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troduced by J. M. Rassias is generalized to the following n-dimensional functional equa-
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∑n
i=1xi) + (n− 2)
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1≤i< j≤n f (xi− xj) when n > 2. We prove the gen-

eral solutions and investigate its generalized Ulam-Gavruta-Rassias stability.
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1. Introduction

In 1940, Ulam [1] proposed the famous Ulam stability problem of linear mappings. In
1941, Hyers [2] considered the case of approximately additive mappings f : E→ E′, where
E and E′ are Banach spaces and f satisfies Hyers inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε
for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E
and that L : E→ E′ is the unique additive mapping satisfying ‖ f (x)−L(x)‖ ≤ ε. In 1982–
1998, Rassias [3–9] generalized the result to include the following theorem.

Theorem 1.1. Let X be a real-normed linear space and let Y be a real-complete-normed
linear space. Assume in addition that f : X → Y is an approximately additive mapping for
which there exist constants θ ≥ 0 and p,q ∈ R such that r = p + q 	= 1, and f satisfies the
Cauchy-Gavruta-Rassias inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ θ‖x‖p‖y‖q (1.1)

for all x, y ∈ X . Then, there exists a unique additive mapping L : X → Y satisfying

f (x)−L(x)≤ θ
∣
∣2r − 2

∣
∣‖x‖r ∀ x ∈ X. (1.2)
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If in addition f : X → Y is a mapping such that the transformation t→ f (tx) is continuous
in t ∈R for each fixed x ∈ X , then L is R-linear mapping.

In 2002, Rassias [10] established the Ulam stability of the following mixed-type func-
tional equation:

f

( 3∑

i=1

xi

)

+
3∑

i=1

f
(
xi
)=

∑

1≤i< j≤3

f
(
xi + xj

)
(1.3)

on restricted domains. In this paper, we will generalize Rassias’ work to the following
n-dimensional mixed-type functional equation:

f

( n∑

i=1

xi

)

+ (n− 2)
n∑

i=1

f
(
xi
)=

∑

1≤i< j≤n
f
(
xi + xj

)
(1.4)

when n > 2, and will investigate its generalized Ulam-Gavruta-Rassias stability.

2. The general solution

Theorem 2.1. Let n > 2 be a positive integer, and let X and Y be vector spaces.
A function f : X → Y satisfies the functional equation

f

( n∑

i=1

xi

)

+ (n− 2)
n∑

i=1

f
(
xi
)=

∑

1≤i< j≤n
f
(
xi + xj

)
(2.1)

if and only if the even part of f , defined by fe(x) = (1/2)( f (x) + f (−x)) for all x ∈ X ,
satisfies the classical quadratic functional equation, which is also a special Euler-Lagrange-
Rassias equation [7, 9],

f (x+ y) + f (x− y)= 2 f (x) + 2 f (y), (2.2)

and the odd part of f , defined by fo(x) = (1/2)( f (x)− f (−x)) for all x ∈ X , satisfies the
Cauchy functional equation

f (x+ y)= f (x) + f (y). (2.3)

Proof. For the if part of the proof, suppose that f : X → Y satisfies (2.1), we can uniquely
express f as f (x)= fe(x) + fo(x) for all x ∈ X , where the even part, fe, and the odd part,
fo, are defined as in the theorem. We will show that fe satisfies (2.2) and fo satisfies (2.3).

Setting (x1,x2, . . . ,xn) = (0,0, . . . ,0) in (2.1), we see that f (0) = 0. Setting (x1,x2, . . . ,
xn)= (x, y,−y,0,0, . . . ,0) in (2.1), we get

f (x) + (n− 2)
(
f (x) + f (y) + f (−y)

)= f (x− y) + f (x+ y)

+ (n− 3)
(
f (x) + f (y) + f (−y)

)
,

(2.4)

which is simplified to

2 f (x) + f (y) + f (−y)= f (x+ y) + f (x− y) (2.5)



Paisan Nakmahachalasint 3

for all x, y ∈ X . Replacing x and y with −x and −y, respectively, then taking half the sum
and half the difference with (2.5), we have

2 fe(x) + fe(y) + fe(−y)= fe(x+ y) + fe(x− y),

2 fo(x) + fo(y) + fo(−y)= fo(x+ y) + fo(x− y).
(2.6)

By the evenness of fe, we immediately see that fe satisfies the classical quadratic functional
equation given by (2.2). By the oddness of fo, we see that 2 fo(x) = fo(x + y) + fo(x− y)
which is recognized as the Jensen functional equation. Since fo(0)= 0, if we put y = x in
the above equation, then f (2x)= 2 f (x). By another substitution, (x, y)= ((x+ y)/2,(x−
y)/2), we derive the Cauchy functional equation fo(x+ y)= fo(x) + fo(y).

