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1. Introduction

In this paper, we study the following nonlinear equation:

1
A

(Au′)′ = f (x,u), in (0,ω), (1.1)

where ω ∈ (0,∞] and A is a continuous function on [0,ω), which is positive and differ-
entiable on (0,ω).

Several results have been obtained for (1.1) with different boundary conditions (see
[1–7] and references therein).

In [5], Mâagli and Zeddini generalize the result of Taliaferro [7] who took A(t) =
1. Indeed, they studied (1.1) with the following boundary conditions u(0) = u(1) = 0
and a nonlinear term f (x,u) = −ϕ(x,u), where ϕ is a nonnegative continuous function
on (0,1)× (0,∞), nonincreasing with respect to the second variable and the function A

satisfies
∫ 1

0 (1/A(t))dt <∞.
Usually A(t) = tn−1, n ≥ 2, so the integral

∫ 1
0 (1/A(t))dt diverges. The condition

∫ 1
0 (1/

A(t))dt <∞ seems to be too restrictive from an application view point.
Our aim in this paper is to study (1.1) with a nonlinear term f (x,u) = uψ(x,u) and

two boundary conditions. More precisely, we assume that x �→ 1/A(x) is integrable in the
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neighborhood of ω and the integral
∫ ω

0 (1/A(t))dt may diverges and we search a positive
continuous solution u of (1.1).

Our paper is organized as follows. In Section 2, we give some properties of the Green’s
function G(x, y) of the operator u �→ −(1/A)(Au′)′ with Au′(0)= 0 and u(ω)= 0, which
will be used later. We recall (see [4]) that for x, y in [0,ω), we have

G(x, y)=A(y)
∫ ω

x∨y
1

A(t)
dt. (1.2)

We refer in this paper to V f , the potential of a measurable nonnegative function f de-
fined on (0,ω) by

V f (x)=
∫ ω

0
G(x, y) f (y)dy. (1.3)

Note that V f is a lower semicontinuous function on (0,ω). Moreover, for two nonneg-
ative measurable functions f and g with f ≤ g and Vg is continuous, we have V f is
continuous.

In Section 3, we are interested to the following problem:

1
A

(Au′)′ = uψ(x,u), a.e in (0,ω),

u > 0,

lim
x→0

u(x)
ρ(x)

= c > 0,

u(ω) := lim
x→ωu(x)= 0,

(P1)

where ρ(x)= ∫ ωx (1/A(t))dt.
We assume that ρ and ψ satisfy the following conditions.
(H0) The function t �→ tψ(x, t) is continuous on [0,∞) for each x ∈ (0,ω).
(H1) The integral

∫ ω
0 (1/A(t))dt diverges.

(H2) For each a > 0, there exists qa = q ∈ K such that for 0≤ s≤ t ≤ a and x ∈ (0,ω),
we have

tψ
(
x, tρ(x)

)− sψ(x,sρ(x)
)≤ q(x)(t− s), (1.4)

where K is the set of nonnegative Borel measurable functions q on (0,ω) satisfy-
ing

∫ ω
0 G(0, y)q(y)dy <∞.

Under these hypotheses, we prove the following result.

Theorem 1.1. Assume (H0)–(H2), then the problem (P1) has a positive solution u ∈
C1((0,ω)) satisfying

c1ρ(x)≤ u(x)≤ cρ(x), (1.5)

where c1 is a positive constant.
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If we replace hypothesis (H2) by the following condition:
(H3) for each a > 0, there exists qa = q ∈ K such that for 0 ≤ s ≤ t ≤ a and x ∈ (0,ω),

we have

tψ(x, t)− sψ(x,s)≤ q(x)(t− s), (1.6)

we obtain the following result.

Theorem 1.2. Under hypotheses (H0) and (H3), the problem

1
A

(Au′)′ = uψ(x,u), a.e in (0,ω),

u > 0,

Au′(0) := lim
x→0

Au′(x)= 0,

u(ω) := lim
x→ωu(x)= c > 0

(P2)

has a positive bounded solution u∈ C([0,ω])∩C1((0,ω)) satisfying

c1 ≤ u(x)≤ c, ∀x ∈ (0,ω), (1.7)

where c1 is a positive constant.

