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We find necessary conditions for every solution of the neutral delay difference equation
Δ(rnΔ(yn− pnyn−m)) + qnG(yn−k)= fn to oscillate or to tend to zero as n→∞, where Δ
is the forward difference operator Δxn = xn+1 − xn, and pn, qn, rn are sequences of real
numbers with qn ≥ 0, rn > 0. Different ranges of {pn}, including pn =±1, are considered
in this paper. We do not assume that G is Lipschitzian nor nondecreasing with xG(x) > 0
for x �= 0. In this way, the results of this paper improve, generalize, and extend recent
results. Also, we provide illustrative examples for our results.
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1. Introduction

In this paper, we present necessary conditions so that every solution of

Δ
(
rnΔ

(
yn− pnyn−m

))
+ qnG

(
yn−k

)= 0 (1.1)

and of

Δ
(
rnΔ

(
yn− pnyn−m

))
+ qnG

(
yn−k

)= fn (1.2)

oscillates or tends to zero as n→∞, where Δ is the forward difference operator Δyn =
yn+1 − yn, the sequences {pn}, { fn}, {qn}, and {rn} are sequences of real numbers with
qn ≥ 0 and rn > 0. We assume that m, k are nonnegative constant integers, and G ∈
C(R,R). Various ranges of the sequence {pn} are considered.

Some of the following conditions will be assumed later this article.
(H0) G is Lipschitzian in every interval of form [a,b], with 0 < a < b.
(H1) xG(x) > 0 for x �= 0 and G is nondecreasing.
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(H2)
∑∞

n=0 qn =∞.
(H3)

∑∞
n=0 1/rn =∞.

(H4)
∑∞

n=0 1/rn <∞.
(H5)

∑∞
n=1(1/rn)

∑n−1
i=0 qi =∞.

(H6) There exists a bounded sequence {Fn} such that ΔFn = fn.
Difference equations occur as mathematical models of some real-world problems. To

have a glimpse of the importance, utility, and development of the subject, one may refer
[1–3]. In recent years, many authors have shown interest in the oscillation of neutral
delay difference equations (NDDEs in short). For recent results and references, see the
monograph by Agarwal [4], the papers [5–22], and the references cited there in. In this
paper, neither (H0) nor (H1) is assumed for obtaining positive solution of (1.2). However,
several authors use these conditions while they attempted the same problem for neutral
equations of any order; see [6, 12–22]. To the best of our knowledge, no result regarding
positive solutions of neutral equations (both differential and difference equations) of any
order with pn ≡ −1 is available in the literature. Even the papers written specially for
pn =±1 do not have such a result [13, 14, 18, 20]. For difference equations, most ranges
are covered in [12, 13, 15], but there is no result for pn = ±1. In this paper, we have
covered all ranges of pn including those missing in [12, 13, 15]. Furthermore, the authors
studying (1.1) assume either (H3) or (H4); see [6]. In this work, we are able to do away
with these conditions. In particular, we show that either (H3) or (H5) is necessary for
every solution of (1.1) or (1.2) to oscillate or to tend to zero as n→∞.

We remark that Thandapani et al. [23] have studied the m-order neutral delay differ-
ence equation

Δm
[
yn + pnyn−s

]
+ δF

(
n, yn−k

)= 0. (1.3)

They found conditions that are sufficient for every solution to oscillate or to tend to zero
as n→∞, under various ranges for pn. The results about our NDDE (even for rn = 1)
do not follow from the results presented in (1.3) with m= 2, because of the presence of
the nonlinear term F(n, y). Furthermore, our conditions are in certain sense opposite to
those in [23].

We illustrate our results with suitable examples and show their significance over other
results in the literature. Since rn ≡ 1 is permissible, our results generalize and improve the
results to second-order NDDEs in [12, 15].