Now for the only if part of the proof, suppose that the even part and the odd part of f :
X → Y satisfy (2.2) and (2.3), respectively, that is, fe(x + y) + fe(x− y)= 2 fe(x) + 2 fe(y)
and fo(x + y) = fo(x) + fo(y). We will show that f satisfies (2.1). Noting that a linear
combination of two solutions of (2.1) yields just another solution, we will in turn prove
that each part of f satisfies (2.1).

First, consider the odd part and make use of the linearity of the Cauchy functional
equation. The left-hand side of (2.1) is

fo

( n∑

i=1

xi

)

+ (n− 2)
n∑

i=1

fo
(
xi
)=

n∑

i=1

fo
(
xi
)

+ (n− 2)
n∑

i=1

fo
(
xi
)= (n− 1)

n∑

i=1

fo
(
xi
)
, (2.7)

and the right-hand side of (2.1) is

∑

1≤i< j≤n
fo
(
xi + xj

)=
∑

1≤i< j≤n

(
fo
(
xi
)

+ fo
(
xj
))= 2

n

(
n

2

) n∑

i=1

fo
(
xi
)= (n− 1)

n∑

i=1

fo
(
xi
)
.

(2.8)

Thus, we have established (2.1) on the odd part of f .
For the even part, we will show by mathematical induction that (2.1) holds for every

positive integer n. For n= 1, we take
∑

1≤i< j≤1 fe(xi + xj) as 0; then fe(x1) + (1− 2) fe(x1)=
0, which is trivially true. For n = 2, we have fe(x1 + x2) + 0 = fe(x1 + x2), which is again
trivially true. For n≥ 3, we assume that (2.1) holds for every number of variables from 1
to n− 1, that is,

fe

( k∑

i=1

xi

)

+ (k− 2)
k∑

i=1

fe
(
xi
)=

∑

1≤i< j≤k
fe
(
xi + xj

)
(2.9)

for k = 1,2, . . . ,n− 1. For each i, j = 1,2, . . . ,n with i 	= j, we have

fe
(
xi− xj

)
+ fe

(
xi + xj

)= 2
(
fe
(
xi
)

+ fe
(
xj
))
. (2.10)

Then,

∑

1≤i< j≤n

(
fe
(
xi− xj

)
+ fe

(
xi + xj

))= 2
∑

1≤i< j≤n

(
fe
(
xi
)

+ fe
(
xj
))= 4

n

(
n

2

) n∑

i=1

fe
(
xi
)
.

(2.11)
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Thus,

∑

1≤i< j≤n

(
fe
(
xi− xj

)
+ fe

(
xi + xj

))= 2(n− 1)
n∑

i=1

fe
(
xi
)
. (2.12)

For each j,k = 1,2, . . . ,n with j 	= k, we have

fe

( n∑

i=1

xi− 2xj

)

+ fe

( n∑

i=1

xi− 2xk

)

= 2 fe

( n∑

i=1

xi− xj − xk

)

+ 2 fe
(
xj − xk

)
. (2.13)

Write down the above equation for every possible pair ( j,k) and note that there are
(
n
2

)

such pairs; so each fe(
∑n

i=1 xi− 2xj) appears n− 1 times in all
(
n
2

)
equations. Adding up

the equations, we get

(n− 1)
n∑

j=1

fe

( n∑

i=1

xi− 2xj

)

= 2
∑

1≤ j<k≤n
fe

( n∑

i=1

xi− xj − xk

)

+ 2
∑

1≤ j<k≤n
fe
(
xj − xk

)
.

