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We study some existence results for the nonlinear equation (1/A)(Au’)" = uy(x,u) for
x € (0,w) with different boundary conditions, where w € (0, 0], A is a continuous func-
tion on [0,w), positive and differentiable on (0,w), and v is a nonnegative function on
(0,w) x [0, 00) such that t — ty(x,¢) is continuous on [0, o) for each x € (0,w). We give
asymptotic behavior for positive solutions using a potential theory approach.
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1. Introduction

In this paper, we study the following nonlinear equation:
1 I\ .
Z(Au ) :f(x)u)) mn (O)w)) (11)

where w € (0,00] and A is a continuous function on [0,w), which is positive and differ-
entiable on (0,w).

Several results have been obtained for (1.1) with different boundary conditions (see
[1-7] and references therein).

In [5], Maagli and Zeddini generalize the result of Taliaferro [7] who took A(t) =
1. Indeed, they studied (1.1) with the following boundary conditions u(0) = u(1) =0
and a nonlinear term f(x,u) = —¢(x,u), where ¢ is a nonnegative continuous function
on (0,1) X (0, ), nonincreasing with respect to the second variable and the function A
satisfies fol (1/A(1))dt < .

Usually A(t) = t"~1, n > 2, so the integral J, (1/A(t))dt diverges. The condition [, (1/
A(t))dt < o seems to be too restrictive from an application view point.

Our aim in this paper is to study (1.1) with a nonlinear term f(x,u) = uy(x,u) and
two boundary conditions. More precisely, we assume that x — 1/A(x) is integrable in the



2 International Journal of Mathematics and Mathematical Sciences

neighborhood of w and the integral [’ (1/A(t))dt may diverges and we search a positive
continuous solution u of (1.1).

Our paper is organized as follows. In Section 2, we give some properties of the Green’s
function G(x, y) of the operator u — —(1/A)(Au’)" with Au’(0) = 0 and u(w) = 0, which
will be used later. We recall (see [4]) that for x, y in [0,w), we have

Glx,y) = Ay) Jwvy ﬁdt. (1.2)

We refer in this paper to V f, the potential of a measurable nonnegative function f de-
fined on (0,w) by

Vf(x) = jow Gl y) f(y)dy. (13)

Note that V f is a lower semicontinuous function on (0,w). Moreover, for two nonneg-
ative measurable functions f and g with f < ¢ and Vg is continuous, we have V f is
continuous.

In Section 3, we are interested to the following problem:

%(Au')’ =uy(x,u), aein(0,w),
u>0,
(P1)
lim M =c>0,
x=0 p(x)

u(w) = i% u(x) =0,

where p(x) = [’ (1/A(t))dt.
We assume that p and y satisfy the following conditions.
(Ho) The function t — ty(x,t) is continuous on [0, ®) for each x € (0,w).
(H;) The integral [’ (1/A(t))dt diverges.
(H») For each a > 0, there exists g, = g € K such that for 0 <s <t <aand x € (0,w),
we have

ty (x,tp(x)) — sy (x,sp(x)) < q(x)(t—s), (1.4)

where K is the set of nonnegative Borel measurable functions g on (0, w) satisfy-

ing Jy' G(0,)q(y)dy < .
Under these hypotheses, we prove the following result.

THeOREM 1.1. Assume (Ho)-(H,), then the problem (Py) has a positive solution u €
C'((0,w)) satisfying

cip(x) < u(x) < cp(x), (1.5)

where ¢, is a positive constant.
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If we replace hypothesis (H;) by the following condition:
(Hs) for each a > 0, there exists g, = g € K such that for 0 <s <t <gand x € (0,w),
we have

t (1) — sy (x,) < gx)(t — s), (16)

we obtain the following result.

TueoreM 1.2. Under hypotheses (Hy) and (Hs), the problem

%(Au')' =uy(x,u), aein(0,w),

u>0,

, : , (P2)
Au'(0):= hn&Au (x) =0,
u(w) := ,lcil’,},”(x) =c>0
has a positive bounded solution u € C([0,w]) N C'((0,w)) satisfying
a=<ulx)<c¢, Vxe(0,w), (1.7)

where ¢, is a positive constant.
In order to simplify our statements, we adopt the following notation.