In order to simplify our statements, we adopt the following notation.

Notation.
(i) �((0,ω)) denotes the set of Borel measurable functions on (0,ω).

(ii) �+((0,ω)) is the set of nonnegative Borel measurable functions on (0,ω).
(iii) We denote by C([0,ω]) := {u ∈ C((0,ω)), limx→0u(x), and limx→ω u(x) exist},

and by C+([0,ω]) the set of nonnegative ones.
(iv) Let f and g be two positive functions defined on a set S.

(a) We call f � g, if there exists a constant c > 0, such that

f (x)≤ cg(x), ∀x ∈ S. (1.8)

(b) We call f ∼ g, if there exists a constant c > 0 such that

1
c
g(x)≤ f (x)≤ cg(x), ∀x ∈ S. (1.9)

(v) For s, t ∈ [0,ω), we denote s∨ t =max(s, t).
(vi) We denote

K =
{
q ∈�+((0,ω)

)
,
∫ ω

0
G(0, y)q(y)dy <∞

}
. (1.10)
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2. Properties of Green’s function

In the sequel, we denote

Γ(x, y)=
∫ ω

x∨y
1

A(t)
dt, for x, y ∈ [0,ω),

δ(x)=min
(

1,
∫ ω

x

1
A(t)

dt
)

, for x ∈ (0,ω).
(2.1)

Let a∈ (0,ω), then for each x ∈ (0,ω), we have

Γ(x,a) ∼ δ(x). (2.2)

Indeed, the result follows from the following inequalities:

min(α,1)min(1,β)≤min(α,β)≤max(α,1)min(1,β), for α,β > 0. (2.3)

First, we give the following version of a comparison principle.

Proposition 2.1. The following properties hold.
(1) Let f ∈�+((0,ω)), then for a fixed a∈ (0,ω),

V f (x)≥V f (a)
Γ(x,a)
Γ(a,a)

, ∀x ∈ [0,ω). (2.4)

(2) The function x �→ Γ(x,0)/δ(x), is nonincreasing on (0,ω).
(3) For each x, y ∈ (0,ω),

δ(y)
δ(x)

G(x, y)≤G(0, y). (2.5)

Proof. (1) Let x, y ∈ [0,ω) and a∈ (0,ω), then we have

Γ(x, y)Γ(a,a)≥ Γ(x,a)Γ(a, y), (2.6)

which implies the result.
(2) It follows from the fact that x �→ Γ(x,0) is nonincreasing and

Γ(x,0)
δ(x)

=max
(
1,Γ(x,0)

)
. (2.7)

(3) For x, y ∈ (0,ω), we distinguish the following cases:
(i) if y ≤ x, then

δ(y)
δ(x)

G(x, y)= δ(y)A(y)
Γ(x, y)
δ(x)

≤ δ(y)A(y)
Γ(x,0)
δ(x)

≤A(y)Γ(y,0)=G(0, y);
(2.8)
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(ii) if y ≥ x, then δ(y)/δ(x)≤ 1, which implies that

δ(y)
δ(x)

G(x, y)≤G(x, y)≤G(0, y), (2.9)

and this completes the proof. �

Next, we will give some inequalities satisfied by Green’s function.

Theorem 2.2 (3G-theorem). For each x, y,z ∈ [0,ω),

G(x,z)G(z, y)
G(x, y)

≤ δ(z)
δ(x)

G(x,z) +
δ(z)
δ(y)

G(y,z). (2.10)

Proof. We remark that assertion (2.10) is equivalent to

Γ(x,z)Γ(z, y)
Γ(x, y)

≤ δ(z)
δ(x)

Γ(x,z) +
δ(z)
δ(y)

Γ(z, y). (2.11)

Since Γ(x, y) is symmetric in x, y, we will discuss three cases.
(i) If z ≤ x ≤ y, then Γ(x,z) = ∫ ωx (1/A(t))dt, Γ(z, y) = ∫ ωy (1/A(t))dt, and Γ(x, y) =
∫ ω
y (1/A(t))dt. Since δ(z)/δ(x)≥ 1, then we have the result.