Let τ =max{m,k} and let N0 be a fixed nonnegative integer. By a solution of (1.2), we
mean a real sequence {yn}which is defined for all positive integer n≥N0− τ and satisfies
(1.2) for n≥N0. When an initial condition

yn = an for N0− τ ≤ n≤N0 (1.4)

is given, (1.2) has a unique solution satisfying the given initial condition.
A solution {yn} of (1.2) is said to be oscillatory if for every positive integer N0 > 0,

there exists n≥N0 such that ynyn+1 < 0; otherwise {yn} is said to be nonoscillatory.
We would like to present the following useful remarks.
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Remark 1.1. (i) Since rn > 0, only one of (H3) and (H4) holds but not both.
(ii) If (H3) holds, then (H2) implies (H5) but not conversely. This is justified from the

example when rn = 3−n and qn = 2−n.
(iii) If (H4) holds, then (H5) implies (H2) but not conversely. Indeed, this can be

verified from the example when rn = n3 and qn ≡ 1.
(iv) If (H2) and (H5) hold, then nothing can be said about (H3) and (H4). This can

be seen from the example rn = n2 and qn ≡ 1. In this case, (H2), (H5), (H4) hold but not
(H3). Next, consider the example rn ≡ 1 and qn ≡ 1. Here (H2), (H3), (H5) hold but not
(H4).

2. Positive solutions I

In this section, we assume that there exists a constant b, such that the sequence {pn}
satisfies

(A1) 0≤ pn ≤ b < 1.
For our purpose, we need the following result.

Lemma 2.1 (Krasnoselskii’s Fixed Point theorem [9]). Let X be a Banach space and let S be
a bounded closed convex subset of X . Let A, B be operators from S to X such that Ax+By ∈ S
for every pair of x, y ∈ S. If A is a contraction and B is completely continuous, then the
equation

Ax+Bx = x (2.1)

has a solution in S.

Our first results read as follows.

Theorem 2.2. Let (A1), (H4), and (H6) hold. If every solution of (1.2) oscillates or tends to
zero as n→∞, then (H5) holds.

Proof. We use the contraposition method. Assuming that (H5) does not hold, try to find
a solution to (1.2) that does not oscillate and does not tend to zero. From the negation of
(H5),

∞∑

i=1

1
ri

i−1∑

j=0

qj <∞. (2.2)

Using the continuity of G, we set

μ=max
{∣
∣G(x)

∣
∣ :

2(1− b)
3

≤ x ≤ 4
3

}
. (2.3)

Then using (H4) and (H6), we obtain

∞∑

i=n

Fi
ri

<∞. (2.4)
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From (2.2) and (2.4), we can find that N1 > 0 such that for n≥N1,

μ
∞∑

i=n

1
ri

i−1∑

j=0

qj <
1− b

6
, (2.5)

∞∑

i=n

∣
∣Fi
∣
∣

ri
<

1− b

6
. (2.6)

Let X be the Banach space consisting of bounded real sequences x = {xn}, with the supre-
mum norm

‖x‖ = sup
{∣∣xn

∣
∣ : n≥N1− τ

}
. (2.7)

In this space, we define the closed and convex set

S=
{
y ∈ X :

2(1− b)
3

≤ yn ≤ 4
3

, n≥N1− τ
}
. (2.8)

Now we define two operators A and B, from S to X , such that fixed points of A+B are
solutions of (1.2). For y ∈ S, define

(Ay)n =
⎧
⎪⎨

⎪⎩

(Ay)N1 , N1− τ ≤ n≤N1,

pnyn−m + (1− b), n≥N1,
(2.9)

(By)n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(By)N1 , N1− τ ≤ n≤N1,

∞∑

i=n

1
ri

i−1∑

j=N1

qjG
(
yj−k

)−
∞∑

i=n

Fi
ri

, n≥N1.
(2.10)

Here we use the convention that
∑n2

j=n1
··· = 0 when n2 < n1.

First we show that if x, y ∈ S, then Ax+By ∈ S. With x = {xn} and y = {yn} in S, and
n≥N1, we obtain

(Ax)n + (By)n = pnxn−m + (1− b) +
∞∑

i=n

1
ri

i−1∑

j=N1

qjG
(
yj−k

)−
∞∑

i=n

Fi
ri
. (2.11)

Note that for j ≥N1, the sequence {yj−k} is in S, so that |G(yj−k)| ≤ μ. Using (2.5), (2.6),
and 0≤ pn ≤ b < 1, we have

(Ax)n + (By)n <
4b
3

+ (1− b) +
1− b

6
+

1− b

6
= 4

3
,

(Ax)n + (By)n > 0 + (1− b) + 0− 1− b

6
− 1− b

6
= 2

3
(1− b).

