Research Article

On the Existence of Positive Solutions of a Nonlinear Differential Equation

Sonia Ben Othman, Habib Mâagli, and Noureddine Zeddini

Received 7 October 2006; Revised 20 December 2006; Accepted 5 January 2007
Recommended by Thomas P. Witelski

We study some existence results for the nonlinear equation $(1 / A)\left(A u^{\prime}\right)^{\prime}=u \psi(x, u)$ for $x \in(0, \omega)$ with different boundary conditions, where $\omega \in(0, \infty], A$ is a continuous function on $[0, \omega)$, positive and differentiable on $(0, \omega)$, and ψ is a nonnegative function on $(0, \omega) \times[0, \infty)$ such that $t \mapsto t \psi(x, t)$ is continuous on $[0, \infty)$ for each $x \in(0, \omega)$. We give asymptotic behavior for positive solutions using a potential theory approach.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, we study the following nonlinear equation:

$$
\begin{equation*}
\frac{1}{A}\left(A u^{\prime}\right)^{\prime}=f(x, u), \quad \text { in }(0, \omega) \tag{1.1}
\end{equation*}
$$

where $\omega \in(0, \infty]$ and A is a continuous function on $[0, \omega)$, which is positive and differentiable on $(0, \omega)$.

Several results have been obtained for (1.1) with different boundary conditions (see [1-7] and references therein).

In [5], Mâagli and Zeddini generalize the result of Taliaferro [7] who took $A(t)=$ 1. Indeed, they studied (1.1) with the following boundary conditions $u(0)=u(1)=0$ and a nonlinear term $f(x, u)=-\varphi(x, u)$, where φ is a nonnegative continuous function on $(0,1) \times(0, \infty)$, nonincreasing with respect to the second variable and the function A satisfies $\int_{0}^{1}(1 / A(t)) d t<\infty$.

Usually $A(t)=t^{n-1}, n \geq 2$, so the integral $\int_{0}^{1}(1 / A(t)) d t$ diverges. The condition $\int_{0}^{1}(1 /$ $A(t)) d t<\infty$ seems to be too restrictive from an application view point.

Our aim in this paper is to study (1.1) with a nonlinear term $f(x, u)=u \psi(x, u)$ and two boundary conditions. More precisely, we assume that $x \mapsto 1 / A(x)$ is integrable in the
neighborhood of ω and the integral $\int_{0}^{\omega}(1 / A(t)) d t$ may diverges and we search a positive continuous solution u of (1.1).

Our paper is organized as follows. In Section 2, we give some properties of the Green's function $G(x, y)$ of the operator $u \mapsto-(1 / A)\left(A u^{\prime}\right)^{\prime}$ with $A u^{\prime}(0)=0$ and $u(\omega)=0$, which will be used later. We recall (see [4]) that for x, y in $[0, \omega)$, we have

$$
\begin{equation*}
G(x, y)=A(y) \int_{x \vee y}^{\omega} \frac{1}{A(t)} d t . \tag{1.2}
\end{equation*}
$$

We refer in this paper to $V f$, the potential of a measurable nonnegative function f defined on $(0, \omega)$ by

$$
\begin{equation*}
V f(x)=\int_{0}^{\omega} G(x, y) f(y) d y \tag{1.3}
\end{equation*}
$$

Note that $V f$ is a lower semicontinuous function on $(0, \omega)$. Moreover, for two nonnegative measurable functions f and g with $f \leq g$ and $V g$ is continuous, we have $V f$ is continuous.

In Section 3, we are interested to the following problem:

$$
\begin{gather*}
\frac{1}{A}\left(A u^{\prime}\right)^{\prime}=u \psi(x, u), \quad \text { a.e in }(0, \omega), \\
u>0, \\
\lim _{x \rightarrow 0} \frac{u(x)}{\rho(x)}=c>0 \tag{1}\\
u(\omega):=\lim _{x \rightarrow \omega} u(x)=0
\end{gather*}
$$

where $\rho(x)=\int_{x}^{\omega}(1 / A(t)) d t$.
We assume that ρ and ψ satisfy the following conditions.
$\left(\mathrm{H}_{0}\right)$ The function $t \mapsto t \psi(x, t)$ is continuous on $[0, \infty)$ for each $x \in(0, \omega)$.
$\left(\mathrm{H}_{1}\right)$ The integral $\int_{0}^{\omega}(1 / A(t)) d t$ diverges.
$\left(\mathrm{H}_{2}\right)$ For each $a>0$, there exists $q_{a}=q \in K$ such that for $0 \leq s \leq t \leq a$ and $x \in(0, \omega)$, we have