(ii) If x≤ y≤z, then we obtain Γ(x,z)=Γ(z, y)=Γ(z,0) and Γ(x, y)=Γ(y,0). Hence,
we have

(2.11)⇐⇒ Γ(z,0)
δ(z)

≤ Γ(y,0)
δ(x)

+
Γ(y,0)
δ(y)

. (2.12)

Now, using the second assertion of Proposition 2.1, we obtain the result.
(iii) If x ≤ z ≤ y, then we obtain Γ(x,z) = ∫ ωz (1/A(t))dt, Γ(z, y) = ∫ ωy (1/A(t))dt, and

Γ(x, y)= ∫ ωy (1/A(t))dt. So if δ(z)= 1, then δ(x)= 1, and if δ(z)= ∫ ωz (1/A(t))dt,

then δ(y)= ∫ ωy (1/A(t))dt.
This proves (2.11). �

In the sequel, for a fixed q ∈�+((0,ω)), we put

‖q‖ = sup
x∈(0,ω)

∫ ω

0

δ(y)
δ(x)

G(x, y)q(y)dy,

αq = sup
x,y∈(0,ω)

∫ ω

0

G(x,z)G(z, y)
G(x, y)

q(z)dz.
(2.13)

Then, we have the following result.

Proposition 2.3. Let q ∈ K , then

‖q‖ ≤Vq(0)≤ αq ≤ 2‖q‖. (2.14)

Proof. By Proposition 2.1, we have (δ(y)/δ(x))G(x, y)≤G(0, y), which implies that ‖q‖≤
Vq(0).
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On the other hand, using Lebesgue’s theorem and Fatou’s lemma, we obtain that

Vq(0)=
∫ ω

0
G(0,z)q(z)dz = sup

x∈(0,ω)

∫ ω

0
G(x,z)q(z)dz

= sup
x∈(0,ω)

∫ ω

0
lim
y→ω

G(x,z)G(z, y)
G(x, y)

q(z)dz ≤ sup
x∈(0,ω)

lim inf
y→ω

∫ ω

0

G(x,z)G(z, y)
G(x, y)

q(z)dz

≤ sup
x,y∈(0,ω)

∫ ω

0

G(x,z)G(z, y)
G(x, y)

q(z)dz = αq.
(2.15)

Now, by (2.10) we deduce that

αq ≤ 2‖q‖. (2.16)

This completes the proof. �

Remark 2.4. It is clear that if q ∈ K , then the function

x �−→Vq(x)=
∫ ω

x

1
A(t)

(∫ t

0
A(s)q(s)ds

)
dt (2.17)

is continuous on [0,ω)

In the next two propositions, we will give some estimates on the potential Vq, for a
convenient function q.

Proposition 2.5. Let λ ≥ 0, α < min(λ+ 1,2), and β < 2. Put A(x) = xλ and q(x) = 1/
xα(1− x)β, for x ∈ (0,1). Then

Vq(x) ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1− x)2−β if 1 < β < 2,

(1− x) log
(

2
1− x

)
if β = 1,

(1− x) if β < 1.

(2.18)

Proof. Since the function x �→ Vq(x) is continuous and positive on [0,1/2], then we de-
duce that Vq(x) ∼ 1, for x ∈ [0,1/2].

Now, assume that x ∈ [1/2,1). Using the fact that for t ∈ [x,1), we have 1/2 ≤ t ≤ 1,
then we obtain

Vq(x) ∼

∫ 1

x

(∫ t

0

sλ−α

(1− s)β ds
)
dt. (2.19)

Since α <min(λ+ 1,2) and β < 2, then for each t ∈ [x,1), we have

∫ t

0

sλ−α

(1− s)β ds∼

(∫ 1/2

0
sλ−αds+

∫ t

1/2
(1− s)−βds

)

∼

(

1 +
∫ t

1/2
(1− s)−βds

)

.