(2.12)

Therefore, 2(1− b)/3 < (Ax)n + (By)n ≤ 4/3 so that Ax+By belongs to S for all x, y in S.
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Next we show that A is a contraction in S. In fact for x, y in S and n≥N1,

∥
∥(Ax)n− (Ay)n

∥
∥≤ ∣∣pn

∣
∣
∣
∣xn−m− yn−m

∣
∣≤ b‖x− y‖. (2.13)

This implies that A is a contraction, because 0 < b < 1.
Next we show that B is completely continuous. As a first step, we show that B is con-

tinuous. Suppose that xl ≡ {xln} is a sequence of points in S (with l taken from the index
set) which converges to x ≡ {xn} in S as l→∞. Since S is closed, x ∈ S. For n ≥ N1, we
have

∣
∣(Bxl

)
n− (Bx)n

∣
∣≤

∞∑

i=n

1
ri

i−1∑

j=N1

qj

∣
∣G
(
xlj−k

)−G
(
xj−k

)∣∣. (2.14)

Since G is continuous, |G(xlj−k)−G(xj−k)| approaches zero and is as l→∞. Hence, B is
continuous. It remains to show that BS is relatively compact. Using [7, Theorem 3.3], we
need only show that BS is uniformly cauchy. Let x ≡ {xn} be a sequence in S. Using (2.2)
and (2.4), for ε > 0, there exists N∗ ≥N1 such that, for n≥N∗,

∞∑

i=n

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣+

∞∑

i=n

1
ri

i−1∑

j=N1

qjμ <
ε
2
. (2.15)

Then for n2 > n1 ≥N∗,

∣
∣(Bx)n2 − (Bx)n1

∣
∣ <

∞∑

i=n2

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣+

∞∑

i=n1

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣+

∞∑

i=n2

1
ri

i−1∑

j=N1

qjμ+
∞∑

i=n1

1
ri

i−1∑

j=N1

qjμ < 2
ε
2
= ε.

(2.16)

Thus, BS is uniformly cauchy. Hence, it is relatively compact. Then, by Lemma 2.1
there is an x0 in S such that Ax0 +Bx0 = x0; that is, for y = x0 and n≥N1,

yn = (A+B)yn = pnyn−m + 1− b+
∞∑

i=n

1
ri

i−1∑

j=N1

qjG
(
yj−k

)−
∞∑

i=n

Fi
ri
. (2.17)

Applying the forward difference operator Δ, we obtain

Δ
(
yn− pnyn−m

)
+

1
rn

n−1∑

j=N1

qjG
(
yj−k

)= Fn
rn
. (2.18)

Multiplying by rn, and applying Δ again, with ΔFn = fn, we obtain (1.2). Therefore, (x0)n
is a solution of (1.2) and is bounded below by 2(1− b)/3; thus (x0)n is nonoscillatory and
does not approach zero as n→∞. This completes the proof. �

Corollary 2.3. Let (A1), (H4), (H6) hold. If every solution of (1.2) oscillates or tends to
zero as n→∞, then (H2) holds.

The proof of this corollary follows from Remark 1.1(iii) and Theorem 2.2.
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Theorem 2.4. Let (A1) and (H3) hold. Assume that there exists α > 0 such that for i large,

ri >
1
α

, (2.19)

∞∑

i=0

Fi <∞ with ΔFn = fn. (2.20)

If every solution of (1.2) oscillates or tends to zero as n→∞, then (H5) holds.

Proof. Using (2.19) and (2.20), we obtain (2.4) and consequently get (2.6). The rest of
the proof is similar to that of Theorem 2.2. �

Remark 2.5. Condition (2.20) implies (H6).

Corollary 2.6. Let (A1), (2.19), (2.20) hold. If every solution of (1.2) oscillates or tends to
zero as n→∞, then (H5) holds.

