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1. Introduction

Throughout, w, Γ, and∧ denote the classes of all, entire, and analytic scalar-valued single
sequences, respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N is the set of
positive integers. Then, w2 is a linear space under the coordinatewise addition and scalar
multiplication.

Some initial works on double sequence spaces are found in Bromwich [1]. Later on,
they were investigated by Hardy [2], Móricz [3], Móricz and Rhoades [4], Basarir and
Sonalcan [5], Tripathy [6], Colak and Turkmenoglu [7], Turkmenoglu [8], and many
others.

We need the following inequality in the sequel of the paper.
For a,b ≥ 0 and 0 < p < 1, we have

(a+ b)p ≤ ap + bp. (1.1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence
(Smn) is called convergent, where Smn =

∑m,n
i, j=1 xi j (m,n= 1,2,3, . . .) (see [9]).

A sequence x = (xmn) is said to be double analytic if supmn|xmn|1/m+n <∞. The vector
space of all double analytic sequences will be denoted by∧2. A sequence x = (xmn)is called
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double entire sequence if |xmn|1/m+n → 0 as m,n→∞. The double entire sequences will
be denoted by Γ2. Let Φ= {all finite sequences}.

Consider a double sequence x = (xi j). The (m,n)th section x[m,n] of the sequence is
defined by x[m,n] =∑m,n

i, j=0 xi j δi j for all m,n∈N,

δmn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0,0, . . . ,0,0, . . .
0,0, . . . ,0,0, . . .

...
0,0, . . . ,1,0, . . .
0,0, . . . ,0,0, . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.2)

with 1 in the (m,n)th position and zero otherwise. An FK-space (or a metric space) X is
said to have AK property if (δmn) is a Schauder basis for X . Or equivalently, x[m,n] → x.

An FDK space is a double sequence space endowed with a complete metrizable; locally
convex topology under which the coordinate mappings x = (xk)→ (xmn) (m,n ∈N) are
also continuous.

Orlicz [10] used the idea of Orlicz function to construct the space (LM). Lindenstrauss
and Tzafriri [11] investigated Orlicz sequence spaces in more detail, and they proved that
every Orlicz sequence space �M contains a subspace isomorphic to �p (1≤ p <∞). Sub-
sequently, different classes of sequence spaces were defined by Parashar and Choudhary
[12], Mursaleen et al. [13], Bektaş and Altin [14], Tripathy et al. [15], Rao and Subra-
manian [16], and many others. The Orlicz sequence spaces are the special cases of Orlicz
spaces studied in [17].

Recalling [10] and [17], an Orlicz function is a function M : [0,∞)→ [0,∞) which is
continuous, nondecreasing, and convex with M(0)= 0, M(x) > 0, for x > 0 and M(x)→
∞ as x→∞. If convexity of Orlicz function M is replaced by M(x + y) ≤M(x) +M(y),
then this function is called modulus function, defined by Nakano [18] and further dis-
cussed by Ruckle [19], Maddox [20], and many others.

Let (Ω,Σ,μ) be a finite measure space. We denote by E(μ) the space of all (equivalence
classes of) Σ-measurable functions x from Ω into [0,∞). Given an Orlicz function M, we
define on E(μ)a convex functional IM by

IM(x)=
∫

Ω
M
(
x(t)

)
dμ, (1.3)

and an Orlicz space LM(μ) by LM(μ) = {x ∈ E(μ) : IM(λx) < +∞ for some λ > 0} (for
detail, see [10, 17]).

Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to construct Orlicz
sequence space:

�M =
{

x ∈w :
∞∑

k=1

M

(∣
∣xk

∣
∣

ρ

)

<∞ for some ρ > 0

}

, (1.4)
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where w = {all complex sequences}. The space �M with the norm

‖x‖ = inf

{

ρ > 0 :
∞∑

k=1

M

(∣
∣xk

∣
∣

ρ

)

≤ 1

}

(1.5)

becomes a Banach space which is called an Orlicz sequence space. For M(t)= tp (1≤ p <
∞), the spaces �M coincide with the classical sequence space �p.