Notation.
(1) B((0,w)) denotes the set of Borel measurable functions on (0, w).
(ii) B*((0,w)) is the set of nonnegative Borel measurable functions on (0, w).
(iii) We denote by C([0,w]) := {u € C((0,w)), lim,_ou(x), and lim,_, u(x) exist},
and by C*([0,w]) the set of nonnegative ones.
(iv) Let f and g be two positive functions defined on a set S.
(a) We call f < g, if there exists a constant ¢ > 0, such that

f(x) <cg(x), VxeS (1.8)
(b) We call f ~ g, if there exists a constant ¢ > 0 such that
%g(x) < f(x) < cg(x), VxeS (1.9)

(v) For s, t € [0,w), we denote s V t = max(s,t).
(vi) We denote

K= {qe%*((o,w)), Lwc(o,y)q(y)dy@o}. (1.10)
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2. Properties of Green’s function
In the sequel, we denote

w

1
= xvyA—t)dt, for x,y € [0,w),

d(x) = min (1,Lw$dt), for x € (0,w).

I'(x,y)

Let a € (0,w), then for each x € (0,w), we have
I'(x,a) ~ 8(x).

Indeed, the result follows from the following inequalities:

min(e, 1) min(1,8) < min(a, ) < max(a,1)min(1,p), fora,f >0.

First, we give the following version of a comparison principle.

ProrosiTioN 2.1. The following properties hold.
(1) Let f € B*((0,w)), then for a fixed a € (0,w),

I'(x,a)
I'(a,a)’

Vf(x)=Vf(a) Vx e [0,w).

(2) The function x — I'(x,0)/8(x), is nonincreasing on (0, w).
(3) Foreach x,y € (0,w),

1)
%G(x,y) < G(0,y).

Proof. (1) Letx,y € [0,w) and a € (0,w), then we have
I'(x,y)l(a,a) > T(x,a)l(a, ),

which implies the result.
(2) It follows from the fact that x — I'(x,0) is nonincreasing and

I'(x,0)
O(x)

(3) For x, y € (0,w), we distinguish the following cases:
(i) if y < x, then

=max (1,T(x,0)).

8 b
S G = dMA 5
<6(;)AN Y C 40,0 = 60, p);

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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(ii) if y = x, then 6(y)/8(x) < 1, which implies that

3(y)
5(x) G(x,y) < G(x,y) < G(0, ), (2.9)
and this completes the proof. O

Next, we will give some inequalities satisfied by Green’s function.

THEOREM 2.2 (3G-theorem). For each x, v,z € [0, w),

é
G(x,z) + %G(}/,z). (2.10)

Proof. We remark that assertion (2.10) is equivalent to

G(x,2)G(z,y) - d(z)
Glx,y) ~ d(x)

[(x2)(zy) _ d(2) 3(2)
Moy = 800 B9 50, [@Y) (2.11)

Since T'(x, y) is symmetric in x, y, we will discuss three cases.
(i) If z < x < y, then T(x,2) = [ (1/A(t))dt, T(z,y) = fyw(l/A(t))dt, and T(x,y) =
f;u(l/A(t))dt. Since §(z)/8(x) = 1, then we have the result.
(ii) If x < y <z, then we obtain I'(x,z) =T(z, y) =I'(z,0) and I'(x, y) =T(y,0). Hence,
we have

[(z,0) _T(y,0) N I'(y,0)
d(z) — d(x) (y) -

Now, using the second assertion of Proposition 2.1, we obtain the result.

(i) If x < z < y, then we obtain I['(x,z) = [}’ (1/A(t))dt, T(z, y) = f;)(l/A(t))dt, and
I(x,y) = fyw(l/A(t))dt. Soif §(z) = 1, then 8(x) = 1, and if §(z) = [;’ (1/A(¢))dt,
then §(y) = f;)(l/A(t))dt.