Proof. By Remark 1.1(i), either (H3) or (H4) holds exclusively. If (H4) holds, using con-
dition (2.20) and Theorem 2.2, we get the required solution to (1.2). If (H3) holds, using
Theorem 2.4, we obtain the required solution. �

Remark 2.7. If in the proof of Theorem 2.2 we replace (2.2) by

∞∑

n=1

1
rn

∞∑

i=n
qi <∞, (2.21)

then the theorem still holds. We just have to adjust the definition of the mapping B
in (2.10). That is, for n≥N1,

(By)n =−
∞∑

i=n

1
ri

∞∑

j=i
q jG

(
yj−k

)−
∞∑

i=n

Fi
ri
. (2.22)

Then, if we take rn ≡ 1, then condition (2.21) reduces to

∞∑

n=1

∞∑

i=n
qi <∞. (2.23)

The above condition is required for the next result.

Corollary 2.8. Inequality (2.23) is a sufficient condition for the second-order NDDE

Δ2(yn− pnyn−m
)

+ qnG
(
yn−k

)= fn (2.24)

to have a solution bounded below by a positive constant, under assumptions (A1), (2.19),
and (2.20).

The proof of the above corollary follows from Corollary 2.6.

Remark 2.9. We claim that the condition

∞∑

i=1

iqi <∞ (2.25)
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implies (2.23). It is clear that (2.25) implies

Mn :=
∞∑

i=n
(i−n+ 1)qi <∞. (2.26)

Note that Mn→ 0 as n→∞. Further

ΔMn =Mn+1−Mn =
∞∑

i=n+1

(i−n)qi−
∞∑

i=n
(i−n+ 1)qi

=
∞∑

i=n+1

(i−n)qi−
∞∑

i=n
(i−n)qi−

∞∑

i=n
qi =−

∞∑

i=n
qi.

(2.27)

Then, summing from n= 1 to n= k− 1, we obtain

k−1∑

n=1

∞∑

i=n
qi =M1−Mk. (2.28)

As k→∞, we obtain
∑∞

n=1

∑∞
i=n qi→M1 =

∑∞
i=1 iqi <∞. Hence, our claim holds.

Remark 2.10. Corollary 2.8 improves [16, Theorem 4.2] (for m = 2 in their paper), be-
cause Parhi and Tripathy assumed G to be Lipschitzian and satisfy (H1). It may be noted
in view of the above Remark 2.9, the condition we used, (2.23), is weaker than the condi-
tion (2.26) assumed in [16].

Remark 2.11. Corollary 2.6 of this paper improves and generalizes [6, Theorem 1] be-
cause we have removed the restrictions (H3) and (H1). Furthermore, in their theorem,
pn ≡ p, a constant, and m is an even positive integer.

Example 2.12. Consider the equation

Δ2
(
yn− 1

n
yn−1

)
+

6(n− 2)
n(n− 1)2(n+ 1)(n+ 2)

yn−2 = 0, n > 1 (2.29)

which satisfies all the conditions of Theorem 2.4 and Corollaries 2.6 and 2.8. Hence, it
has a solution, yn = 1 + 1/n, which is nonoscillatory and does not tend to zero.

3. Positive solutions II

In the previous section, we obtained five results assuming condition (A1). In this section,
obtain similar results for the following conditions:

(A2) −1 <−b≤ pn ≤ 0,
(A3) −d ≤ pn ≤−c <−1,
(A4) 1 < c ≤ pn ≤ d,

where b, c, and d are positive real numbers. Since the proofs are similar to the proofs in
the previous section, we present only the sketch of the proofs, and leave some proofs as
an exercise for the reader.

Theorem 3.1. Let (A2), (H4), (H6) hold. If every solution of (1.2) oscillates or tends to zero
as n→∞, then (H5) holds.
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Proof. We proceeding as in the proof of Theorem 2.2, with the following changes:

μ=max
{∣∣G(x)

∣
∣ : 2(1− b)≤ x ≤ 4

}
. (3.1)

Assuming (H4), (H6) and that (H5) does not hold, there exists N1 such that for n≥N1,

∞∑

i=n

1
ri

i−1∑

j=0

qjμ <
1− b

2
,

∞∑

i=n

∣
∣Fi
∣
∣

ri
<

1− b

2
. (3.2)

Let S= {y ∈ X : 2(1− b)≤ yn ≤ 4,n≥N1− τ}. Then, we define the operators A and B as
follows:

(Ay)n =
⎧
⎨

⎩
(Ay)N1 , N1− τ ≤ n≤N1,

pnyn−m + (3 + b), n≥N1;

(By)n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(By)N1 , N1− τ ≤ n≤N1,

∞∑

i=n

1
ri

i−1∑

j=N1

qjG
(
yj−k

)−
∞∑

i=n

Fi
ri

, n≥N1.