(2.14)

For each j = 1,2, . . . ,n, we have

fe

( n∑

i=1

xi

)

+ f

( n∑

i=1

xi− 2xj

)

= 2 fe

( n∑

i=1

xi− xj

)

+ 2 fe
(
xj
)
. (2.15)

Sum the above equation for all j’s and substitute the result from (2.12) and (2.14), then
rearrange the resulting equation

n fe

( n∑

i=1

xi

)

+
2

n− 1

∑

1≤ j<k≤n
fe

( n∑

i=1

xi− xj − xk

)

= 2
n∑

j=1

fe

( n∑

i=1

xi− xj

)

+
2

n− 1

∑

1≤i< j≤n
fe
(
xi + xj

)− 2
n∑

i=1

fe
(
xi
)
.

(2.16)

Note that
∑n

j=1 fe(
∑n

i=1 xi− xj) is the sum of f of xi’s taken n− 1 variables at a time, and
∑

1≤ j<k≤n fe(
∑n

i=1 xi− xj − xk) is the sum of f of xi’s taken n− 2 variables at a time. From
the induction assumption, (2.1) holds for n− 1 and n− 2 variables, that is,

n∑

j=1

fe

( n∑

i=1

xi− xj

)

+ (n− 1)(n− 3)
n∑

i=1

fe
(
xi
)= (n− 2)

∑

1≤i< j≤n
fe
(
xi + xj

)
,

∑

1≤ j<k≤n
fe

( n∑

i=1

xi− xj − xk

)

+
(n− 1)(n− 2)(n− 4)

2

n∑

i=1

fe
(
xi
)

= (n− 2)(n− 3)
2

∑

1≤i< j≤n
fe
(
xi + xj

)
.

(2.17)
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Substitute (2.17) into (2.16) and simplify, we will finally establish (2.1) on the even part
of f . Thus, f satisfies (2.1) and the proof is complete. �

3. The Ulam-Gavruta-Rassias stability

Rassias [10] established the Ulam stability of (2.1) in the special case when n= 3 on re-
stricted domains. The following theorem provides a general condition for which a true
general solution discussed in Theorem 2.1 exists near an approximate solution. For con-
venience, we define

D f
(
x1,x2, . . . ,xn

)= f

( n∑

i=1

xi

)

+ (n− 2)
n∑

i=1

f
(
xi
)−

∑

1≤i< j≤n
f
(
xi + xj

)
. (3.1)

From now on, we will refer to the even part and the odd part of a function by subscripts
e and o, respectively.

Theorem 3.1. Let n > 2 be a positive integer, let X be a real vector space, let Y be a Banach
space, let φ : Xn → [0,∞) be an even function. Define ϕ(x)= φ(x,x,−x,0, . . . ,0) for all x ∈
X . If

∞∑

i=0

2−iϕ
(
2ix
)

converges, lim
m→∞2−mφ

(
2mx1, . . . ,2mxn

)= 0 (3.2)

or

∞∑

i=1

4iϕ
(
2−ix

)
converges, lim

m→∞4mφ
(
2−mx1, . . . ,2−mxn

)= 0 (3.3)

for all x1,x2, . . . ,xn ∈ X , and a function f : X → Y satisfies f (0)= 0 and

∥
∥D f

(
x1,x2, . . . ,xn

)∥
∥≤ φ

(
x1,x2, . . . ,xn

)
(3.4)

for all x1,x2, . . . ,xn ∈ X , then there exists a unique function T : X → Y that satisfies func-
tional equation (2.1) and, if condition (3.2) holds,

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

4

∞∑

i=0

4−iϕ
(
2ix
)
,

∥
∥ fo(x)−To(x)

∥
∥≤ 1

2

∞∑

i=0

2−iϕ
(
2ix0

)
(3.5)

or, if condition (3.3) holds,

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

4

∞∑

i=1

4iϕ
(
2−ix

)
,

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

2

∞∑

i=1

2iϕ
(
2−ix

)
. (3.6)
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The function T is given by

T(x)=
⎧
⎪⎨

⎪⎩

lim
m→∞4−m fe

(
2mx

)
+ 2−m fo

(
2mx

)
if condition (3.2) holds,

lim
m→∞4m fe

(
2−mx

)
+ 2m fo

(
2−mx

)
if condition (3.3) holds

(3.7)

for all x ∈ X .

