = k3− 4k. Before
we formulate our main result, we have to check what is happening in the case k = 7 for
the other fundamental solution. But using the same methods, only it is easier this time,
we do not get anything new, actually we get one “extension” d = 3, which will not give us
the D(16)-quadruple because in this case k− 4= 7− 4= 3.

Theorem 2.13. The only extension of the D(16)-triple {k− 4,k + 4,4k}, for integer k ≥ 5,
to a D(16)-quadruple {k− 4,k+ 4,4k,d}, is given by d = k3− 4k.

3. Extension of D(16)-triples of the form {k− 4,4k,9k− 12}
3.1. System of Pellian equations. In this section we will not give all the details, because
we will use the same method as in the case of previous parametric family. Actually one
Pellian equation will be exactly the same.

Assume that D(16)-triple {k− 4,4k,9k− 12}, for k ≥ 5, can be extended to a quadru-
ple {k− 4,4k,9k− 12,d}. Then there exist positive integers x, y, z, such that

(k− 4)d+ 16= x2, 4kd+ 16= 4y2, (9k− 12)d+ 16= z2. (3.1)

Eliminating d, we get the following system of simultaneous Pellian equations:

(k− 4)y2− kx2 =−12k− 16, (3.2)

kz2− (9k− 12)y2 =−20k+ 48. (3.3)

Lemma 3.1. All solutions (z,x) of (3.2) are given by

y
√
k− 4 + x

√
k =

(
y0

√
k− 4 + x0

√
k
)
(
k− 2 +

√
k(k− 4)

2

)m

, (3.4)

where m is nonnegative integer, and (y0,x0)∈ {(±2,4),(±√3k+ 4,
√

3k+ 4)}.
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All solutions (z, y) of (3.3) are given by

z
√
k+ y

√
9k− 12=

(
z1

√
k+ y1

√
9k− 12

)
(

3k− 2 +
√
k(9k− 12)
2

)n

, (3.5)

where n is nonnegative integer, and (z1, y1)∈ {(±4,2),(±√9k+ 4,
√
k+ 4)}.

It is easy to see that it is enough to consider solutions of (3.3) such that y2
1 ≡ 4(modk).

Otherwise we will not get the extension with integer. Then we get the following possibil-
ities for y2

1: y2
1 = 4, k + 4. We have two cases y1 = 2, z1 = ±4, or y2

1 = k + 4, z2
1 = 9k + 4.

Obviously the second one is possible only if k = 5 and we will consider that case at the
end of the section.

3.2. Congruences. From Lemma 3.1, we get y = vm, for some m ≥ 0, where (vm)m≥0 is
defined by

v0 = y0, v1 = 1
2

(
y0(k− 2) + x0k

)
, vm+2 = (k− 2)vm+1− vm. (3.6)

On the other hand, y =wn, for some n≥ 0, where (wn)n≥0 is defined by

w0 = y1, w1 = 1
2

(
y1(3k− 2) + z1k

)
, wn+2 = (3k− 2)wn+1−wn. (3.7)

We again transform our system of (3.2) and (3.3) to finitely many equations of the
form vm =wn. From (3.6) and (3.7), we get by induction vm ≡ (−1)my0(modk) and wn ≡
(−1)ny1(modk), that is, it is enough to consider only such solutions because otherwise
we will not get the extension of our D(16)-triple. Then we have that only possibility for
y2

0 = 3k+ 4 is in the case k = 7, and we will consider that case separately, but again it will
give us the “extension” d = 3.

The following two lemmas can be proven as similar as the lemmas in the previous
section.

Lemma 3.2. If m,n≥ 6, then

(k+ 2)(k− 3)m−1 < vm < (3k− 2)(k− 2)m−1,

(k− 2)(3k− 3)n−1 < wn < (5k− 2)(3k− 2)n−1.
(3.8)

Lemma 3.3. If vm =wn, m,n≥ 6, then n <m < 3.71n.