If X is a sequence space, we give the following definitions:
(i) X ′ = the continuous dual of X ;

(ii) Xα = {a= (amn) :
∑∞

m,n=1 |amnxmn| <∞, for each x ∈ X};
(iii) Xβ = {a= (amn) :

∑∞
m,n=1 amnxmn is convergent, for each x ∈ X};

(iv) Xγ = {a= (amn) : supm,n≥1|
∑M,N

m,n=1 amnxmn| <∞, for each x ∈ X};
(v) let X be an FK-space ⊃Φ, then X f = { f (δmn) : f ∈ X ′};

(vi) X∧ = {a= (amn) : sup(mn)|amnxmn|1/m+n <∞, for each x ∈ X};
(vii) Xα, Xβ, Xγ are called α-(or Köthe-Toeplitz) dual of X , β-(or generalized Köthe-

Toeplitz) dual of X , γ-dual of X , and ∧-dual of X , respectively.

2. Definitions and preliminaries

Throughout the article, w2 denote the spaces of all sequences. Γ2
M and ∧2

M denote the
Pringscheims of double Orlicz space of entire sequence and Pringscheims of double Or-
licz space of bounded sequence, respectively

Let w2 denote the set of all complex double sequences x = (xmn)∞m,n=1 and M : [0,∞)→
[0,∞) be an Orlicz function, or a modulus function. Given a double sequence, x ∈ w2.
Let t denote the double sequence with tmn = |xmn|1/(m+n) for all m,n∈N. Define the sets

Γ2
M =

{

x ∈w2 :

(

M

(
tmn

ρ

))

−→ 0 (m,n−→∞) for some ρ > 0

}

,

∧2
M =

{

x ∈w2 : sup(m,n)

(

M

(
tmn

ρ

))

<∞ for some ρ > 0

}

.

(2.1)

The space ∧2
M is a metric space with the metric

d̃(x, y)= inf

{

ρ > 0 : sup(m,n)

(

M

(∣
∣xmn− ymn

∣
∣1/m+n

ρ

))

≤ 1

}

(2.2)

and the space Γ2
M is a metric space with the metric

d(x, y)=
{

ρ > 0 : sup(m,n)

(

M

(∣
∣xmn− ymn

∣
∣1/m+n

ρ

))

: m,n= 1,2,3, . . .

}

. (2.3)
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3. Main results

Proposition 3.1. If M is a modulus function, then Γ2
M is a linear set over the set of complex

numbers C.

Proof. It is trivial. Therefore, the proof is omitted. �

Proposition 3.2. (Γ2
M)β⊂�=∧2.

Proof. Let y = {ymn} be an arbitrary point in (Γ2
M)β. If y is not in∧2, then for each natural

number p, we can find an index mpnp such that

M

(∣∣ympnp

∣
∣1/mp+np

ρ

)

> p, (p = 1,2,3, . . .). (3.1)

Define x = {xmn} by

M

(
xmn

ρ

)

= 1
pm+n

for (m,n)= (mp,np
)

for some p ∈N ,

M

(
xmn

ρ

)

= 0 otherwise.

(3.2)

Then x is in Γ2
M , but for infinitely mn,

M

(∣
∣ymnxmn

∣
∣

ρ

)

> 1. (3.3)

Consider the sequence z = {zmn}, where M(z11/ρ)=M(x11/ρ)− s with

s=
∑

M

(
xmn

ρ

)

, M

(
zmn

ρ

)

=M

(
xmn

ρ

)

(m,n= 1,2,3, . . .). (3.4)

Then, z is a point of Γ2
M . Also,

∑
M(zmn/ρ) = 0. Hence, z is in Γ2

M ; but, by (3.3),
∑
M(zmnymn/ρ) does not converge:

=⇒ Σxmnymn diverges. (3.5)

Thus, the sequence y would not be in (Γ2
M)β. This contradiction proves that

(
Γ2
M

)β ⊂∧2. (3.6)
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If we now choose M = id, where id is the identity and y1n = x1n = 1 and ymn = xmn = 0
(m> 1) for all n, then obviously x ∈ Γ2

M and y ∈∧2, but

∞∑

m,n=1

xmnymn =∞. Hence, y /∈ (Γ2
M

)β
. (3.7)

From (3.6) and (3.7), we are granted (Γ2
M)β⊂�=∧2. This completes the proof. �

Proposition 3.3. Γ2
M has AK, where M is a modulus function.

