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troduced by J. M. Rassias is generalized to the following n-dimensional functional equa-
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1. Introduction

In 1940, Ulam [1] proposed the famous Ulam stability problem of linear mappings. In
1941, Hyers [2] considered the case of approximately additive mappings f : E — E’, where
E and E’ are Banach spaces and f satisfies Hyers inequality || f(x+y) — f(x) — f(y)ll < ¢
for all x, y € E. It was shown that the limit L(x) = lim, . 27" f(2"x) exists for all x € E
and that L : E — E' is the unique additive mapping satisfying || f (x) — L(x)|| < e.In 1982—
1998, Rassias [3-9] generalized the result to include the following theorem.

THEOREM 1.1. Let X be a real-normed linear space and let Y be a real-complete-normed
linear space. Assume in addition that f : X — Y is an approximately additive mapping for
which there exist constants 0 > 0 and p,q € R such that r = p+q # 1, and f satisfies the
Cauchy-Gavruta-Rassias inequality

IIf(x+y) = f(x)= f] < OllxNP ]yl (1.1)

forall x,y € X. Then, there exists a unique additive mapping L : X — Y satisfying

flx) - Lix) < Ixll” VxeX. (1.2)

0
|2r-2]
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If in addition f : X — Y is a mapping such that the transformation t — f(tx) is continuous
in t € R for each fixed x € X, then L is R-linear mapping.

In 2002, Rassias [10] established the Ulam stability of the following mixed-type func-
tional equation:

f(,slxi>+§f(xi): > flxitxj) (1.3)

1=<i<j<3

on restricted domains. In this paper, we will generalize Rassias’ work to the following
n-dimensional mixed-type functional equation:

f(ixi>+(n—2)if(xi)= > flxi+x)) (1.4)

l<i<j<n

when n > 2, and will investigate its generalized Ulam-Gavruta-Rassias stability.

2. The general solution

THEOREM 2.1. Let n > 2 be a positive integer, and let X and Y be vector spaces.
A function f : X — Y satisfies the functional equation

n

f(i%‘) +(n=2)> f(x)= > flxi+x)) (2.1)

i=1 1<i<j<n

if and only if the even part of f, defined by f.(x) = (1/2)(f(x) + f(=x)) for all x € X,
satisfies the classical quadratic functional equation, which is also a special Euler-Lagrange-
Rassias equation [7, 9],

flx+y)+flx—y)=2f(x)+2f(y), (2.2)

and the odd part of f, defined by f,(x) = (1/2)(f(x) — f(=x)) for all x € X, satisfies the
Cauchy functional equation

flx+y)=fx)+f(y). (2.3)

Proof. For the if part of the proof, suppose that f : X — Y satisfies (2.1), we can uniquely
express f as f(x) = fo(x) + f,(x) for all x € X, where the even part, f,, and the odd part,
fo> are defined as in the theorem. We will show that f, satisfies (2.2) and f, satisfies (2.3).

Setting (x1,X2,...,%,) = (0,0,...,0) in (2.1), we see that f(0) = 0. Setting (x1,%2,...,
Xn) = (%,¥,—9,0,0,...,0) in (2.1), we get

fO+m=-2)(f)+f+f(=p) =fx—py)+flx+y)
+(n=3)(f(x)+ f(y)+ f(=y)),

which is simplified to

(2.4)

2f)+ f)+ f(=y) = fx+y)+ flx =) (2.5)
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for all x, y € X. Replacing x and y with —x and — y, respectively, then taking half the sum
and half the difference with (2.5), we have

2fe(x)+ fo(p) + fo(=p) = felx+y) + folx = y),
2fo(X)+ fo(¥) + fo(=y) = folx+y) + folx —

By the evenness of f,, we immediately see that f, satisfies the classical quadratic functional
equation given by (2.2). By the oddness of f,, we see that 2 f,(x) = fo(x+ y) + fo(x — )
which is recognized as the Jensen functional equation. Since f,(0) = 0, if we put y = x in
the above equation, then f(2x) = 2 f(x). By another substitution, (x,y) = ((x+ y)/2,(x —
¥)/2), we derive the Cauchy functional equation f,(x+y) = fo(x) + fo(¥).

Now for the only if part of the proof, suppose that the even part and the odd part of f :
X — Y satisfy (2.2) and (2.3), respectively, that is, fo(x+y) + fo(x — ¥) = 2fo(x) + 2 fe(¥)
and fo(x+y) = fo(x)+ fo(y). We will show that f satisfies (2.1). Noting that a linear
combination of two solutions of (2.1) yields just another solution, we will in turn prove
that each part of f satisfies (2.1).