Proof. We will prove the theorem for a function φ satisfying condition (3.2) and accord-
ingly inequality (3.5). A proof for conditions (3.3) and (3.6) can be reproduced in a
similar manner. Setting (x1,x2, . . . ,xn) = (x,x,−x,0,0, . . . ,0) in (3.4) and simplifying, we
have ‖3 f (x) + f (−x)− f (2x)‖ ≤ ϕ(x). Replacing x by −x, we have ‖3 f (−x) + f (x)−
f (−2x)‖ ≤ ϕ(−x)= ϕ(x). Then,

∥
∥4 fe(x)− fe(2x)

∥
∥

= 1
2

∥
∥
(
3 f (x) + f (−x)− f (2x)

)
+
(
3 f (−x) + f (x)− f (−2x)

)∥
∥

≤ 1
2

∥
∥3 f (x) + f (−x)− f (2x)

∥
∥+

1
2

∥
∥3 f (−x) + f (x)− f (−2x)

∥
∥

≤ 1
2
ϕ(x) +

1
2
ϕ(x)= ϕ(x),

∥
∥2 fo(x)− fo(2x)

∥
∥

= 1
2

∥
∥
(
3 f (x) + f (−x)− f (2x)

)− (3 f (−x) + f (x)− f (−2x)
)∥
∥

≤ 1
2

∥
∥3 f (x) + f (−x)− f (2x)

∥
∥+

1
2

∥
∥3 f (−x) + f (x)− f (−2x)

∥
∥

≤ 1
2
ϕ(x) +

1
2
ϕ(x)= ϕ(x).

(3.8)

Rewrite the inequality on fe as ‖ fe(x)− 4−1 fe(2x)‖ ≤ 4−1ϕ(x) for all x ∈ X . Suppose that
‖ fe(x)− 4−m fe(2mx)‖ ≤ (1/4)

∑m−1
i=0 4−iϕ(2ix) for a positive integer m. Then,

∥
∥ fe(x)− 4−(m+1) fe

(
2m+1x

)∥
∥

≤ ∥∥ fe(x)− 4−m fe
(
2mx

)∥
∥+

∥
∥4−m fe

(
2mx

)− 4−(m+1) fe
(
2m+1x

)∥
∥

≤ ∥∥ fe(x)− 4−m fe
(
2mx

)∥
∥+ 4−m

∥
∥ fe
(
2mx

)− 4−1 fe
(
2 · 2mx

)∥
∥

≤ 1
4

m−1∑

i=0

4−iϕ
(
2ix
)

+ 4−mϕ
(
2mx

)= 1
4

m∑

i=0

4−iϕ
(
2ix
)
.

(3.9)

Hence, ‖ fe(x)− 4−m fe(2mx)‖ ≤ (1/4)
∑m−1

i=0 4−iϕ(2ix) for every positive integer m.
If we rewrite the inequality for fo as ‖ fo(x)− 2−1 fo(2x)‖ ≤ 2−1ϕ(x) and repeat the

same steps as in the case of fe, we will have ‖ fo(x)− 2−m fo(2mx)‖ ≤ (1/2)
∑m−1

i=0 2−iϕ(2ix)
for every positive integer m.
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The convergence of the sequence {4−m fe(2mx)} can be settled as follows. For every
positive integer p,

∥
∥4−(m+p) fe

(
2m+px

)− 4−m fe
(
2mx

)∥
∥= 4−m

∥
∥4−p fe

(
2p · 2mx

)− fe
(
2mx

)∥
∥

≤ 4−m · 1
4

p−1∑

i=0

4−iϕ
(
2i · 2mx

)

≤ 1
4

∞∑

i=0

4−(i+m)ϕ
(
2i+mx

)
.

(3.10)

By the definition of φ and condition (3.2), the right-hand side approaches 0 as m goes to
infinity, hence, we have a Cauchy sequence in a Banach space. Let Te(x) =
limm→∞ 4−m fe(2mx) for all x ∈ X , and thus ‖ fe(x)− Te(x)‖ ≤ (1/4)

∑∞
i=0 4−iϕ(2ix). We

can similarly show that {2−m fo(2mx)} converges; so let To(x) = limm→∞ 2−m fo(2mx) for
all x ∈ X , and thus ‖ fo(x)−To(x)‖ ≤ (1/2)

∑∞
i=0 2−iϕ(2ix). Define T(x) = Te(x) +To(x)

for all x ∈ X .
In order to show that T satisfies (2.1), we will in turn show that Te and To satisfy (2.1).