Proof. Let x = (xmn)∈ Γ2
M and take x[mn] =∑m,n

i, j=1 xi jδi j for all m,n∈N. Hence,

d
(
x,x[rs])=

{

ρ : sup(m,n)

(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))

: m≥ r + 1, n≥ s+ 1

}

−→ 0 as m,n−→∞.

(3.8)

Therefore, x[rs] → x as r,s→∞ in Γ2
M . Thus, Γ2

M has AK. This completes the proof. �

Proposition 3.4. Γ2
M is solid.

Proof. Let |xmn|≤|ymn| and let y = (ymn)∈Γ2
M · (M(|xmn|1/m+n/ρ))≤(M(|ymn|1/m+n/ρ)),

because M is nondecreasing. But (M(|ymn|1/m+n/ρ)) ∈ Γ2 because y ∈ Γ2
M . That is,

(M(|ymn|1/m+n/ρ))→ 0 as m,n→∞ and (M(|xmn|1/m+nρ))→ 0 as m,n→∞. Therefore,
x = {xmn} ∈ Γ2

M . This completes the proof. �

Proposition 3.5. (Γ2
M)∧⊂�=∧2.

Proof. Let y ∈ ∧-dual of Γ2
M . Then, (M(|xmnymn|/ρ)) ≤Mm+n for some constant M > 0

and for all x ∈ Γ2
M . Therefore, (M(|ymn|/ρ))≤Mm+n for all m,n by taking x = (δmn). This

implies that y ∈∧2. Thus,

(
Γ2
M

)∧ ⊂ ∧2. (3.9)

We now choose M = id and define the double sequences (ymn) and (xmn) by ymn = 1
for all m and n, and by xm1 = 2(m+1)2

and xmn = 0 (n ≥ 2) for all m = 1,2, . . .. Obviously,
y ∈∧2 and since xmn = 0 for all m,n≥ 0, (xmn) converges to zero in the Pringsheim sense.
Hence, x ∈ Γ2

M . But,

∣
∣am1xm1

∣
∣1/(m+1) = 2m+1 −→∞ as m−→∞, hence x /∈ (Γ2

M

)∧
. (3.10)

From (3.9) and (3.10), we are granted (Γ2
M)∧⊂�=∧2. This completes the proof. �
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Proposition 3.6. The dual space of (Γ2
M) is ∧2. In other words, (Γ2

M)∗ = ∧2.

Proof. We recall that

δmn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0,0, . . . ,0,0, . . .
0,0, . . . ,0,0, . . .

...
0,0, . . . ,1,0, . . .
0,0, . . . ,0,0, . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.11)

has 1 in the (m,n)th position and zero otherwise, with

x = δmn,
{

M
(∣∣xmn

∣
∣1/m+n

ρ

)}

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M
(
(0)1/2/ρ

)
,M
(
(0)1/3/ρ

)
,M
(
(0)1/2/ρ

)
, . . .

M
(
(0)1/3/ρ

)
,M
(
(0)1/4/ρ

)
,M
(
(0)1/5/ρ

)
, . . .

...
M
(
(0)/ρ

)
,M
(
(0)/ρ

)
, . . . ,M

(
(1)1/m+n/ρ

)
,M
(
(0)/ρ

)
, . . .

M
(
(0)/ρ

)
,M
(
(0)/ρ

)
, . . . ,M

(
(0)/ρ

)
,M
(
(0)/ρ

)
, . . .