(3.3)

Then as in Theorem 2.2, we prove the following: (i) Ax +By ∈ S, (ii) A is a contraction,
and finally (iii) B is completely continuous. Then, by Lemma 2.1, there is a fixed point x0

in S such thatAx0 +Bx0=x0 which is the required solution bounded below by 2(1−b)>0.
�

Theorem 3.2. Let (A2), (H3), (2.19), (2.20) hold. If every solution of (1.2) oscillates or
tends to zero as n→∞, then (H5) holds.

The proof of the above theorem is similar to that of Theorem 3.1.

Theorem 3.3. Let (A3), (H4), (H6) hold. If every solution of (1.2) oscillates or tends to zero
as n→∞, then (H5) holds.

Proof. We proceed as in the proof of Theorem 2.2, with the following changes. If neces-
sary, increment d so that d ≥ (c + 2)/c. Note that by (A3), we have 1 < c < d and 1/d <
−1/pn+m < 1/c. Let ε be a positive constant with ε < (c− 1)/2. Let h = (c− 1)− ε, and
H = (d− 1) + 2ε/c, so that H > h > 0. Let

μ=max
{∣∣G(x)

∣
∣ : h≤ x ≤H

}
. (3.4)

Suppose that (H5) does not hold. Then from (H4) and (H6), it follows that (2.2) and
(2.4) hold. Hence there exists N1 > 0 such that for n≥N1,

∞∑

i=n

1
ri

i−1∑

j=0

qjμ <
ε
2

,
∞∑

i=n

∣
∣Fi
∣
∣

ri
<
ε
2
. (3.5)
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Let S = {y ∈ X : h ≤ yn ≤H for n ≥ N1 − τ}. Then define the operators A and B as fol-
lows:

(Ay)n =

⎧
⎪⎪⎨

⎪⎪⎩

(Ay)N1 , N1− τ ≤ n≤N1

yn+m

pn+m
− cd− 1

pn+m
, n≥N1;

(By)n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(By)N1 , N1− τ ≤ n≤N1

− 1
pn+m

∞∑

i=n+m

1
ri

i−1∑

j=N1

qjG
(
yj−k

)

+
1

pn+m

∞∑

i=n+m

Fi
ri

, n≥N1.

(3.6)

Then first we prove Ax + By ∈ S when x, y ∈ S. With x = {xn} and y = {yn} in S, and
n≥N1, we obtain

(Ax)n + (By)n = −1
pm+n

(

− xn−m + cd− 1 +
∞∑

i=n+m

1
ri

i−1∑

j=N1

qjG
(
yj−k

)−
∞∑

i=n+m

Fi
ri

)

. (3.7)

Then

(Ax)n + (By)n <
1

−pn+m

(− xn+m + cd− 1 + ε
)

≤ 1
c

(−h+ cd− 1 + ε)

= 1
c

(− (c− 1) + cd− 1
)

+
2ε
c
= (d− 1) +

2ε
c
=H.

(3.8)

Also

(Ax)n + (By)n >
−1
pn+m

(− xn+m + cd− 1− ε)≥ 1
d

(−H + cd− 1− ε)

= 1
d

(− (d− 1) + cd− 1
)− (c+ 2)ε

cd

= (c− 1)− (c+ 2)ε
cd

≥ (c− 1)− ε = h, since
(c+ 2)

c
≤ d.