(2.20)
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(i) If β < 1, then since
∫ t

1/2(1− s)−βds= (1/(1−β))((1/2)1−β− (1− t)1−β), we deduce
that 1 +

∫ t
1/2(1− s)−βds∼ 1. So Vq(x) ∼ 1− x.

(ii) If β > 1, then since
∫ t

1/2(1− s)−βds∼ (1− t)1−β− 2β−1, we deduce that 1 +
∫ t

1/2(1−
s)−βds∼ (1− t)1−β. So Vq(x) ∼

∫ 1
x (1− t)1−βdt ∼ (1− x)2−β.

(iii) If β = 1, then since
∫ t

1/2(1− s)−1ds = log(1/2(1− t)), we deduce that
∫ t

0(sλ−α/
(1− s)β)ds∼ log(e/2(1− t)).

Now using the fact that for μ∈R and σ > 1,

∫ +∞

x

(
log(t)

)μ

tσ
dt∼

(
log(x)

)μ

(σ − 1)xσ−1
, as x −→∞, (2.21)

we deduce that
∫ 1
x log(e/2(1− t))dt ∼ (1− x) log(e/2(1− x)), as x→ 1.

So Vq(x) ∼ (1− x) log(e/2(1− x)).
Thus, by combination of the two cases we obtain the result. �

The following results will be used later.
Let q ∈ K and ϕ∈ C+([0,ω])∩C1((0,ω)) be the solution of the problem

1
A

(Au′)′ − qu= 0 in (0,ω),

Au′(0)= 0, u(0)= 1.
(Q)

Then we have the following.

Proposition 2.6 (see [4]). (i) ϕ is nondecreasing on [0,ω).
(ii) For each x ∈ [0,ω),

1≤ ϕ(x)≤ e(Vq(0)−Vq(x)). (2.22)

In the sequel, we denote by

Gq(x, y)= A(y)ϕ(y)ϕ(x)
∫ ω

x∨y
1

A(t)ϕ2(t)
dt (2.23)

the Green’s function of the operator u �→ −(1/A)(Au′)′ + qu, with Au′(0)= 0 and u(ω)=
0. Let Vq f (x)= ∫ ω0 Gq(x, y) f (y)dy, for f ∈�+((0,ω)). Then we have the following.

Proposition 2.7. Let q ∈ K , then the following resolvent equation holds:

V =Vq +Vq(qV)=Vq +V
(
qVq

)
. (2.24)

Moreover, for each u∈�+((0,ω)) such that V(qu) <∞,

(
I −Vq(q.)

)(
I +V(q.)

)
u= (I +V(q.)

)(
I −Vq(q.)

)
u= u. (2.25)
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For each x, y ∈ [0,ω),

e−Vq(0)G(x, y)≤Gq(x, y)≤G(x, y), ∀x, y ∈ (0,ω), (2.26)

1−Vq(q)(x)≥ e−Vq(0), ∀x ∈ [0,ω), (2.27)
(
ρ−Vq(qρ)

)
(x)≥ ρ(x)e−Vq(0), (2.28)

where ρ(x)= Γ(x,0)= ∫ ωx (1/A(t))dt.

Proof. The proofs of (2.25) and (2.26) can be found in [4, Theorem 4].
For each x ∈ (0,ω), we obtain by Fubini-Tonelli’s theorem that

Vq(q)(x)=
∫ ω

0
Gq(x, y)q(y)dy

=
∫ ω

0
A(y)ϕ(y)ϕ(x)

(∫ ω

x∨y
1

A(t)ϕ2(t)
dt
)
q(y)dy

= ϕ(x)
∫ ω

x

1
A(t)ϕ2(t)

(∫ t

0
A(y)ϕ(y)q(y)dy

)
dt.

