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Let R be a ring and M a right R-module. It is shown that (1) δ(M) is Noetherian if and
only if M satisfies ACC on δ-small submodules; (2) δ(M) is Artinian if and only if M
satisfies DCC on δ-small submodules; (3) M is Artinian if and only if M is an amply δ-
supplemented module and satisfies DCC on δ-supplement submodules and on δ-small
submodules.
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1. Introduction and preliminaries

In this note, all rings are associative with identity and all modules are unital right modules
unless otherwise specified.

Let R be a ring and M a module. The concept of δ-small submodules was introduced
by Zhou in [1]. Motivated by [2–4], we study modules with ACC (resp., DCC) on δ-small
submodules and prove that δ(M) is Noetherian (resp., Artinian) if and only if M satisfies
ACC (resp., DCC) on δ-small submodules in Section 2. In Section 3, we give the con-
cepts of (amply) δ-supplemented modules via δ-small submodules. It is shown that M is
Artinian if and only if M is an amply δ-supplemented module and satisfies DCC on δ-
supplement submodules and on δ-small submodules. In Section 4, we introduce the con-
cept of δ-semiperfect modules and investigate the connections between δ-supplemented
modules and δ-semiperfect modules.

Let M be a module and N ≤M. N is said to be δ-small in M (see [5]) if, whenever
N+X=M with M/X singular, we have X=M. δ(M)=RejM(℘)=∩{N ≤M |M/N∈℘},
where ℘ be the class of all singular simple modules. M is called an amply supplemented
module if for any two submodules A and B of M with A+B =M, B contains a supple-
ment of A. M is called a supplemented module if for each submodule A of M there exists
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a submodule B of M such that M = A+ B and A∩ B� B. The notions which are not
explained here will be found in [6].

Lemma 1.1 (see [7, Proposition 5.20]). Suppose that K1 ≤M1 ≤M, K2 ≤M2 ≤M, and
M =M1⊕M2. Then K1⊕K2 ≤e M1⊕M2 if and only if K1 ≤e M1 and K2 ≤e M2.

2. Modules with chain conditions on δ-small submodules

In this section, we study modules with chain conditions on δ-small submodules and
prove that δ(M) is Noetherian (resp., Artinian) if and only if M satisfies ACC (resp.,
DCC) on δ-small submodules. Let us start with the following.

Lemma 2.1 (see [1, Lemma 1.3]). Let M be a module.
(i) For submodules N , K , L of M with K ≤N ,

(1) N�δ M if and only if K�δ M and N/K�δ M/K ;
(2) N +L�δ M if and only if N�δ M and L�δ M.

(ii) If K�δ M and f : M→N is a homomorphism, then f (K)�δ N . In particular, if
K�δ M ≤N , then K�δ N .

(iii) Let K1 ≤M1 ≤M, K2 ≤M2 ≤M, and M =M1⊕M2. Then K1⊕K2 �δ M1⊕M2

if and only if K1 �δ M1 and K2 �δ M2.

Lemma 2.2 (see [1, Lemma 1.5]). Let M and N be modules.
(1) δ(M)= Σ{L≤M | L is a δ-small submodule of M}.
(2) If f : M→N is a homomorphism, then f (δ(M))≤ δ(N).
(3) If M =⊕i∈I Mi, then δ(M)=⊕i∈I δ(Mi).
(4) If every proper submodule of M is contained in a maximal submodule of M, then

δ(M) is the unique largest δ-small submodule of M.

Theorem 2.3. Let M be a module. Then δ(M) is Noetherian if and only if M satisfies ACC
on δ-small submodules.

Proof. “⇒” It is clear by Lemma 2.2.
“⇐” Suppose that δ(M) is not Noetherian. Let A1 ≤A2 ≤ ··· be an infinite ascending

chain of submodules of δ(M). Let a1 ∈ A1 and aj ∈ Aj −Aj−1 for each j > 1. For any
k ≥ 1, let Nk = Σk

j=1ajR. Then Nk is finitely generated and Nk ≤ δ(M). Hence Nk �δ M.
It is clear that N1 ≤N2 ≤ ··· and so M fails to satisfy ACC on δ-small submodules. This
completes the proof. �

Recall that a module M has finite uniform dimension k, for some nonnegative k, if M
does not contain any infinite direct sum of nonzero submodules and k is the maximal
number of summands in a direct sum of nonzero submodules of M. In this case, we call
k the uniform dimension of M, and write udimM = k.