$$
\begin{equation*}
t \psi(x, t \rho(x))-s \psi(x, s \rho(x)) \leq q(x)(t-s) \tag{1.4}
\end{equation*}
$$

where K is the set of nonnegative Borel measurable functions q on $(0, \omega)$ satisfying $\int_{0}^{\omega} G(0, y) q(y) d y<\infty$.
Under these hypotheses, we prove the following result.
Theorem 1.1. Assume $\left(H_{0}\right)-\left(H_{2}\right)$, then the problem $\left(P_{1}\right)$ has a positive solution $u \in$ $C^{1}((0, \omega))$ satisfying

$$
\begin{equation*}
c_{1} \rho(x) \leq u(x) \leq c \rho(x) \tag{1.5}
\end{equation*}
$$

where c_{1} is a positive constant.

If we replace hypothesis $\left(\mathrm{H}_{2}\right)$ by the following condition:
$\left(\mathrm{H}_{3}\right)$ for each $a>0$, there exists $q_{a}=q \in K$ such that for $0 \leq s \leq t \leq a$ and $x \in(0, \omega)$, we have

$$
\begin{equation*}
t \psi(x, t)-s \psi(x, s) \leq q(x)(t-s) \tag{1.6}
\end{equation*}
$$

we obtain the following result.
Theorem 1.2. Under hypotheses $\left(H_{0}\right)$ and $\left(H_{3}\right)$, the problem

$$
\begin{gather*}
\frac{1}{A}\left(A u^{\prime}\right)^{\prime}=u \psi(x, u), \quad \text { a.e in }(0, \omega), \\
u>0, \\
A u^{\prime}(0):=\lim _{x \rightarrow 0} A u^{\prime}(x)=0 \tag{2}\\
u(\omega):=\lim _{x \rightarrow \omega} u(x)=c>0
\end{gather*}
$$

has a positive bounded solution $u \in C([0, \omega]) \cap C^{1}((0, \omega))$ satisfying

$$
\begin{equation*}
c_{1} \leq u(x) \leq c, \quad \forall x \in(0, \omega), \tag{1.7}
\end{equation*}
$$

where c_{1} is a positive constant.
In order to simplify our statements, we adopt the following notation.

Notation.

(i) $\mathscr{B}((0, \omega))$ denotes the set of Borel measurable functions on $(0, \omega)$.
(ii) $\mathscr{B}^{+}((0, \omega))$ is the set of nonnegative Borel measurable functions on $(0, \omega)$.
(iii) We denote by $C([0, \omega]):=\left\{u \in C((0, \omega))\right.$, $\lim _{x \rightarrow 0} u(x)$, and $\lim _{x \rightarrow \omega} u(x)$ exist $\}$, and by $C^{+}([0, \omega])$ the set of nonnegative ones.
(iv) Let f and g be two positive functions defined on a set S.
(a) We call $f \preceq g$, if there exists a constant $c>0$, such that

$$
\begin{equation*}
f(x) \leq c g(x), \quad \forall x \in S \tag{1.8}
\end{equation*}
$$

(b) We call $f \sim g$, if there exists a constant $c>0$ such that

$$
\begin{equation*}
\frac{1}{c} g(x) \leq f(x) \leq c g(x), \quad \forall x \in S \tag{1.9}
\end{equation*}
$$

(v) For $s, t \in[0, \omega)$, we denote $s \vee t=\max (s, t)$.
(vi) We denote

$$
\begin{equation*}
K=\left\{q \in \mathscr{B}^{+}((0, \omega)), \int_{0}^{\omega} G(0, y) q(y) d y<\infty\right\} . \tag{1.10}
\end{equation*}
$$

2. Properties of Green's function

In the sequel, we denote

$$
\begin{gather*}
\Gamma(x, y)=\int_{x \vee y}^{\omega} \frac{1}{A(t)} d t, \quad \text { for } x, y \in[0, \omega), \tag{2.1}\\
\delta(x)=\min \left(1, \int_{x}^{\omega} \frac{1}{A(t)} d t\right), \quad \text { for } x \in(0, \omega) .
\end{gather*}
$$

Let $a \in(0, \omega)$, then for each $x \in(0, \omega)$, we have

$$
\begin{equation*}
\Gamma(x, a) \sim \delta(x) \tag{2.2}
\end{equation*}
$$

Indeed, the result follows from the following inequalities:

$$
\begin{equation*}
\min (\alpha, 1) \min (1, \beta) \leq \min (\alpha, \beta) \leq \max (\alpha, 1) \min (1, \beta), \quad \text { for } \alpha, \beta>0 \tag{2.3}
\end{equation*}
$$