(3.9)

Hence Ax +By ∈ S. Next, we show that A is a contraction in S. In fact for x, y in S and
n≥N1,

∥
∥(Ax)n− (Ay)n

∥
∥≤

∣
∣
∣
∣

1
pn

∣
∣
∣
∣
∣
∣xn+m− yn+m

∣
∣≤ 1

c
‖x− y‖. (3.10)

This implies that A is a contraction, because 0 < 1/c < 1. Finally, we show that B is com-
pletely continuous. For this as a first step, we observe B is obviously continuous. It is
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sufficient to show that BS is relatively compact. Using [7, Theorem 3.3], we need only
show that BS is uniformly cauchy. Let x ≡ {xn} be a sequence in S. For η > 0, there exists
N∗ ≥N1 such that, for n≥N∗,

∞∑

i=n

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣ < ηc/4,

∞∑

i=n

1
ri

i−1∑

j=N1

qjμ <
ηc

4
. (3.11)

Then for n2 > n1 ≥N∗, and using (A3) and (3.11), we get

∣
∣(Bx)n2 − (Bx)n1

∣
∣ <

[∣
∣
∣
∣

1
pn2+m

∣
∣
∣
∣

∞∑

i=n2+m

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣+

∣
∣
∣
∣

1
pn1+m

∣
∣
∣
∣

∞∑

i=n1+m

∣
∣
∣
∣
Fi
ri

∣
∣
∣
∣

+
∣
∣
∣
∣

1
pn2+m

∣
∣
∣
∣

∞∑

i=n2+m

1
ri

i−1∑

j=N1

qjμ+
∣
∣
∣
∣

1
pn1+m

∣
∣
∣
∣

∞∑

i=n1+m

1
ri

i−1∑

j=N1

qjμ

]

<
1
c

(4)
(
ηc

4

)
= η.

(3.12)

Thus BS is uniformly cauchy. Hence, it is relatively compact. Then, by Lemma 2.1,
there is a fixed point x0 in S such that Ax0 +Bx0 = x0 which is a solution of (1.2). This
solution is bounded below by a positive constant; therefore it neither oscillates nor tends
to zero. �

Theorem 3.4. Let (A3), (H3), (2.19), (2.20) hold. If every solution of (1.2) oscillates or
tends to zero as n→∞, then (H5) holds.

The proof of the above theorem follows similar lines as in Theorem 3.3.

Corollary 3.5. Let (A3), (2.19), (2.20) hold. If every solution of (1.1) oscillates or tends to
zero as n→∞, then (H5) holds.

Proof. In view of Remark 1.1(i), the proof follows lines similar to those in Theorems 3.3
and 3.4. �

The proofs under Condition (A4) are similar to those under Condition (A3). Hence
we skip all the proofs, except the following one.

Theorem 3.6. Let (A4), (H4), (H6) hold. If every bounded solution of (1.2) oscillates or
tends to zero as n→∞, then (H5) holds.

Proof. We proceed as in the proof of Theorem 3.3, with the following changes. If required
decrement c < 3. Let h = (d − 2c + 3)/d and H = (d + c)/(c− 1). Then, H > h > 0. Let
μ = max{|G(x)| : h ≤ x ≤ H}. Suppose that (H5) does not hold. Then from (H4) and
(H6), one can find that N1 > 0 such that for n≥N1,

∞∑

i=n

1
ri

i−1∑

j=0

qjμ < c− 1,
∞∑

i=n

Fi
ri

< c− 1. (3.13)
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Then we define the operator A as

(Ay)n =

⎧
⎪⎪⎨

⎪⎪⎩

(Ay)N1 , N1− τ ≤ n≤N1

yn+m

pn+m
+
d+ 1
pn+m

, n≥N1.
(3.14)

We define the operator B as in Theorem 3.3. We show that if x, y ∈ S, then Ax +By ∈ S.
With x = {xn} and y = {yn} in S, and n≥N1, we obtain

(Ax)n + (By)n = 1
pm+n

(

xn+m +d+ 1−
∞∑

i=n+m

1
ri

i−1∑

j=N1

qjG
(
yj−k

)
+

∞∑

i=n+m

Fi
ri

)

,

(Ax)n + (By)n <
1

pn+m

(

xn+m +d+ 1 +
∞∑

i=n+m

∣
∣Fi
∣
∣

ri

)

≤ 1
c

(
H + (c− 1) + (d+ 1)

)=H ·
(

since H = d+ c

c− 1

)
.

(3.15)

Also

(Ax)n + (By)n >
1

pn+m

(

d+ 1−
∞∑

i=n+m

1
ri

i−1∑

j=N1

qjG
(
yj−k

)
+

∞∑

i=n+m

∣
∣Fi
∣
∣

ri

)

≥ 1
d

(
d+ 1− (c− 1)− (c− 1)

)= d− 2c+ 3
d

= h.