First, consider the odd part and make use of the linearity of the Cauchy functional
equation. The left-hand side of (2.1) is

(2.6)

n

f(,(ixi) Z ; () +(n—2 Z (n—l)Zfo x), (2.7)

and the right-hand side of (2.1) is

M:

f (Xi)~
(2.8)

S fbtn) = 3 () + i) = () X ) = - 1)

I<i<j<n I<i<j<n 1

1l
—_
I

Thus, we have established (2.1) on the odd part of f.

For the even part, we will show by mathematical induction that (2.1) holds for every
positive integer n. For n = 1, we take lei<jsl Je(xi+xj) as 0; then fo(x1) + (1 —2) fo(x1) =
0, which is trivially true. For n = 2, we have f.(x; +x,) +0 = f.(x; +x;), which is again
trivially true. For n = 3, we assume that (2.1) holds for every number of variables from 1
to n — 1, that is,

k k
Jg(in>+(k—z)Z];(x,-): > folxi+x;) (2.9)
i=1 i=1 I<i<j<k

fork=1,2,...,n—1.Foreachi,j =1,2,...,n with i # j, we have

]‘;(xi—xj)+]‘;(xi+xj) :2(fe(xi)+fe(xj)). (2.10)

> (fli-x)+filurx)) =2 ¥ (ﬁ(xi)+ﬂ(xj>)=%(’;)Zfe(xi).

1<i<j<n l<i<j<n
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Thus,

Z (fe(xi = xj) + fo(xi +x;5)) =2(n—1)§"fe(x,-). (2.12)

1<i<j<n

For each j,k = 1,2,...,n with j # k, we have
_ﬁ(in —2xj> +fe(Zx,~ —Zxk) = Zﬁ(in—xj —xk) +2fe (5 — xx). (2.13)
i-1 i=1 i-1

Write down the above equation for every possible pair (j,k) and note that there are (;’)

such pairs; so each f,(3i; x; — 2x;) appears n — 1 times in all (g) equations. Adding up
the equations, we get

(n—l)jiﬂ(ix,—bc])—z > ﬂ(Zx,—x]—xk)+2 > folx

I<j<k=n 1<j<k=n

(2.14)

For each j = 1,2,...,n, we have

(S er(Eow) oS it s

Sum the above equation for all j’s and substitute the result from (2.12) and (2.14), then
rearrange the resulting equation

i <th x]>+ > felxi+x)) - ife(xi)-
j=1 i=1

1<z<]<n

> i Swmny-n)

1<]<k<n

(2.16)

Note that 2;7:1 fe(XiZ1 xi — x;) is the sum of f of x;’s taken n — 1 variables at a time, and
Dijcken fe(2io1 Xi — xj — xi) is the sum of f of x;’s taken n — 2 variables at a time. From
the induction assumption, (2.1) holds for n — 1 and »n — 2 variables, that is,

iﬁ(ixi—xj)+<n—1><n—s>ife<xi>=<n—z> S filux),
j=1 i=1 i=1

I<i<j<n

Z ]‘;(Zn:xi—xj—xk)+(n_l)(n22)n 4 Zn: (2.17)

1<j<k<n i=1
(n-2)(n-
——— E fe(xi+xj).

1<i<j<n
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Substitute (2.17) into (2.16) and simplify, we will finally establish (2.1) on the even part
of f. Thus, f satisfies (2.1) and the proof is complete. O

3. The Ulam-Gavruta-Rassias stability

Rassias [10] established the Ulam stability of (2.1) in the special case when n = 3 on re-
stricted domains. The following theorem provides a general condition for which a true
general solution discussed in Theorem 2.1 exists near an approximate solution. For con-
venience, we define

Df(xl,xz,...,xn)=f<ixi>+(n—2)§f(xi)— Z f(xi+x;j). (3.1)

I<i<j<n

From now on, we will refer to the even part and the odd part of a function by subscripts
e and o, respectively.

THEOREM 3.1. Let n > 2 be a positive integer, let X be a real vector space, let Y be a Banach
space, let ¢ : X" — [0, 00) be an even function. Define ¢(x) = ¢(x,x,—x,0,...,0) for all x €
X. If

[

ZZ_iGD(Zix) converges, lim 27" ¢(2"x1,...,2"x,) = 0 (3.2)
m— oo
i=0
or
Z4i¢(2*l‘x) converges, lim 4m¢(27mX1,...,27mxn) =0 (33)
m— oo

i=1
for all x1,%2,...,%, € X, and a function f : X — Y satisfies f(0) = 0 and
[IDf (x1,%2,--»%n) || < @ (x1,%2,...,%4) (3.4)

for all x1,%3,...,x, € X, then there exists a unique function T : X — Y that satisfies func-
tional equation (2.1) and, if condition (3.2) holds,

- Tl = 3 S a79@, 10 - Tl =3 X2 0(2x0)  (35)
i=0

i=0

o, if condition (3.3) holds,

1£() - To()|| < }124@(2—%), 1£() - To()|| < %Z2i(p(2_ix). (3.6)
i=1 i=1
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The function T is given by

lim 47" f,(2"x) +27" f,(2"x)  if condition (3.2) holds,
T(x)=41""" (3.7)
rlliir(}o 4" f,(27"x) +2" f,(27"x)  if condition (3.3) holds

forallx € X.