(2.29)

Now using that ϕ is the solution of the problem (Q), and by integrating by parts, we have

Vq(q)(x)= 1− ϕ(x)
ϕ(ω)

. (2.30)

On the other hand, we deduce from (2.22) that

0 < ϕ(ω)≤ eVq(0), (2.31)

which proves (2.27).
For each x ∈ (0,ω), we obtain by Fubini-Tonelli’s theorem that

Vq(qρ)(x)=
∫ ω

0
Gq(x, y)q(y)ρ(y)dy

=
∫ ω

0
A(y)ϕ(y)ϕ(x)

(∫ ω

x∨y
1

A(t)ϕ2(t)
dt
)
q(y)ρ(y)dy

= ϕ(x)
∫ ω

x

1
A(t)ϕ2(t)

(∫ t

0
A(y)ϕ(y)q(y)ρ(y)dy

)
dt.

(2.32)

Now using that ϕ is the solution of the problem (Q) and ρ is differentiable on (0,ω), we
obtain by integrating by parts that

ρ(x)−Vq(qρ)(x)= ϕ(x)
∫ ω

x

1
A(t)ϕ2(t)

dt = Gq(0,x)

A(x)
. (2.33)

Hence, from the lower inequality of (2.26), we deduce that

ρ(x)−Vq(qρ)(x)≥ e−Vq(0)G(0,x)
A(x)

= e−Vq(0)Γ(x,0)= e−Vq(0)ρ(x). (2.34)

This completes the proof of (2.28). �
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3. Proofs of the main results

In this section, we aim at proving Theorems 1.1 and 1.2.
We recall that ρ(x)= ∫ ωx (1/A(t))dt.

Proof of Theorem 1.1. Let c > 0 and q ∈ K satisfying (H2). We denote by

Λ := {u∈�+((0,ω)
)
; cρe−Vq(0) ≤ u≤ cρ} (3.1)

the nonempty convex set of �+((0,ω)), and we define the operator T on Λ by

Tu(x) := c(ρ(x)−Vq(qρ)(x)
)

+Vq
(
u
(
q−ψ(·,u)

))
(x), ∀x ∈ (0,ω). (3.2)

We claim that TΛ⊂Λ. Indeed, for u∈Λ we have by (H2),

Tu≤ cρ− cVq(qρ) + cVq
(
ρ
(
q−ψ(·,cρ)

))≤ cρ− cVq
(
ψ(·,cρ)

)≤ cρ. (3.3)

On the other hand, by using (2.28), we obtain that

Tu≥ c(ρ−Vq(qρ)
)≥ cρe−Vq(0). (3.4)

Hence TΛ⊂Λ. Next, we prove that the operator T is nondecreasing on Λ. Let u1,u2 ∈Λ
such that u1 ≤ u2, then from (H2), we have for each x ∈ (0,ω),

Tu2(x)−Tu1(x)=Vq
[
q
(
u2−u1

)
+u1ψ

(·,u1
)−u2ψ

(·,u2
)]

(x)≥ 0. (3.5)

Now, we consider the sequence (uj) j defined by u0(x)=c(ρ(x)−Vq(qρ)(x)) and uj+1(x)=
Tuj(x), for j ∈N and x ∈ (0,ω). Then since Λ is invariant under T , we have obviously
u1 = Tu0 ≥ u0 and so from the monotonicity of T , we deduce that

u0 ≤ u1 ≤ ··· ≤ uj ≤ cρ. (3.6)

Hence, the sequence (uj) converges on (0,ω) to a function u∈Λ. Now, using (H0), (H2),
and the dominated convergence theorem, we deduce that (Tuj) j converges to Tu on
(0,ω). Consequently, we have

u(x)= c(ρ(x)−Vq(cρ)(x)
)

+Vq
(
u
(
q−ψ(·,u)

))
(x), (3.7)

or equivalently

u(x)−Vq(qu)(x)= cρ(x)−Vq
(
cρ+uψ(·,u)