(3.16)

Hence Ax +By ∈ S. Then we prove A is a contraction and BS is relatively compact as in
the proof of Theorem 3.3 and apply Lemma 2.1 to complete the proof. �

4. Positive solutions III

In this section, we find positive solutions for (1.2) when pn =±1. We consider the equa-
tions

Δ
(
rnΔ

(
yn + yn−m

))
+ qnG

(
yn−k

)= fn, (4.1)

Δ
(
rnΔ

(
yn− yn−m

))
+ qnG

(
yn−k

)= fn. (4.2)

For this purpose, we need the following result.

Lemma 4.1 (Schauder’s Fixed Point Theorem [24]). Let S be a closed, convex, and
nonempty subset of a Banach space X . Let B : S→ S be a continuous mapping such that
B(S) be a relatively compact subset of X . Then B has at least one fixed point in S. This means
that there is an x ∈ S such that Bx = x.

For the proof of the next theorem, we would like to point out the following remark.
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Remark 4.2. (i) Suppose that ai > 0 for all i and
∑∞

i=1 ai <∞. Then for any positive integer
n and fixed positive integer m, it follows that

∑∞
i=n+mai <∞. Then

∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

ai <
∞∑

i=n+m

ai <∞. (4.3)

(ii) Suppose that (H4) and (H6) hold but (H5) does not hold. Then (2.2) holds. Put
ai = (1/ri)

∑i−1
j=0 qj . Then by part (i) of this remark, we have

∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

1
ri

i−1∑

j=0

qj <∞. (4.4)

Again using (H4) and (H6), we get (2.4), which implies (in view of the argument given
above)

∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

∣
∣Fi
∣
∣

ri
<∞. (4.5)

Theorem 4.3. Suppose (H4), (H6) hold. If every solution of (4.1) oscillates or tends to zero
as n→∞, then (H5) holds.

Proof. Suppose that (H5) does not hold. Then, (2.2) holds. From (H4) and (H6), we get
(2.4). From Remark 4.2, it follows that (4.4) and (4.5) hold. Then we proceed as in the
proof of Theorem 3.3 with the following changes. Let

μ=max
{∣∣G(x)

∣
∣ : 2≤ x ≤ 4

}
. (4.6)

Then from (4.4) and (4.5), there exists N1 > 0 such that for n≥N1,

μ
∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

1
ri

i−1∑

j=0

qj <
1
2

,
∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

∣
∣Fi
∣
∣

ri
<

1
2
. (4.7)

Define S= {y ∈ X : 2≤ yn ≤ 4, n≥N1− τ}, and a mapping B from S to X :

(By)n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(By)N1 , N1− τ ≤ n≤N1,

3 +
∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

1
ri

i−1∑

j=N1

qjG
(
yj−k

)

−
∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

Fi
ri

, n≥N1.

(4.8)

Then for y = yn ∈ S, we have (By)n ≤ 3 + (1/2) + (1/2) = 4, and (By)n ≥ 3− (1/2) > 2.
Hence, By ∈ S. Then, we proceed as in the proof of Theorem 3.3, and prove that BS is
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relatively compact. Then, by Lemma 4.1, there is a fixed point y0 in S such that By0
n = y0

n.
Hence,

y0
n = 3 +

∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

1
ri

i−1∑

j=N1

qjG
(
y0
j−k
)−

∞∑

l=1

n+2lm−1∑

i=n+(2l−1)m

Fi
ri
. (4.9)

It follows, for n≥N1, that

y0
n + y0

n−m = 6 +
∞∑

i=n

1
ri

i−1∑

j=N1

qjG
(
y0
j−k
)−

∞∑

i=n

Fi
ri
. (4.10)

Applying Δ, multiplying by rn, and applying Δ again, we arrive at (4.1), This solution is
bounded below by a positive constant, so it does not oscillate and does not tend to zero
as n→∞. �

Corollary 4.4. Let (H4), (H6) hold. If every solution of (4.1) oscillates or tends to zero as
n→∞, then (H2) holds.

The proof of the above corollary follows from Remark 1.1(iii) and Theorem 4.3.