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.12)

which is a double null sequence.
Hence, δmn ∈ Γ2

M · f (x)=∑∞
m,n=1 xmnymn with x ∈ Γ2

M and f ∈ (Γ2
M)∗, where (Γ2

M)∗ is
the dual space of Γ2

M . Take x = (xmn)= δmn ∈ Γ2
M . Then,

∣
∣ymn

∣
∣≤ ‖ f ‖d(δmn,0

)
<∞ ∀m,n. (3.13)

Thus, (ymn) is a double bounded sequence, and hence a double analytic sequence. In
other words, y ∈∧2. Therefore, (Γ2

M)∗ = ∧2. This completes the proof. �

Proposition 3.7. (∧2
M)β⊂�=Γ2

M .

Proof. Let (xmn)∈ (∧2
M)β,

=⇒
∞∑

m,n=1

xmnymn converges∀y ∈∧2
M. (3.14)

Let us assume that (xmn) /∈ Γ2
M . Then, there exist a sequence positive integers (mp + np)

strictly increasing such that

(

M

(∣∣x(mp+np)
∣
∣

ρ

))

>
1

2(mp+np) , (p = 1,2,3, . . .). (3.15)
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Let

y(mp ,np) = 2(mp+np) (for p = 1,2,3, . . .),

ym,n = 0, otherwise.
(3.16)

Then, (ymn)∈∧2
M .

However,

∞∑

m,n=1

(

M

(∣
∣xmnymn

∣
∣

ρ

))

=
∞∑

p=1

(

M

(∣∣x(mpnp)y(mpnp)
∣
∣

ρ

))

> 1 + 1 + 1 + ··· . (3.17)

We know that the infinite series 1 + 1 + 1 + ··· diverges. Hence,
∑∞

m,n=1(M(|xmnymn|/ρ))
diverges. This contradicts (3.14). Hence, (xmn)∈ Γ2

M . Therefore,

(∧2
M

)β ⊂ Γ2
M. (3.18)

If we now choose M = id, where id is the identity and y1n = x1n = 1 and ymn = xmn = 0
(m> 1) for all n, then obviously x ∈ Γ2

M and y ∈∧2
M , but

∞∑

m,n=1

xmnymn =∞. Hence, y /∈ (∧2
M

)β
. (3.19)

From (3.18) and (3.19), we are granted (∧2
M)β⊂�=Γ2

M . This completes the proof. �

Definition 3.8. Let p = (pmn) be a double sequence of positive real numbers. Then,

Γ2
M(p)=

{

x = (xmn
)

:

(

M

(
|xmn|1/m+n

ρ

))pmn

−→ 0 (m,n−→∞) for some ρ > 0

}

.

(3.20)

Suppose that pmn is a constant for all m,n, then Γ2
M(p)= Γ2

M .

Proposition 3.9. Let 0≤ pmn≤qmn and let {qmn/pmn} be bounded. Then, Γ2
M(q)⊂ Γ2

M(p).

Proof. Let

x ∈ Γ2
M(q), (3.21)

then

(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))qmn

−→ 0 as m,n−→∞. (3.22)
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Let tmn = (M(|xmn|1/m+n/ρ))qmn , and let λmn = pmn/qmn. Since pmn ≤ qmn, we have 0 ≤
λmn ≤ 1. Let 0 < λ < λmn, then

umn =
⎧
⎨

⎩

tmn
(
tmn ≥ 1

)
,

0
(
tmn < 1

)
,

vmn =
⎧
⎨

⎩

0
(
tmn ≥ 1

)
,

tmn
(
tmn < 1

)
,

tmn = umn + vmn, tλmn
mn = uλmn

mn + vλmn
mn .