Proposition 2.4. Let M be a module. Then the following statements are equivalent.
(1) δ(M) has finite uniform dimension.
(2) Every δ-small submodule of M has finite uniform dimension and there exists a pos-

itive integer k such that udimN ≤ k for any N�δ M.
(3) M does not contain an infinite direct sum of nonzero δ-small submodules.
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Proof. “(1)⇒(2)” It is obvious because udimN ≤ udimδ(M) for any N�δ M.
“(2)⇒(3)” Let N1⊕N2⊕··· be an infinite direct sum of nonzero δ-small submodules

of M. Then N1⊕···⊕Nk+1 is a δ-small submodule of M and udim(N1⊕···⊕Nk+1)≥
k+ 1. This is a contradiction.

“(3)⇒(1)” Let N1 ⊕N2 ⊕ ··· be an infinite direct sum of nonzero submodules of
δ(M). For every i ≥ 1, let ni be a nonzero element of Ni. Then niR�δ M. Thus n1R+
n2R+ ··· is an infinite direct sum of nonzero δ-small submodules of M. This is a con-
tradiction and so δ(M) has finite uniform dimension. �

Theorem 2.5. Let M be a module. Then the following statements are equivalent.
(1) δ(M) is Artinian.
(2) Every δ-small submodule of M is Artinian.
(3) M satisfies DCC on δ-small submodules.

Proof. “(1)⇒(2)⇒(3)” They are clear.
“(3)⇒(1)” It suffices to prove that any factor module of δ(M) is finitely cogenerated.

If there exists a factor module of δ(M) that is not finitely cogenerated, then the set Ω
of submodules of δ(M), such that δ(M)/L is not finitely cogenerated, is nonempty. Let
{Lλ : λ∈ Λ} be any chain of submodules in Ω. Let L=⋂λ∈ΛLλ. If L∈Ω, then δ(M)/L is
finitely cogenerated and hence L= Lλ for some λ∈ Λ. Thus L∈Ω. By Zorn’s lemma, Ω
has a minimal member A. �

Let N be a finitely generated submodule of δ(M). Then N is a δ-small submodule of M
and hence Artinian by hypothesis. Thus δ(M) is locally Artinian. Now let x ∈ δ(M), x∈A.
Then xR is Artinian and (xR+A)/A� xR/(xR∩A). So (xR+A)/A is a nonzero Artinian
module and hence δ(M)/A has essential socle. Let S denote the submodule of δ(M), con-
taining A, such that S/A is the socle of δ(M)/A. Thus S/A is not finitely generated by [7,
Proposition 10.7].

Next we show that A�δ M. If M = A+B for some B ≤M and M/B is singular, then
S = A+ (S∩B). Suppose that A∩B �= A. Then δ(M)/(A∩B) is finitely cogenerated by
the choice of A. But S/A = (A+ (S∩B))/A � (S∩B)/(A∩B) ≤ Soc(δ(M)/(A∩B)) and
hence S/A is finitely generated. This is a contradiction. Thus A= A∩B ≤ B and we have
M = A+B = B. So A�δ M.

Now suppose that M = S+V of some submodule V of M and M/V is singular. Then
M/(A+V)= (S+V)/(A+V)� S/(A+ (S∩V)). Thus M/(A+V) is semisimple. If M �=
A+V , then there exists a maximal submodule W of M such that A+V ≤W . But S ≤
δ(M)≤W since M/W is a singular simple module and this gives the contradiction M =
W . Thus M = A+V , hence M =V since A�δ M. Thus S�δ M and hence S is Artinian
by hypothesis. It follows that S/A is Artinian, and, in particular, S/A is finitely generated.
This is a contradiction. Thus δ(M) is Artinian.

Example 2.6. Let R = Z, p is a prime and M = Z(p∞), the Prüfer p-group, then every
proper submodule of M is Noetherian, but M is not Neotherian. Indeed, every proper
submodule of M is δ-small. Moreover, M = δ(M). Thus every δ-small submodule of M
is Noetherian, but δ(M) is not Noetherian.
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Corollary 2.7. Let R be a ring which satisfies DCC on δ-small right ideals. Then R satisfies
ACC on δ-small right ideals.