For convenience, define D fe and D fo as the even part and the odd part of D f in (3.1),
respectively. For Te, consider

4−m
∥
∥D fe

(
2mx1, . . . ,2mxn

)∥
∥

= 4−m · 1
2

∥
∥D f

(
2mx1, . . . ,2mxn

)
+D f

(− 2mx1, . . . ,−2mxn
)∥
∥

≤ 4−mφ
(
2mx1, . . . ,2mxn

)
.

(3.11)

As m tend to infinity, the left-hand side approaches ‖DTe(x1, . . . ,xn)‖ and, by condition
(3.2), the right-hand side approaches 0. Thus,

DTe
(
x1,x2, . . . ,xn

)= Te

( n∑

i=1

xi

)

+ (n− 2)
n∑

i=1

Te
(
xi
)−

∑

1≤i< j≤n
Te
(
xi + xj

)= 0, (3.12)

which shows that Te satisfies (2.1).
We can similarly show that To satisfies (2.1) by considering

2−m
∥
∥D fo

(
2mx1, . . . ,2mxn

)∥
∥

= 2−m · 1
2

∥
∥D f

(
2mx1, . . . ,2mxn

)−D f
(− 2mx1, . . . ,−2mxn

)∥
∥

≤ 2−mφ
(
2mx1, . . . ,2mxn

)
,

(3.13)

and take the limit as m→∞. Hence, T = Te +To satisfies (2.1) as desired.
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To prove the uniqueness of T , suppose that there exists another function S : X → Y
such that S satisfies (2.1) and satisfies the inequality (3.5) with T replaced by S. Then,

∥
∥S(x)−T(x)

∥
∥≤ ∥∥S(x)− f (x)

∥
∥+

∥
∥T(x)− f (x)

∥
∥

≤ ∥∥Se(x)− fe(x)
∥
∥+

∥
∥So(x)− fo(x)

∥
∥

+
∥
∥Te(x)− fe(x)

∥
∥+

∥
∥To(x)− fo(x)

∥
∥.

(3.14)

It is straightforward to show that every solution of the quadratic functional equation
f (x + y) + f (x− y)= 2 f (x) + 2 f (y) has the quadratic property f (nx)= n2 f (x) and ev-
ery solution of the linear functional equation f (x+ y)= f (x) + f (y) has the linear prop-
erty f (nx) = n f (x) for every positive integer n and for every x in the domain. We thus
obtain

∥
∥S(x)−T(x)

∥
∥≤ 4−m

∥
∥Se

(
2mx

)− fe
(
2mx

)∥
∥+ 2−m

∥
∥So

(
2mx

)− fo
(
2mx

)∥
∥

+ 4−m
∥
∥Te

(
2mx

)− fe
(
2mx

)∥
∥+ 2−m

∥
∥To

(
2mx

)− fo
(
2mx

)∥
∥

≤ 2

(

4−m · 1
4

∞∑

i=0

4−iϕ
(
2i · 2mx

)
+

1
2m
· 1

2

∞∑

i=0

2−iϕ
(
2i · 2mx

)
)

= 1
2

∞∑

i=0

4−(i+m)ϕ
(
2i+mx

)
+
∞∑

i=0

2−(i+m)ϕ
(
2i+mx

)

(3.15)

for all x ∈ X . As m goes to infinity, the right-hand side approaches 0, and S(x)= T(x) for
all x ∈ X . This completes the proof. �

The following corollary proves the Hyers-Ulam stability of (2.1).