(3.23)

Now, it follows that

uλmn
mn ≤ umn ≤ tmn, vλmn

mn ≤ vλmn. (3.24)

Since tλmn
mn = uλmn

mn + vλmn
mn , we have tλmn

mn ≤ tmn + vλmn. Thus, (M(|xmn|1/m+n/ρ)qmn)λmn ≤
(M(|xmn|1/m+n/ρ))qmn and

(

M

(∣
∣xmn

∣
∣1/m+n

ρ

)qmn)pmn/qmn

≤
(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))qmn

, (3.25)

which yields (M(|xmn|1/m+n/ρ))pmn ≤ (M(|xmn|1/m+n/ρ))qmn . However, (M(|xmn|1/m+n/
ρ))qmn → 0 (by (3.22)). Thus, (M(|xmn|1/m+n/ρ))pmn → 0 as m,n→∞.

Hence,

x ∈ Γ2
M(p). (3.26)

From (3.21) and (3.26), we are granted

Γ2
M(q)⊂ Γ2

M(p). (3.27)

This completes the proof. �

Proposition 3.10. (a) If 0 < inf pmn ≤ pmn ≤ 1, then Γ2
M(p)⊂ Γ2

M .
(b) If 1≤ pmn ≤ sup pmn <∞, then Γ2

M ⊂ Γ2
M(p).

Proof. The above statements are special cases of Proposition 3.9. Therefore, it can be
proved by similar arguments. �

Proposition 3.11. If 0 < pmn ≤ qmn <∞ for each m,n, then Γ2
M(p)⊆ Γ2

M(q).

Proof. Let x ∈ Γ2
M(p), then

(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))pmn

−→ 0 as m,n−→∞. (3.28)
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This implies that (M(|xmn|1/m+n/ρ))≤ 1 for sufficiently large m,n. Since M is nondecreas-
ing, we get

(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))qmn

≤
(

M

(∣
∣xmn

∣
∣1/m+n

ρ

))pmn

, (3.29)

then (M(
∣
∣xmn

∣
∣1/m+n

/ρ))qmn → 0 as m,n→∞ (by using (3.28)). Let x ∈ Γ2
M(q). Hence,

Γ2
M(p)⊆ Γ2

M(q). This completes the proof. �
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[14] Ç. A. Bektaş and Y. Altin, “The sequence space lM(p,q,s) on seminormed spaces,” Indian Journal
of Pure and Applied Mathematics, vol. 34, no. 4, pp. 529–534, 2003.

[15] B. C. Tripathy, M. Et, and Y. Altin, “Generalized difference sequence spaces defined by Orlicz
function in a locally convex space,” Journal of Analysis and Applications, vol. 1, no. 3, pp. 175–
192, 2003.



10 International Journal of Mathematics and Mathematical Sciences

[16] K. Chandrasekhara Rao and N. Subramanian, “The Orlicz space of entire sequences,” Inter-
national Journal of Mathematics and Mathematical Sciences, vol. 2004, no. 68, pp. 3755–3764,
2004.

[17] M. A. Krasnoselskii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Gornin-
gen, The Netherlands, 1961.

[18] H. Nakano, “Concave modulars,” Journal of the Mathematical Society of Japan, vol. 5, no. 1, pp.
29–49, 1953.

[19] W. H. Ruckle, “FK spaces in which the sequence of coordinate vectors is bounded,” Canadian
Journal of Mathematics, vol. 25, pp. 973–978, 1973.

[20] I. J. Maddox, “Sequence spaces defined by a modulus,” Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 100, no. 1, pp. 161–166, 1986.

N. Subramanian: Department of Mathematics, SASTRA University, Tanjore 613 402, India
Email address: nsmaths@yahoo.com

R. Nallaswamy: Department of Mathematics, National Institute of Technology,
Tiruchirappalli 620 015, India
Email address: nalla@nit.edu

N. Saivaraju: Department of Mathematics, Shri Angalamman College of Engineering and
Technology, Anna University, Tiruchirappalli 621 105, India
Email address: saivaraju@yahoo.com

mailto:nsmaths@yahoo.com
mailto:nalla@nit.edu
mailto:saivaraju@yahoo.com

	1. Introduction
	2. Definitions and preliminaries
	3. Main results
	Acknowledgment
	References