This proves (2.11). O

(2.11) =

(2.12)

In the sequel, for a fixed g € B*((0,w)), we put

_ “o(y)
ligll = supJ0 6(x)G(x,y)q(y)dy,

x€(0,w

“ G(x,2)G(z,y) (219
a; = su J ————q(2)dz.
x%,y€(0,0) 0 G(X,)/)
Then, we have the following result.
ProrosITION 2.3. Let g € K, then
llgll < Vq(0) < aq < 2lIqll. (2.14)

Proof. By Proposition 2.1, we have (6(y)/8(x))G(x, y) < G(0, y), which implies that [|g]| <
Vq(0).
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On the other hand, using Lebesgue’s theorem and Fatou’s lemma, we obtain that

Vq(0) = J:v G(0,2)q(z)dz = sup wG(x,z)q(z)dz

xe(0,0) Y0
©.. G(x2)G(z,y) L. “ G(x,2)G(z,y)
= su lim ——————-q(z)dz < sup liminf | ——————=¢(2)dz
x6(0€v) 0or-e  Glxy) 1) xE(Oljv) ry=@Jo G(x,y) 92
© G(x,2)G(z,y)
< su J —————22g(2)dz = a,.
x,y€(0,0) 70 G(x’y) 1 i
(2.15)
Now, by (2.10) we deduce that
ag <2llqll. (2.16)
This completes the proof. O
Remark 2.4. Tt is clear that if g € K, then the function
w 1 t
x— Va(x) = J m(JOA(s)q(s)als)dt (2.17)

is continuous on [0, w)

In the next two propositions, we will give some estimates on the potential Vg, for a
convenient function q.

PropoSITION 2.5. Let A > 0, a < min(A+ 1,2), and ff < 2. Put A(x) = x* and q(x) = 1/
x*(1 = x)B, for x € (0,1). Then

(1-x)*F ifl<p<2,
2 .
Va(x) ~ (l—x)log<ﬁ) ifg =1, (2.18)
(1-x) iff<1.

Proof. Since the function x — V¢g(x) is continuous and positive on [0,1/2], then we de-
duce that Vg(x) ~ 1, for x € [0,1/2].

Now, assume that x € [1/2,1). Using the fact that for t € [x,1), we have 1/2 <t <1,
then we obtain

Vg(x) ~ Jl (Lt “si—j)ﬁds>dt. (2.19)

Since a < min(A +1,2) and f3 < 2, then for each t € [x, 1), we have

toga 2N t iy
Joi(l—s)ﬁdSAJ(,[o s ds+L/2(1—s) ds)

I ST R
(1+L/2(1 s) ds).

(2.20)
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(i) If B < 1, then since ff/z(l —35)Pds = (1/(1 - B))((1/2)'F — (1 — t)'-F), we deduce
that 1+ [{,,(1—s)Pds~1.S0 Vq(x) ~ 1 - x.
(ii) If B > 1, then since flt/z(l — ) Pds~ (1 —1)1"F —2P1 we deduce that 1 + flt/z(l -
s)” /3ds~(17t)‘ﬁSqu ~ L1 =) Bdt ~ (1 - x)27P.
(iii) If B = 1, then since f1/2 (1 —s)~'ds = log(1/2(1 — 1)), we deduce that [;(s*~%/
(1-3s)B)ds ~log(e/2(1 - 1t)).
Now using the fact that fory € Rand o > 1,

+00 u #
J (log(1)" ,  (log(x)) (2.21)

to (o= Dyr1> BF T

we deduce that fxl log(e/2(1 —t))dt ~ (1 —x)log(e/2(1 — x)), as x — 1.
So Vg(x) ~ (1 —x)log(e/2(1 — x)).
Thus, by combination of the two cases we obtain the result. O

The following results will be used later.
Let g € K and ¢ € C*([0,w]) N C'((0,w)) be the solution of the problem

%(Au')' —qu=0 in(0,w),

(Q
Au'(0) =0, u(0) = 1.
Then we have the following.
PROPOSITION 2.6 (see [4]). (i) ¢ is nondecreasing on [0, w).
(i1) For each x € [0, w),
1 < ¢(x) < eVa©-Vato), (2.22)
In the sequel, we denote by
Gy(x,y) =A(n)p(y)e J A ( oy (2.23)

the Green’s function of the operator u — —(1/A)(Au’)" + qu, with Au'(0) = 0 and u(w) =
0. Let V f (x) = [’ Gq(x, ) f(»)dy, for f € B*((0,w)). Then we have the following.