Corollary 3.2. If a function f : X → Y satisfies f (0)= 0 and the functional equation

∥
∥D f

(
x1,x2, . . . ,xn

)∥
∥≤ ε (3.16)

for some ε > 0 and for all x1,x2, . . . ,xn ∈ X , then there exists a unique function T : X → Y
that satisfies functional equation (2.1) and, for all x ∈ X ,

∥
∥ fe(x)−Te(x)

∥
∥≤ ε

3
,

∥
∥ fo(x)−To(x)

∥
∥≤ ε. (3.17)

Proof. Let φ(x1,x2, . . . ,xn) = ε, then condition (3.2) in Theorem 3.1 holds. Hence, it fol-
lows from the theorem that there exists a unique function T : X → Y such that

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

4

∞∑

i=0

4−i · ε = ε

3
,

∥
∥ fo(x)−To(x)

∥
∥≤ 1

2

∞∑

i=0

2−iε = ε. (3.18)

�

The following corollary proves the Hyers-Ulam-Rassias stability of (2.1).
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Corollary 3.3. Let p be a positive real number with 0 < p < 1 or p > 2. If a function
f : X → Y satisfies the inequality

∥
∥D f

(
x1,x2, . . . ,xn

)∥
∥≤ ε

n∑

i=1

∥
∥xi
∥
∥p (3.19)

for some ε > 0 and for all x1,x2, . . . ,xn ∈ X , then there exists a unique function T : X → Y
that satisfies functional equation (2.1) and, for all x ∈ X ,

∥
∥ fe(x)−Te(x)

∥
∥≤ 3ε

4
∣
∣1− 2p−2

∣
∣‖x‖p,

∥
∥ fo(x)−To(x)

∥
∥≤ 3ε

2
∣
∣1− 2p−1

∣
∣‖x‖p.

(3.20)

Proof. Substituting x1 = x2 = ··· = xn = 0 into (3.19), we get

f (0) + (n− 2) ·n f (0)=
(
n

2

)

f (0). (3.21)

Since n > 2, it follows that 1 +n(n− 2) >
(
n
2

)
, hence, f (0)= 0.

Let φ(x1,x2, . . . ,xn) = ε
∑n

i=1‖xi‖p. If 0 < p < 1, then condition (3.2) in Theorem 3.1
holds and it follows that

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

4

∞∑

i=0

4−i
(
3ε · 2ip‖x‖p)= 3ε

4
(
1− 2p−2

)‖x‖p,

∥
∥ fo(x)−To(x)

∥
∥≤ 1

2

∞∑

i=0

2−i
(
3ε · 2ip‖x‖p)= 3ε

2
(
1− 2p−1

)‖x‖p.
(3.22)

If p > 1, we apply Theorem 3.1 with condition (3.3) to get a similar result. �

The following corollary proves the Ulam-Gavruta-Rassias stability of (2.1).

Corollary 3.4. Let p1, p2, . . . , pn be nonnegative real numbers and r =∑n
i=1 pi with 0 <

r < 1 or r > 2. If a function f : X → Y satisfies the inequality

∥
∥D f

(
x1,x2, . . . ,xn

)∥
∥≤ ε

n∏

i=1

∥
∥xi
∥
∥pi (3.23)

for some ε > 0 and for all x1,x2, . . . ,xn ∈ X , then there exists a unique function T : X → Y
that satisfies functional equation (2.1) and, for n= 3,

∥
∥ fe(x)−Te(x)

∥
∥≤ ε

4
∣
∣1− 2r−2

∣
∣‖x‖r ,

∥
∥ fo(x)−To(x)

∥
∥≤ ε

2
∣
∣1− 2r−1

∣
∣‖x‖r (3.24)

for all x ∈ X .

Proof. We can show that f (0)= 0 by the same substitution used in the proof of Corollary
3.3. Let φ(x1,x2, . . . ,xn)= ε

∏n
i=1‖xi‖pi . According to Theorem 3.1, if 0 < r < 1, then con-

dition (3.2) holds, and if r > 2, then condition (3.3) holds. If n > 3, then the desired result
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immediately follows. However, for n= 3, we have

∥
∥ fe(x)−Te(x)

∥
∥≤ 1

4

∞∑

i=0

4−i
(
ε · 2ir‖x‖r)= ε

4
(
1− 2r−2

)‖x‖r ,

∥
∥ fo(x)−To(x)

∥
∥≤ 1

2

∞∑

i=0

2−i
(
ε · 2ir‖x‖r)= ε

2
(
1− 2r−1

)‖x‖r
(3.25)

when 0 < r < 1, and a similar result when r > 1. �
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