First, we give the following version of a comparison principle.
Proposition 2.1. The following properties hold.
(1) Let $f \in \mathscr{B}^{+}((0, \omega))$, then for a fixed $a \in(0, \omega)$,

$$
\begin{equation*}
V f(x) \geq V f(a) \frac{\Gamma(x, a)}{\Gamma(a, a)}, \quad \forall x \in[0, \omega) \tag{2.4}
\end{equation*}
$$

(2) The function $x \mapsto \Gamma(x, 0) / \delta(x)$, is nonincreasing on $(0, \omega)$.
(3) For each $x, y \in(0, \omega)$,

$$
\begin{equation*}
\frac{\delta(y)}{\delta(x)} G(x, y) \leq G(0, y) \tag{2.5}
\end{equation*}
$$

Proof. (1) Let $x, y \in[0, \omega)$ and $a \in(0, \omega)$, then we have

$$
\begin{equation*}
\Gamma(x, y) \Gamma(a, a) \geq \Gamma(x, a) \Gamma(a, y) \tag{2.6}
\end{equation*}
$$

which implies the result.
(2) It follows from the fact that $x \mapsto \Gamma(x, 0)$ is nonincreasing and

$$
\begin{equation*}
\frac{\Gamma(x, 0)}{\delta(x)}=\max (1, \Gamma(x, 0)) \tag{2.7}
\end{equation*}
$$

(3) For $x, y \in(0, \omega)$, we distinguish the following cases:
(i) if $y \leq x$, then

$$
\begin{align*}
\frac{\delta(y)}{\delta(x)} G(x, y) & =\delta(y) A(y) \frac{\Gamma(x, y)}{\delta(x)} \tag{2.8}\\
& \leq \delta(y) A(y) \frac{\Gamma(x, 0)}{\delta(x)} \leq A(y) \Gamma(y, 0)=G(0, y)
\end{align*}
$$

(ii) if $y \geq x$, then $\delta(y) / \delta(x) \leq 1$, which implies that

$$
\begin{equation*}
\frac{\delta(y)}{\delta(x)} G(x, y) \leq G(x, y) \leq G(0, y) \tag{2.9}
\end{equation*}
$$

and this completes the proof.
Next, we will give some inequalities satisfied by Green's function.
Theorem 2.2 (3G-theorem). For each $x, y, z \in[0, \omega)$,

$$
\begin{equation*}
\frac{G(x, z) G(z, y)}{G(x, y)} \leq \frac{\delta(z)}{\delta(x)} G(x, z)+\frac{\delta(z)}{\delta(y)} G(y, z) . \tag{2.10}
\end{equation*}
$$

Proof. We remark that assertion (2.10) is equivalent to

$$
\begin{equation*}
\frac{\Gamma(x, z) \Gamma(z, y)}{\Gamma(x, y)} \leq \frac{\delta(z)}{\delta(x)} \Gamma(x, z)+\frac{\delta(z)}{\delta(y)} \Gamma(z, y) . \tag{2.11}
\end{equation*}
$$

Since $\Gamma(x, y)$ is symmetric in x, y, we will discuss three cases.
(i) If $z \leq x \leq y$, then $\Gamma(x, z)=\int_{x}^{\omega}(1 / A(t)) d t, \Gamma(z, y)=\int_{y}^{\omega}(1 / A(t)) d t$, and $\Gamma(x, y)=$ $\int_{y}^{\omega}(1 / A(t)) d t$. Since $\delta(z) / \delta(x) \geq 1$, then we have the result.
(ii) If $x \leq y \leq z$, then we obtain $\Gamma(x, z)=\Gamma(z, y)=\Gamma(z, 0)$ and $\Gamma(x, y)=\Gamma(y, 0)$. Hence, we have

$$
\begin{equation*}
(2.11) \Longleftrightarrow \frac{\Gamma(z, 0)}{\delta(z)} \leq \frac{\Gamma(y, 0)}{\delta(x)}+\frac{\Gamma(y, 0)}{\delta(y)} . \tag{2.12}
\end{equation*}
$$

Now, using the second assertion of Proposition 2.1, we obtain the result.
(iii) If $x \leq z \leq y$, then we obtain $\Gamma(x, z)=\int_{z}^{\omega}(1 / A(t)) d t, \Gamma(z, y)=\int_{y}^{\omega}(1 / A(t)) d t$, and $\Gamma(x, y)=\int_{y}^{\omega}(1 / A(t)) d t$. So if $\delta(z)=1$, then $\delta(x)=1$, and if $\delta(z)=\int_{z}^{\omega}(1 / A(t)) d t$, then $\delta(y)=\int_{y}^{\omega}(1 / A(t)) d t$.
This proves (2.11).
In the sequel, for a fixed $q \in \mathscr{B}^{+}((0, \omega))$, we put

$$
\begin{align*}
& \|q\|=\sup _{x \in(0, \omega)} \int_{0}^{\omega} \frac{\delta(y)}{\delta(x)} G(x, y) q(y) d y \\
& \alpha_{q}=\sup _{x, y \in(0, \omega)} \int_{0}^{\omega} \frac{G(x, z) G(z, y)}{G(x, y)} q(z) d z \tag{2.13}
\end{align*}
$$