ProrosiTiON 2.7. Let q € K, then the following resolvent equation holds:
V=V,+V,(qV)= Vq+V(qVq). (2.24)
Moreover, for each u € B*((0,w)) such that V(qu) < oo

(I-Vy(g)T+V(g))u=I+V(g))(I-Veq))u=u (2.25)
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Foreach x,y € [0,w),

e V10 G(x, y) < Gy(x,y) <Glx,y), Vx,y€ (0,w), (2.26)
1-Vy(g)(x) =e Va0 vx e [0,0), (2.27)
(p— Val(@p) (%) = p(x)e40), (228)

where p(x) = T(x,0) = [’ (1/A(t))dt

Proof. The proofs of (2.25) and (2.26) can be found in [4, Theorem 4].
For each x € (0,w), we obtain by Fubini-Tonelli’s theorem that

Va@) = [ Gyt y)alndy
=J A(y)<p(y)<p(x)<f ﬁdt)q(y)dy (2.29)

fA t)(JA(y J’)‘J(J’)dy)dt

Now using that ¢ is the solution of the problem (Q), and by integrating by parts, we have

x
Va(g)(x) =1— %. (2.30)
On the other hand, we deduce from (2.22) that
0< g(w) <e’10, (2.31)

which proves (2.27).
For each x € (0,w), we obtain by Fubini-Tonelli’s theorem that

V,(gp)(x) = j Gy, 9)a()p(y)dy

1
J A(y)e ( o mdt>q(y)p(y)dy (2.32)
o(x) J m(JOA(yW(y)q(y)p(y)dy)dt-

Now using that ¢ is the solution of the problem (Q) and p is differentiable on (0, w), we
obtain by integrating by parts that

_ @ 1 B G4(0,x)
p(x) = V4(gp)(x) = ¢(x) L Ore0 dt = AG) (2.33)
Hence, from the lower inequality of (2.26), we deduce that
p(x) — Vq(qp)(x) > e*W@)M = ¢ V400 F(x 0) = Q(O)p(x). (2.34)

A(x)
This completes the proof of (2.28). O
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3. Proofs of the main results

In this section, we aim at proving Theorems 1.1 and 1.2.
We recall that p(x) = [’ (1/A(t))dkt.

Proof of Theorem 1.1. Let ¢ >0 and g € K satisfying (H,). We denote by
A= {u e B ((0,0); cpe"1? < u < cp} (3.1)
the nonempty convex set of " ((0,w)), and we define the operator T on A by
Tu(x) == c(p(x) = Vg(gp)(x)) + Vg (u(q —y(-,u)))(x), Vx € (0,w). (3.2)
We claim that TA C A. Indeed, for u € A we have by (H,),
Tu<cp—cVylgp)+cVy(p(q—y(-cp))) < cp—cVy(y(-,cp)) < cp. (3.3)
On the other hand, by using (2.28), we obtain that
Tu = c(p— Vy(gp)) = cpe V40 (3.4)

Hence TA C A. Next, we prove that the operator T is nondecreasing on A. Let u;,u; € A
such that u; < u,, then from (H,), we have for each x € (0,w),

Tuy(x) — Tuy(x) = Vglq(uz —ur) + iy (- un) — oy (-, u2) ] (x) = 0. (3.5)

Now, we consider the sequence (u;); defined by uo(x) = c(p(x) — V4(qp)(x)) and uj41(x) =
Tuj(x), for j € N and x € (0,w). Then since A is invariant under T, we have obviously
u; = Tug = uy and so from the monotonicity of T, we deduce that