Theorem 4.5. Let (H3), (2.19), (2.20) hold. If every solution of (4.1) oscillates or tends to
zero as n→∞, then (H5) holds.

The proof of the above theorem is similar to that of Theorem 4.3.

Example 4.6. Consider the equation

Δ2(yn + yn−1
)

+
4(n− 2)

n(n+ 1)(n− 1)(n+ 2)
G
(
yn−2

)= 0, n > 1. (4.11)

which satisfies all the conditions of Theorem 4.5. Hence, it admits a solution, yn ≡ 1,
which is not oscillatory and does not tend to zero. Here G(u) = 1− u is decreasing and
does not satisfy (H1).

Theorem 4.7. Suppose that (H6) holds. For each positive integer n, assume that

∞∑

i=1

∞∑

l=n+mi

1
rl

l−1∑

j=0

qj <∞, (4.12)

∞∑

i=1

∞∑

l=n+mi

1
rl
<∞. (4.13)

Then (4.2) has a solution bounded below by a positive constant.

Proof. We proceeding as in the proof of Theorem 3.3 with the following changes. Let
μ=max{|G(x)| : 2≤ x ≤ 4}. Then from (H6), (4.12), and (4.13), there exists N1 > 0 such
that for n≥N1,

∞∑

i=1

∞∑

l=n+mi

∣
∣Fl
∣
∣

rl
<

1
2

,
∞∑

i=1

∞∑

l=n+mi

1
rl

l−1∑

j=0

qjμ <
1
2
. (4.14)
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Let S= {y ∈ X : 2≤ yn ≤ 4, n≥N1− τ}. Then define the mapping

(By)n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(By)N1 , N1− τ ≤ n≤N1,

3−
∞∑

i=1

∞∑

l=n+mi

1
rl

l−1∑

j=N1

qjG
(
yj−k

)

+
∞∑

i=1

∞∑

l=n+mi

Fl
rl

, n≥N1.

(4.15)

Then for y = {yn} ∈ S, we have (By)n ≤ 3 + (1/2) < 4 and (By)n ≥ 3− (1/2)− (1/2)= 2.
Hence, By ∈ S. Then using (4.12) and (4.13), we proceed as in the proof of Theorem 3.3
and prove that BS is relatively compact. Then, by Lemma 4.1, there is a fixed point y0 in
S such that By0

n = y0
n. Hence,

y0
n = 3−

∞∑

i=1

∞∑

l=n+mi

1
rl

l−1∑

j=N1

qjG
(
y0
j−k
)

+
∞∑

i=1

∞∑

l=n+mi

Fl
rl
. (4.16)

For n≥N1, it follows that

y0
n− y0

n−m =
∞∑

l=n

1
rl

l−1∑

j=0

qjG
(
y0
j−k
)−

∞∑

l=n

Fl
rl
. (4.17)

Applying Δ, multiplying by rn, and applying Δ again, we arrive at (4.2). This solution is
bounded below by 2 which is a positive constant. �

Remark 4.8. All the results in Sections 2 and 3 hold for NDDE (1.1) and the results of this
section hold for the corresponding homogeneous NDDE associated with (4.1) and (4.2).

We close this article with an interesting example which illustrates our results, whereas
most of the results available in the literature are not applicable to this example.

Example 4.9. Consider the equation

Δ
(
rnΔ

(
yn± pyn−1

))
+

1
n4

G
(
yn−2

)= G(1)
n4

, n > 0, (4.18)

where p is a constant in any range of {pn} considered in this paper. The sequence {rn} is
positive and may satisfy (H3) or (4.13). If {rn} satisfies (4.13), then it satisfies (H4). The
function G is continuous. The sequence qn = 1/n4 satisfies (2.2), (2.25), and (4.12) with a
proper selection of rn. To verify this, we refer to Remark 2.9. Here, fn = G(1)/n4. Hence,
Fn = −

∑∞
i=nG(1)/i4 which satisfies (2.20). Hence (H6) is satisfied. This NDDE satisfied

the conditions of all the results of this paper. Hence, it admits a solution, yn ≡ 1, which
is bounded below by a positive constant. Since we have no restriction on G, most of the
results available in the literature [6, 12, 15, 16] are not applicable to this NDDE; because
G may not satisfy (H1).
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