Then, we have the following result.
Proposition 2.3. Let $q \in K$, then

$$
\begin{equation*}
\|q\| \leq V q(0) \leq \alpha_{q} \leq 2\|q\| . \tag{2.14}
\end{equation*}
$$

Proof. By Proposition 2.1, we have $(\delta(y) / \delta(x)) G(x, y) \leq G(0, y)$, which implies that $\|q\| \leq$ Vq(0).

On the other hand, using Lebesgue's theorem and Fatou's lemma, we obtain that

$$
\begin{align*}
V q(0) & =\int_{0}^{\omega} G(0, z) q(z) d z=\sup _{x \in(0, \omega)} \int_{0}^{\omega} G(x, z) q(z) d z \\
& =\sup _{x \in(0, \omega)} \int_{0}^{\omega} \lim _{y \rightarrow \omega} \frac{G(x, z) G(z, y)}{G(x, y)} q(z) d z \leq \sup _{x \in(0, \omega)} \lim _{y \rightarrow \omega} \inf _{y \rightarrow 0}^{\omega} \frac{G(x, z) G(z, y)}{G(x, y)} q(z) d z \\
& \leq \sup _{x, y \in(0, \omega)} \int_{0}^{\omega} \frac{G(x, z) G(z, y)}{G(x, y)} q(z) d z=\alpha_{q} . \tag{2.15}
\end{align*}
$$

Now, by (2.10) we deduce that

$$
\begin{equation*}
\alpha_{q} \leq 2\|q\| . \tag{2.16}
\end{equation*}
$$

This completes the proof.
Remark 2.4. It is clear that if $q \in K$, then the function

$$
\begin{equation*}
x \longmapsto V q(x)=\int_{x}^{\omega} \frac{1}{A(t)}\left(\int_{0}^{t} A(s) q(s) d s\right) d t \tag{2.17}
\end{equation*}
$$

is continuous on $[0, \omega)$
In the next two propositions, we will give some estimates on the potential $V q$, for a convenient function q.

Proposition 2.5. Let $\lambda \geq 0, \alpha<\min (\lambda+1,2)$, and $\beta<2$. Put $A(x)=x^{\lambda}$ and $q(x)=1 /$ $x^{\alpha}(1-x)^{\beta}$, for $x \in(0,1)$. Then

$$
V q(x) \sim \begin{cases}(1-x)^{2-\beta} & \text { if } 1<\beta<2 \tag{2.18}\\ (1-x) \log \left(\frac{2}{1-x}\right) & \text { if } \beta=1, \\ (1-x) & \text { if } \beta<1 .\end{cases}
$$

Proof. Since the function $x \mapsto V q(x)$ is continuous and positive on $[0,1 / 2]$, then we deduce that $\operatorname{Vq}(x) \sim 1$, for $x \in[0,1 / 2]$.

Now, assume that $x \in[1 / 2,1)$. Using the fact that for $t \in[x, 1)$, we have $1 / 2 \leq t \leq 1$, then we obtain

$$
\begin{equation*}
V q(x) \sim \int_{x}^{1}\left(\int_{0}^{t} \frac{s^{\lambda-\alpha}}{(1-s)^{\beta}} d s\right) d t \tag{2.19}
\end{equation*}
$$

Since $\alpha<\min (\lambda+1,2)$ and $\beta<2$, then for each $t \in[x, 1)$, we have

$$
\begin{align*}
\int_{0}^{t} \frac{s^{\lambda-\alpha}}{(1-s)^{\beta}} d s & \sim\left(\int_{0}^{1 / 2} s^{\lambda-\alpha} d s+\int_{1 / 2}^{t}(1-s)^{-\beta} d s\right) \tag{2.20}\\
& \sim\left(1+\int_{1 / 2}^{t}(1-s)^{-\beta} d s\right)
\end{align*}
$$