Up<uy <---<uj<cp. (3.6)

Hence, the sequence (1) converges on (0,w) to a function u € A. Now, using (Hy), (H),
and the dominated convergence theorem, we deduce that (Tu;); converges to Tu on
(0,w). Consequently, we have

u(x) = c(p(x) = Vg(ep)(x)) + Vg (u(g — v (- u))) (x), (3.7)
or equivalently
u(x) — Vy(qu)(x) = cp(x) — Vg (cp +uy (-, u)) (x). (3.8)

Applying the operator (I + V(g.)) on both sides of the above equality and using (2.25),
we deduce that u satisfies

u=cp—V(uy(-,u)). (3.9)

Finally, we need to verify that u is a positive continuous solution for the problem (P;).
Indeed, by (H,) we have uy/(-,u) < cqp, then using the fact that g € K and p is bounded
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on each interval [xg,w) with x > 0, we deduce the continuity of V(cqp), which implies
the continuity of u on (0,w). Now since q € K and for each x, y € (0,w),we have

(yp(xVy)

p < =
Ay) () <A(y)p(y)q(y) = G(0,y)q(y), (3.10)

then we obtain by (H, ) and the dominated convergence theorem that

lim V4P _ (3.11)
=0 p(x)
which implies that lim,_(u(x)/p(x)) = c. This completes the proof. O

Example 3.1. Let y > 1 and let p be a nonnegative Borel measurable function on (0,1)
such that [ yp(y)(log(1/y))?dy < co. Then the problem

~ad) = o =0, in(0,1),

u>0, (3.12)

D)
x~0log(1/x)

=c>0, u(l)=0,
has a positive solution u € C%((0,1)) satisfying

u(x) ~log(;lc). (3.13)

Example 3.2. Lety >1,1 > 1,and put A(x) = x*. Let p be a nonnegative Borel measurable
function on (0, ) such that [y (p(y)/y*-P¥=D=1)dy < c. Then the following problem:

x—l)t(xlu'), —p(x)u’ =0, in (0,00),
u>0, (3.14)

lim @ =c>0, lim u(x) =0,
x—=0 X'~ X—00

has a positive solution u € C((0, )) satisfying
u(x) ~x' M, (3.15)

In the next, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ¢ > 0, then by hypothesis (Hs), there exists g € K such that
the function ¢ — t(y(x,t) — q(x)) is nonincreasing on [0,c]. We consider the nonempty
closed convex set A given by

A={ueC([0,w]); ce”V1 < u(x) < c}, (3.16)



Sonia Ben Othmanetal. 11

and we define the operator T on A by

Tu:=c(1-Vy(q)+Vy((qg—y(-,u)u), (3.17)
and Tu(w):=lim,_, Tu(x)=c.

Now, by similar arguments as in the proof of Theorem 1.1, we obtain that TA C A and
T is an increasing operator on A. Let (u,), be the sequence of functions defined by

up = c(1-Vy(q),

3.18
Upi1 = Tu,, forneN. ( )

Then the sequence (u,), converges to a function u = sup, u, € A, satisfying
u=c—V(uy(-,u)). (3.19)

Since we have y(-,u) < g and Vg € C*([0,w)), then V(qu) € C*([0,w)) and conse-
quently V(uy(-,u)) € C*([0,w)). Hence, u is a positive continuous solution of the prob-
lem (P,). O

Example 3.3. Let y,A > 0, « < min(A+ 1,2), and B < 2. Put A(x) = x*, for x € (0,1). Then
the problem

1
A

'\’ _ uy+1 (x) — .
M) - o xp =% O, (3.20)

Au'(0)=0, u(l)=c>0

has a positive solution u € C([0,1]) N C'((0, 1)) satisfying for each x in (0,1)

(1-x)>F ifl1<p<2,
0=c—ux) < (l—x)log<é) ifp=1, (3.21)
(1-x) iff< 1.
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