Proof. We will prove the theorem for a function ¢ satisfying condition (3.2) and accord-
ingly inequality (3.5). A proof for conditions (3.3) and (3.6) can be reproduced in a
similar manner. Setting (x1,%2,...,%,) = (x,%,—x,0,0,...,0) in (3.4) and simplifying, we
have [13f(x) + f(—x) — f(2x)]l < ¢(x). Replacing x by —x, we have [|3f(—x) + f(x) —
f(=2x)|l < ¢(—=x) = ¢(x). Then,

[14fe(x) = fe(20)|
= NG+ F(=2) - f@0) + Bf () + f(0) ~ f(~20)]

< %Il3f(x>+f(—x> —f(2x>||+%ll3f(—x)+f(x) — f(=2x)]|

1 1
< 590 +59(x) = ¢(x), s
3.8
||2f0(x) —f0(2x){|

= G0+ f(—0) - F20) - GF (-2 + f) - f(~20)]]

— N

< S[[3f(x)+ f( x)—f(2x)||+%||3f(—X)+f(x)—f(—2x)||

[\S}

1 1
< E(p(x) + Eq)(x) = ¢(x).

Rewrite the inequality on f; as || f.(x) — 47! f.(2x)[| <4 '¢(x) for all x € X. Suppose that
| fo(x) —4 ™ f,2"x) || < (1/4) 3" 471p(2ix) for a positive integer . Then,

1) — 40 £ (27 1) |
< [1feG0) =47 fe@ma) || +[1477 fo(27x) — 47D o (2 ) |
=[[feol@) =47 £ 270 ||+ 47" £ (270) - 47 £2 - 27) |

m

ig 9(2x) +4 (2" )—iz4‘i¢(2ix)-

i=0

(3.9)

Hence, || f,(x) — 47" f,(2mx)|| < (1/4) 37" 47p(2x) for every positive integer m.

If we rewrite the inequality for f, as || fo(x) — 27! f,(2x)|l < 27'¢(x) and repeat the
same steps as in the case of f,, we will have || f,(x) — 27" f,(2"x)|| < (1/2) 37,  27p(2ix)
for every positive integer .
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The convergence of the sequence {47 f,(2"x)} can be settled as follows. For every
positive integer p,

[[470P) £ (2P x) — 47" fo(2x) || = 47" |[47P £ (2P - 27x) — fe(275)|
<4 1)24 ip(21 - 2"x)

= (3.10)

IA
N
[Me

4—(i+m) (P (2i+mx) .
0

By the definition of ¢ and condition (3.2), the right-hand side approaches 0 as m goes to
infinity, hence, we have a Cauchy sequence in a Banach space. Let T.(x) =

limyy—.e 47" f,(2™x) for all x € X, and thus || fo(x) — T.(x)|| < (1/4) 3.7 o4 p(2'x). We
can similarly show that {2 ”‘fo(Zm )} converges, so let Ty(x) = limy—e 27" f,(2™x) for
all x € X, and thus || f,(x) — To(x)|l < (1/2) .72 02 '¢(2'x). Define T(x) = T¢(x) + T,(x)
forall x € X.

In order to show that T satisfies (2.1), we will in turn show that T, and T, satisfy (2.1)
For convenience, define D f, and Df, as the even part and the odd part of Df in (3.1),
respectively. For T,, consider

47D fe (2" x15..., 2" x0) ]
o %HDf(Z”‘xl,...,men) +Df( _2mx1a---)_2mxﬂ)|| (311)

<47MP(2"x1,..., 2" xy).

As m tend to infinity, the left-hand side approaches || DT,(x,...,x,)|l and, by condition
(3.2), the right-hand side approaches 0. Thus,

n
DTe(xl,xz,...,xn):Te<2xi) (n— Z)ZT X;) Z Te(xi+x;) =0, (3.12)
-1

i=1 I<i<j=n

which shows that T, satisfies (2.1).
We can similarly show that T, satisfies (2.1) by considering

27D fo(2"x1,...,2™ %) ||
=2"". %HDf(Z’”xl,...,men) —Df(=2"x1,...,—2"x,)|| (3.13)

<27Mp(2"x1,...,2"xy),

and take the limit as m — o. Hence, T = T, + T, satisfies (2.1) as desired.
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To prove the uniqueness of T, suppose that there exists another function $: X — Y
such that S satisfies (2.1) and satisfies the inequality (3.5) with T replaced by S. Then,

[1S(x) = T(x)|| < [[S(x) = f )|+ ]| T(x) = f(x)]
< [[Se(x) = fe(x)]] +|So(x) = fo(x)] (3.14)
+ | Te(x) = fo()|| + || To(x) = fo(x)]].