(i) If $\beta<1$, then since $\int_{1 / 2}^{t}(1-s)^{-\beta} d s=(1 /(1-\beta))\left((1 / 2)^{1-\beta}-(1-t)^{1-\beta}\right)$, we deduce that $1+\int_{1 / 2}^{t}(1-s)^{-\beta} d s \sim 1$. So $V q(x) \sim 1-x$.
(ii) If $\beta>1$, then since $\int_{1 / 2}^{t}(1-s)^{-\beta} d s \sim(1-t)^{1-\beta}-2^{\beta-1}$, we deduce that $1+\int_{1 / 2}^{t}(1-$ $s)^{-\beta} d s \sim(1-t)^{1-\beta}$. So $V q(x) \sim \int_{x}^{1}(1-t)^{1-\beta} d t \sim(1-x)^{2-\beta}$.
(iii) If $\beta=1$, then since $\int_{1 / 2}^{t}(1-s)^{-1} d s=\log (1 / 2(1-t))$, we deduce that $\int_{0}^{t}\left(s^{\lambda-\alpha} /\right.$ $\left.(1-s)^{\beta}\right) d s \sim \log (e / 2(1-t))$.

Now using the fact that for $\mu \in \mathbb{R}$ and $\sigma>1$,

$$
\begin{equation*}
\int_{x}^{+\infty} \frac{(\log (t))^{\mu}}{t^{\sigma}} d t \sim \frac{(\log (x))^{\mu}}{(\sigma-1) x^{\sigma-1}}, \quad \text { as } x \longrightarrow \infty \tag{2.21}
\end{equation*}
$$

$$
\begin{aligned}
& \text { we deduce that } \int_{x}^{1} \log (e / 2(1-t)) d t \sim(1-x) \log (e / 2(1-x)) \text {, as } x \rightarrow 1 \text {. } \\
& \quad \text { So } V q(x) \sim(1-x) \log (e / 2(1-x)) \text {. }
\end{aligned}
$$

Thus, by combination of the two cases we obtain the result.
The following results will be used later.
Let $q \in K$ and $\varphi \in C^{+}([0, \omega]) \cap C^{1}((0, \omega))$ be the solution of the problem

$$
\begin{gather*}
\frac{1}{A}\left(A u^{\prime}\right)^{\prime}-q u=0 \quad \text { in }(0, \omega) \tag{Q}\\
A u^{\prime}(0)=0, \quad u(0)=1
\end{gather*}
$$

Then we have the following.
Proposition 2.6 (see [4]). (i) φ is nondecreasing on $[0, \omega)$.
(ii) For each $x \in[0, \omega)$,

$$
\begin{equation*}
1 \leq \varphi(x) \leq e^{(V q(0)-V q(x))} \tag{2.22}
\end{equation*}
$$

In the sequel, we denote by

$$
\begin{equation*}
G_{q}(x, y)=A(y) \varphi(y) \varphi(x) \int_{x \vee y}^{\omega} \frac{1}{A(t) \varphi^{2}(t)} d t \tag{2.23}
\end{equation*}
$$

the Green's function of the operator $u \mapsto-(1 / A)\left(A u^{\prime}\right)^{\prime}+q u$, with $A u^{\prime}(0)=0$ and $u(\omega)=$ 0 . Let $V_{q} f(x)=\int_{0}^{\omega} G_{q}(x, y) f(y) d y$, for $f \in \mathscr{B}^{+}((0, \omega))$. Then we have the following.
Proposition 2.7. Let $q \in K$, then the following resolvent equation holds:

$$
\begin{equation*}
V=V_{q}+V_{q}(q V)=V_{q}+V\left(q V_{q}\right) . \tag{2.24}
\end{equation*}
$$

Moreover, for each $u \in \mathscr{B}^{+}((0, \omega))$ such that $V(q u)<\infty$,

$$
\begin{equation*}
\left(I-V_{q}(q .)\right)(I+V(q .)) u=(I+V(q .))\left(I-V_{q}(q .)\right) u=u . \tag{2.25}
\end{equation*}
$$

For each $x, y \in[0, \omega)$,

$$
\begin{gather*}
e^{-V q(0)} G(x, y) \leq G_{q}(x, y) \leq G(x, y), \quad \forall x, y \in(0, \omega), \tag{2.26}\\
1-V_{q}(q)(x) \geq e^{-V q(0)}, \quad \forall x \in[0, \omega), \tag{2.27}\\
\left(\rho-V_{q}(q \rho)\right)(x) \geq \rho(x) e^{-V q(0)}, \tag{2.28}
\end{gather*}
$$

where $\rho(x)=\Gamma(x, 0)=\int_{x}^{\omega}(1 / A(t)) d t$.
Proof. The proofs of (2.25) and (2.26) can be found in [4, Theorem 4].
For each $x \in(0, \omega)$, we obtain by Fubini-Tonelli's theorem that

$$
\begin{align*}
V_{q}(q)(x) & =\int_{0}^{\omega} G_{q}(x, y) q(y) d y \\
& =\int_{0}^{\omega} A(y) \varphi(y) \varphi(x)\left(\int_{x \vee y}^{\omega} \frac{1}{A(t) \varphi^{2}(t)} d t\right) q(y) d y \tag{2.29}\\
& =\varphi(x) \int_{x}^{\omega} \frac{1}{A(t) \varphi^{2}(t)}\left(\int_{0}^{t} A(y) \varphi(y) q(y) d y\right) d t .
\end{align*}
$$