)
(x). (3.8)

Applying the operator (I +V(q.)) on both sides of the above equality and using (2.25),
we deduce that u satisfies

u= cρ−V(uψ(·,u)
)
. (3.9)

Finally, we need to verify that u is a positive continuous solution for the problem (P1).
Indeed, by (H2) we have uψ(·,u)≤ cqρ, then using the fact that q ∈ K and ρ is bounded
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on each interval [x0,ω) with x0 > 0, we deduce the continuity of V(cqρ), which implies
the continuity of u on (0,ω). Now since q ∈ K and for each x, y ∈ (0,ω),we have

A(y)
ρ(y)ρ(x∨ y)

ρ(x)
≤A(y)ρ(y)q(y)=G(0, y)q(y), (3.10)

then we obtain by (H1) and the dominated convergence theorem that

lim
x→0

V(qρ)(x)
ρ(x)

= 0, (3.11)

which implies that limx→0(u(x)/ρ(x))= c. This completes the proof. �

Example 3.1. Let γ > 1 and let p be a nonnegative Borel measurable function on (0,1)
such that

∫ 1
0 yp(y)(log(1/y))γdy <∞. Then the problem

1
x

(xu′)′ − p(x)uγ = 0, in (0,1),

u > 0,

lim
x→0

u(x)
log(1/x)

= c > 0, u(1)= 0,

(3.12)

has a positive solution u∈ C2((0,1)) satisfying

u(x) ∼ log
(

1
x

)
. (3.13)

Example 3.2. Let γ > 1, λ > 1, and putA(x)= xλ. Let p be a nonnegative Borel measurable
function on (0,∞) such that

∫∞
0 (p(y)/y(λ−1)(γ−1)−1)dy <∞. Then the following problem:

1
xλ
(
xλu′

)′ − p(x)uγ = 0, in (0,∞),

u > 0,

lim
x→0

u(x)
x1−λ = c > 0, lim

x→∞u(x)= 0,

(3.14)

has a positive solution u∈ C((0,∞)) satisfying

u(x) ∼ x1−λ. (3.15)

In the next, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let c > 0, then by hypothesis (H3), there exists q ∈ K such that
the function t �→ t(ψ(x, t)− q(x)) is nonincreasing on [0,c]. We consider the nonempty
closed convex set Λ given by

Λ= {u∈ C([0,ω]
)
; ce−Vq(0) ≤ u(x)≤ c}, (3.16)
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and we define the operator T on Λ by

Tu := c(1−Vq(q)
)

+Vq
((
q−ψ(·,u)

)
u
)
, (3.17)

and Tu(ω) := limx→ω Tu(x)=c.
Now, by similar arguments as in the proof of Theorem 1.1, we obtain that TΛ⊂Λ and

T is an increasing operator on Λ. Let (un)n be the sequence of functions defined by

u0 = c
(
1−Vq(q)

)
,

un+1 = Tun, for n∈N. (3.18)

Then the sequence (un)n converges to a function u= supn un ∈Λ, satisfying

u= c−V(uψ(·,u)
)
. (3.19)

Since we have ψ(·,u) ≤ q and Vq ∈ C+([0,ω)), then V(qu) ∈ C+([0,ω)) and conse-
quently V(uψ(·,u))∈ C+([0,ω)). Hence, u is a positive continuous solution of the prob-
lem (P2). �

Example 3.3. Let γ,λ≥ 0, α <min(λ+ 1,2), and β < 2. Put A(x)= xλ, for x ∈ (0,1). Then
the problem

1
A

(Au′)′ − uγ+1(x)
xα(1− x)β

= 0, in (0,1),

Au′(0)= 0, u(1)= c > 0
(3.20)

has a positive solution u∈ C([0,1])∩C1((0,1)) satisfying for each x in (0,1)

0≤ c−u(x)�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− x)2−β if 1 < β < 2,

(1− x) log
(

2
1− x

)
if β = 1,

(1− x) if β < 1.

(3.21)
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