It is straightforward to show that every solution of the quadratic functional equation
flx+y)+ f(x—y)=2f(x)+2f(y) has the quadratic property f(nx) = n*f(x) and ev-
ery solution of the linear functional equation f(x+ y) = f(x) + f(y) has the linear prop-
erty f(nx) = nf(x) for every positive integer n and for every x in the domain. We thus
obtain

[1SGe) = TGl = 47"[[Se(2"x) = fe(2"x) [ +277([S,(27x) = fo(2"x)
x) = fo(2"x)l

o(27
sZ( : 24 ip(2"-2mx) —m %i ) (3.15)

1 0

+47"|Te(27x) = fe(2"x)[[+27"]|T.

4—(i+m)¢(2i+mx) + Z 2—(i+m)(P(2i+mx)
i=0

I
=
M

Il
=]

for all x € X. As m goes to infinity, the right-hand side approaches 0, and S(x) = T'(x) for
all x € X. This completes the proof. O

The following corollary proves the Hyers-Ulam stability of (2.1).

CoRroOLLARY 3.2. Ifa function f : X — Y satisfies f(0) = 0 and the functional equation
[IDf (x1,%2,...,%4) || < € (3.16)

for some € >0 and for all x1,%,...,x, € X, then there exists a unique function T: X — Y
that satisfies functional equation (2.1) and, for all x € X,

&

[| fe(x) — Te(x)|] < [| folx) = To(x)|| <e. (3.17)

© \

Proof. Let ¢(x1,%2,...,%,) = & then condition (3.2) in Theorem 3.1 holds. Hence, it fol-
lows from the theorem that there exists a unique function T': X — Y such that

&

|| fe(x) — x)||<—z4 e e= 3 ||fo(x)—Tg(x)||s2‘22*"s=£. (3.18)

O
The following corollary proves the Hyers-Ulam-Rassias stability of (2.1).
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CoROLLARY 3.3. Let p be a positive real number with 0 < p <1 or p >2. If a function
f:X — Y satisfies the inequality

IIDf (x1,%2,.,%0) || < € [[i] P (3.19)
i-1

for some € >0 and for all x1,%,...,x, € X, then there exists a unique function T: X — Y
that satisfies functional equation (2.1) and, for all x € X,

1) - Tl = gy =gy 11 1) = Tuloll = 5= gy el
(3.20)
Proof. Substituting x; = x, = - - - = x, = 0 into (3.19), we get
F0)+(n—2)-nf(0) = (Z)f(()). (3.21)

Since n > 2, it follows that 1+ n(n—2) > (g), hence, f(0) = 0.
Let ¢(x1,%2,...,%,) = €21, lIxil|?. If 0 < p < 1, then condition (3.2) in Theorem 3.1
holds and it follows that

le : 3¢
- SN 47 (3 2 |x)|P) = — 25
| fe(x) nwm£4§4(%2|mu iy I
Lo ; (3.22)
- =N 27(3e - 2P| x|[P) = ——5 1%/l
o) = Toll = 5 2,273 - 22 ell) = 57—y Il
If p > 1, we apply Theorem 3.1 with condition (3.3) to get a similar result. O

The following corollary proves the Ulam-Gavruta-Rassias stability of (2.1).

COROLLARY 3.4. Let py, pa,..., pn be nonnegative real numbers and r = >\, p; with 0 <
r<1orr>2. Ifafunction f: X — Y satisfies the inequality

[IDf (x1,%2,..>%n)|] saﬁ||x,-||Pi (3.23)

i=1
for some € >0 and for all x1,%,,...,x, € X, then there exists a unique function T: X - Y
that satisfies functional equation (2.1) and, for n = 3,

[[fe(x) — Te(x)|| < 7] Ixl” (3.24)

€ . 3
ﬁ”x” > ||f0(x) To(x)” =< 2|

L
1—2r-1 |
forallx € X.

Proof. We can show that f(0) = 0 by the same substitution used in the proof of Corollary
3.3. Let ¢p(x1,%2,...,%n) = €[ [~ llxillPi. According to Theorem 3.1, if 0 < r < 1, then con-
dition (3.2) holds, and if r > 2, then condition (3.3) holds. If n > 3, then the desired result
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immediately follows. However, for n = 3, we have

1) Tl = § S 20l) = =gy o
N (3.25)
o) = T %Z e-27lxll") = =Gy el
when 0 < r < 1, and a similar result when r > 1. O
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