Now using that φ is the solution of the problem (Q), and by integrating by parts, we have

$$
\begin{equation*}
V_{q}(q)(x)=1-\frac{\varphi(x)}{\varphi(\omega)} \tag{2.30}
\end{equation*}
$$

On the other hand, we deduce from (2.22) that

$$
\begin{equation*}
0<\varphi(\omega) \leq e^{V q(0)} \tag{2.31}
\end{equation*}
$$

which proves (2.27).
For each $x \in(0, \omega)$, we obtain by Fubini-Tonelli's theorem that

$$
\begin{align*}
V_{q}(q \rho)(x) & =\int_{0}^{\omega} G_{q}(x, y) q(y) \rho(y) d y \\
& =\int_{0}^{\omega} A(y) \varphi(y) \varphi(x)\left(\int_{x \vee y}^{\omega} \frac{1}{A(t) \varphi^{2}(t)} d t\right) q(y) \rho(y) d y \tag{2.32}\\
& =\varphi(x) \int_{x}^{\omega} \frac{1}{A(t) \varphi^{2}(t)}\left(\int_{0}^{t} A(y) \varphi(y) q(y) \rho(y) d y\right) d t .
\end{align*}
$$

Now using that φ is the solution of the problem (Q) and ρ is differentiable on $(0, \omega)$, we obtain by integrating by parts that

$$
\begin{equation*}
\rho(x)-V_{q}(q \rho)(x)=\varphi(x) \int_{x}^{\omega} \frac{1}{A(t) \varphi^{2}(t)} d t=\frac{G_{q}(0, x)}{A(x)} . \tag{2.33}
\end{equation*}
$$

Hence, from the lower inequality of (2.26), we deduce that

$$
\begin{equation*}
\rho(x)-V_{q}(q \rho)(x) \geq e^{-V q(0)} \frac{G(0, x)}{A(x)}=e^{-V q(0)} \Gamma(x, 0)=e^{-V q(0)} \rho(x) . \tag{2.34}
\end{equation*}
$$

This completes the proof of (2.28).

3. Proofs of the main results

In this section, we aim at proving Theorems 1.1 and 1.2.
We recall that $\rho(x)=\int_{x}^{\omega}(1 / A(t)) d t$.
Proof of Theorem 1.1. Let $c>0$ and $q \in K$ satisfying $\left(\mathrm{H}_{2}\right)$. We denote by

$$
\begin{equation*}
\Lambda:=\left\{u \in \mathscr{B}^{+}((0, \omega)) ; c \rho e^{-V q(0)} \leq u \leq c \rho\right\} \tag{3.1}
\end{equation*}
$$

the nonempty convex set of $\mathscr{B}^{+}((0, \omega))$, and we define the operator T on Λ by

$$
\begin{equation*}
T u(x):=c\left(\rho(x)-V_{q}(q \rho)(x)\right)+V_{q}(u(q-\psi(\cdot, u)))(x), \quad \forall x \in(0, \omega) \tag{3.2}
\end{equation*}
$$

We claim that $T \Lambda \subset \Lambda$. Indeed, for $u \in \Lambda$ we have by $\left(\mathrm{H}_{2}\right)$,

$$
\begin{equation*}
T u \leq c \rho-c V_{q}(q \rho)+c V_{q}(\rho(q-\psi(\cdot, c \rho))) \leq c \rho-c V_{q}(\psi(\cdot, c \rho)) \leq c \rho . \tag{3.3}
\end{equation*}
$$

On the other hand, by using (2.28), we obtain that

$$
\begin{equation*}
T u \geq c\left(\rho-V_{q}(q \rho)\right) \geq c \rho e^{-V q(0)} \tag{3.4}
\end{equation*}
$$

Hence $T \Lambda \subset \Lambda$. Next, we prove that the operator T is nondecreasing on Λ. Let $u_{1}, u_{2} \in \Lambda$ such that $u_{1} \leq u_{2}$, then from $\left(\mathrm{H}_{2}\right)$, we have for each $x \in(0, \omega)$,

$$
\begin{equation*}
T u_{2}(x)-T u_{1}(x)=V_{q}\left[q\left(u_{2}-u_{1}\right)+u_{1} \psi\left(\cdot, u_{1}\right)-u_{2} \psi\left(\cdot, u_{2}\right)\right](x) \geq 0 . \tag{3.5}
\end{equation*}
$$