We get the following lemma by induction. Remember we only have to consider se-
quences such that vm ≡ (−1)my0(modk) and wn ≡ (−1)ny1(modk).

Lemma 3.4.
(i) If y0 = 2, then vm ≡ (−1)m+1(m2 + 2m)k+ (−1)m · 2(modk2).

(ii) If y0 =−2, then vm ≡ (−1)m(m2− 2m)k+ (−1)m+1 · 2(modk2).
(iii) If z1 = 4, then wn ≡ (−1)n+1(3n2 + 2n)k+ (−1)n · 2(modk2).
(iv) If z1 =−4, then wn ≡ (−1)n+1(3n2− 2n)k+ (−1)n · 2(modk2).

From Lemma 3.4, we obtain the lower bound for m, depending on k.
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Lemma 3.5. If vm =wn, m,n≥ 6, then m>
√
k/5.

3.3. Large parameters. We now prove that for k > 49, equation vm =wn, for n,m≥ 6, has
no solution. First, we will get the lower bound for log y, where y = vm =wn.

Lemma 3.6. Let y = vm =wn, n,m≥ 6. Then

log y >

√
k

5
log(k− 3)− log3. (3.9)

Proof. The statement follows from Lemmas 2.6 and 3.5. �

Let us define

θ1 =
√

k− 4
k

, θ2 =
√

9k− 12
k

. (3.10)

Lemma 3.7. Let x, y, z be positive solutions of the system of (3.2) and (3.3). Then

max
{∣∣
∣
∣θ1− x

y

∣
∣
∣
∣,
∣
∣
∣
∣θ2− z

y

∣
∣
∣
∣

}
< 17y−2. (3.11)

Now we will again apply the same Bennett’s theorem. First we see that

∣
∣
∣
∣

√
k− 4
k

− x

y

∣
∣
∣
∣=

∣
∣
∣
∣

√

1− 12
3k
− 3x

3y

∣
∣
∣
∣,

∣
∣
∣
∣

√
9k− 12

k
− z

y

∣
∣
∣
∣= 3

∣
∣
∣
∣

√

1− 4
3k
− z

3y

∣
∣
∣
∣.

(3.12)

We apply Bennett’s theorem (Theorem 2.8), actually we can make slight modification
in special case similar to [5, Theorem 4.1.] to get better constants to the following num-
bers:

a0 =−12, a1 =−4, a2 = 0, N = 3k, p0 = 3x, p1 = z, q = 3y, (3.13)

for k > 4.34 · 108, and like for the parametric family from Section 2, we get the following
proposition.

Proposition 3.8. If k > 4.34 · 108, then equation vm =wn has no solution for m,n≥ 6.

3.4. Linear form in logarithms and reduction.

Lemma 3.9. If vm =wn, m,n≥ 6, then

0 <m logα1−n logα2 + logα3 < 244α−2n
2 , (3.14)

where

α1 = k− 2 +
√
k(k− 4)

2
, α2 = 3k− 2 +

√
k(9k− 12)
2

,

α3 =
√

9k− 12
(
2
√
k±√k− 4

)

√
k− 4

(√
9k− 12± 2

√
k
) .

(3.15)
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Using Baker-Wüstholz theorem (Theorem 2.11), we get m < 3 · 1019. Then by Baker-
Davenport reduction (Lemma 2.12), we obtain m≤ 10. So we have to check what is hap-
pening for m ≤ 10. But again we have polynomial equalities that are easy to solve in in-
tegers. We get two extensions with d = 0, and d = 9k3− 482 + 76k− 32. In the case k = 5,
we get one more extension with the element d = 105.

Theorem 3.10. The only extension of the D(16)-triple {k − 4,4k,9k − 12}, for an inte-
ger k > 5, to a D(16)-quadruple {k− 4,4k,9k− 12,d}, is given by d = 9k3− 48k2 + 76k−
32. Furthermore, all extensions of the D(16)-triple {1,20,33} to a D(16)-quadruple are
{1,20,33,105} and {1,20,33,273}.
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