Now, we consider the sequence $\left(u_{j}\right)_{j}$ defined by $u_{0}(x)=c\left(\rho(x)-V_{q}(q \rho)(x)\right)$ and $u_{j+1}(x)=$ $T u_{j}(x)$, for $j \in \mathbb{N}$ and $x \in(0, \omega)$. Then since Λ is invariant under T, we have obviously $u_{1}=T u_{0} \geq u_{0}$ and so from the monotonicity of T, we deduce that

$$
\begin{equation*}
u_{0} \leq u_{1} \leq \cdots \leq u_{j} \leq c \rho . \tag{3.6}
\end{equation*}
$$

Hence, the sequence $\left(u_{j}\right)$ converges on $(0, \omega)$ to a function $u \in \Lambda$. Now, using $\left(H_{0}\right),\left(H_{2}\right)$, and the dominated convergence theorem, we deduce that $\left(T u_{j}\right)_{j}$ converges to $T u$ on $(0, \omega)$. Consequently, we have

$$
\begin{equation*}
u(x)=c\left(\rho(x)-V_{q}(c \rho)(x)\right)+V_{q}(u(q-\psi(\cdot, u)))(x), \tag{3.7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
u(x)-V_{q}(q u)(x)=c \rho(x)-V_{q}(c \rho+u \psi(\cdot, u))(x) \tag{3.8}
\end{equation*}
$$

Applying the operator $(I+V(q)$.$) on both sides of the above equality and using (2.25),$ we deduce that u satisfies

$$
\begin{equation*}
u=c \rho-V(u \psi(\cdot, u)) \tag{3.9}
\end{equation*}
$$

Finally, we need to verify that u is a positive continuous solution for the problem $\left(P_{1}\right)$. Indeed, by $\left(\mathrm{H}_{2}\right)$ we have $u \psi(\cdot, u) \leq c q \rho$, then using the fact that $q \in K$ and ρ is bounded
on each interval $\left[x_{0}, \omega\right)$ with $x_{0}>0$, we deduce the continuity of $V(c q \rho)$, which implies the continuity of u on $(0, \omega)$. Now since $q \in K$ and for each $x, y \in(0, \omega)$, we have

$$
\begin{equation*}
A(y) \frac{\rho(y) \rho(x \vee y)}{\rho(x)} \leq A(y) \rho(y) q(y)=G(0, y) q(y) \tag{3.10}
\end{equation*}
$$

then we obtain by $\left(\mathrm{H}_{1}\right)$ and the dominated convergence theorem that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{V(q \rho)(x)}{\rho(x)}=0 \tag{3.11}
\end{equation*}
$$

which implies that $\lim _{x \rightarrow 0}(u(x) / \rho(x))=c$. This completes the proof.
Example 3.1. Let $\gamma>1$ and let p be a nonnegative Borel measurable function on $(0,1)$ such that $\int_{0}^{1} y p(y)(\log (1 / y))^{\gamma} d y<\infty$. Then the problem

$$
\begin{gather*}
\frac{1}{x}\left(x u^{\prime}\right)^{\prime}-p(x) u^{y}=0, \quad \text { in }(0,1), \\
u>0 \tag{3.12}\\
\lim _{x \rightarrow 0} \frac{u(x)}{\log (1 / x)}=c>0, \quad u(1)=0,
\end{gather*}
$$

has a positive solution $u \in C^{2}((0,1))$ satisfying

$$
\begin{equation*}
u(x) \sim \log \left(\frac{1}{x}\right) \tag{3.13}
\end{equation*}
$$

Example 3.2. Let $\gamma>1, \lambda>1$, and put $A(x)=x^{\lambda}$. Let p be a nonnegative Borel measurable function on $(0, \infty)$ such that $\int_{0}^{\infty}\left(p(y) / y^{(\lambda-1)(y-1)-1}\right) d y<\infty$. Then the following problem:

$$
\begin{align*}
& \frac{1}{x^{\lambda}}\left(x^{\lambda} u^{\prime}\right)^{\prime}-p(x) u^{\gamma}=0, \quad \text { in }(0, \infty), \\
& u>0, \tag{3.14}\\
& \lim _{x \rightarrow 0} \frac{u(x)}{x^{1-\lambda}}=c>0, \quad \lim _{x \rightarrow \infty} u(x)=0,
\end{align*}
$$

has a positive solution $u \in C((0, \infty))$ satisfying

$$
\begin{equation*}
u(x) \sim x^{1-\lambda} \tag{3.15}
\end{equation*}
$$

In the next, we will give the proof of Theorem 1.2.
Proof of Theorem 1.2. Let $c>0$, then by hypothesis $\left(\mathrm{H}_{3}\right)$, there exists $q \in K$ such that the function $t \mapsto t(\psi(x, t)-q(x))$ is nonincreasing on $[0, c]$. We consider the nonempty closed convex set Λ given by

$$
\begin{equation*}
\Lambda=\left\{u \in C([0, \omega]) ; c e^{-V q(0)} \leq u(x) \leq c\right\}, \tag{3.16}
\end{equation*}
$$

and we define the operator T on Λ by

$$
\begin{equation*}
T u:=c\left(1-V_{q}(q)\right)+V_{q}((q-\psi(\cdot, u)) u), \tag{3.17}
\end{equation*}
$$

and $T u(\omega):=\lim _{x \rightarrow \omega} T u(x)=c$.
Now, by similar arguments as in the proof of Theorem 1.1, we obtain that $T \Lambda \subset \Lambda$ and T is an increasing operator on Λ. Let $\left(u_{n}\right)_{n}$ be the sequence of functions defined by

$$
\begin{align*}
u_{0} & =c\left(1-V_{q}(q)\right), \\
u_{n+1} & =T u_{n}, \quad \text { for } n \in \mathbb{N} . \tag{3.18}
\end{align*}
$$

Then the sequence $\left(u_{n}\right)_{n}$ converges to a function $u=\sup _{n} u_{n} \in \Lambda$, satisfying

$$
\begin{equation*}
u=c-V(u \psi(\cdot, u)) \tag{3.19}
\end{equation*}
$$

Since we have $\psi(\cdot, u) \leq q$ and $V q \in C^{+}([0, \omega))$, then $V(q u) \in C^{+}([0, \omega))$ and consequently $V(u \psi(\cdot, u)) \in C^{+}([0, \omega))$. Hence, u is a positive continuous solution of the problem $\left(P_{2}\right)$.

Example 3.3. Let $\gamma, \lambda \geq 0, \alpha<\min (\lambda+1,2)$, and $\beta<2$. Put $A(x)=x^{\lambda}$, for $x \in(0,1)$. Then the problem

$$
\begin{gather*}
\frac{1}{A}\left(A u^{\prime}\right)^{\prime}-\frac{u^{\gamma+1}(x)}{x^{\alpha}(1-x)^{\beta}}=0, \quad \text { in }(0,1), \tag{3.20}\\
A u^{\prime}(0)=0, \quad u(1)=c>0
\end{gather*}
$$

has a positive solution $u \in C([0,1]) \cap C^{1}((0,1))$ satisfying for each x in $(0,1)$

$$
0 \leq c-u(x) \leq \begin{cases}(1-x)^{2-\beta} & \text { if } 1<\beta<2 \tag{3.21}\\ (1-x) \log \left(\frac{2}{1-x}\right) & \text { if } \beta=1 \\ (1-x) & \text { if } \beta<1\end{cases}
$$

References

[1] R. P. Agarwal and D. O'Regan, "Twin solutions to singular Dirichlet problems," Journal of Mathematical Analysis and Applications, vol. 240, no. 2, pp. 433-445, 1999.
[2] R. P. Agarwal and D. O'Regan, "Existence theory for single and multiple solutions to singular positone boundary value problems," Journal of Differential Equations, vol. 175, no. 2, pp. 393414, 2001.
[3] R. Kannan and D. O'Regan, "A note on singular boundary value problems with solutions in weighted spaces," Nonlinear Analysis, vol. 37, no. 6, pp. 791-796, 1999.
[4] H. Mâagli and S. Masmoudi, "Sur les solutions d'un opérateur différentiel singulier semilinéaire," Potential Analysis, vol. 10, no. 3, pp. 289-304, 1999.
[5] H. Mâagli and N. Zeddini, "Positive solutions for a singular nonlinear Dirichlet problem," Nonlinear Studies, vol. 10, no. 4, pp. 295-306, 2003.

12 International Journal of Mathematics and Mathematical Sciences

[6] S. Masmoudi and N. Yazidi, "On the existence of positive solutions of a singular nonlinear differential equation," Journal of Mathematical Analysis and Applications, vol. 268, no. 1, pp. 53-66, 2002.
[7] S. D. Taliaferro, "A nonlinear singular boundary value problem," Nonlinear Analysis, vol. 3, no. 6, pp. 897-904, 1979.

Sonia Ben Othman: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia
Email address: sonia.benothman@fsb.rnu.tn
Habib Mâagli: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia
Email address: habib.maagli@fst.rnu.tn
Noureddine Zeddini: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, Tunis 2092, Tunisia
Email address: noureddine.zeddini@ipein.rnu.tn