Let N ≤M. N is called a δ-semimaximal submodule of M if N =⋂n
i=1Li with M/Li

singular simple for any i= 1, . . . ,n.

Proposition 2.8. Let M be a module. Then the following statements are equivalent.
(1) M is Artinian.
(2) M satisfies DCC on δ-small submodules and on δ-semimaximal submodules.
(3) M satisfies DCC on δ-small submodules and δ(M) is a δ-semimaximal submodule.

Proof. “(1)⇒(2)” It is clear.
“(2)⇒(3)” Suppose that M satisfies DCC on δ-semimaximal submodules. Let N be a

minimal δ-semimaximal submodule of M. Clearly δ(M)≤N . If M = δ(M), then δ(M)=
N . Suppose that M �= δ(M). If P is a maximal submodule of M with M/P singular, then
N ∩ P is a δ-semimaximal submodule of M and hence N = N ∩ P, so that N ≤ P. It
follows that N ≤ δ(M). Hence N = δ(M). Thus δ(M) is a δ-semimaximal submodule of
M.

“(3)⇒(1)” It is clear δ(M) is Artinian. If M = δ(M), then M is Artinian. Suppose
that M �= δ(M). Then δ(M)= P1∩P2∩···∩Pn, where M/Pi is singular simple for any
i = 1, . . . ,n. It follows that M/δ(M) embeds in the finitely generated semisimple module
M/P1⊕···⊕M/Pn. Hence M/δ(M) is Artinian and so M is Artinian. �

3. δ-supplemented modules

Let M be a module. Let N and L be submodules of M. N is called a δ-supplement
of L if M = N + L and N ∩ L�δ N . N is called a δ-supplement submodule if N is a
δ-supplement of some submodule of M. M is called a δ-supplemented module if ev-
ery submodule of M has a δ-supplement. On the other hand, M is called an amply δ-
supplemented module if for any submodules A, B of M with M = A+B there exists a δ-
supplement P of A such that P ≤ B. Clearly, supplemented modules are δ-supplemented
modules and every amply δ-supplemented module is δ-supplemented. But the converses
are not true.

Lemma 3.1. Let M be a δ-supplemented module. Then
(1) M/δ(M) is semisimple;
(2) L a submodule of M with L∩ δ(M)= 0, then L is semisimple.

Proof. (1) Let N be any submodule of M containing δ(M). Then there exists a δ-supple-
ment K of N in M, that is, M = N + K and N ∩K �δ K . Thus M/δ(M) = N/δ(M)⊕
(K + δ(M))/δ(M), and so every submodule of M/δ(M) is a direct summand. Therefore
M/δ(M) is semisimple.

(2) It is clear by (1), since L∼= L⊕ δ(M)/δ(M)≤M/δ(M). �

Proposition 3.2. Let M be an amply δ-supplemented module. Then homomorphic images
are amply δ-supplemented modules.

Proof. Assume M is amply δ-supplemented and f : M→N is any epimorphism. We want
to show that N is amply δ-supplemented. Let N = A+ B. Then M = f −1(A) + f −1(B).
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Since M is amply δ-supplemented, there exists a submodule X of M such that M =
f −1(A) +X , f −1(A)∩X�X ≤ f −1(B). Now,N = A+ f (X) andA∩ f (X)= f ( f −1(A)∩
X)�δ f (X). Clearly f (X)≤ B. �

Proposition 3.3. Let M be a δ-supplemented module. Then M =N ⊕L for some semisim-
ple module N and some module L with δ(L)≤e L.

Proof. For δ(M), there exists N ≤M such that N ∩ δ(M)= 0 and N ⊕ δ(M)≤e M. Since
M is a δ-supplemented module, there exists L≤M such that N +L=M and N ∩L�δ L.
Since N ∩ L = N ∩ (N ∩ L) ≤ N ∩ δ(L) ≤ N ∩ δ(M) = 0, M = N ⊕ L. By Lemma 3.1, N
is semisimple. Thus δ(M) = δ(N)⊕ δ(L). Since N ⊕ δ(L) ≤e M = N ⊕ L, δ(L) ≤e L by
Lemma 1.1. This completes the proof. �

Lemma 3.4. Let M1,U ≤M and let M1 be a δ-supplemented module. If M1 +U has a δ-
supplement in M, then so does U .

Proof. Since M1 +U has a δ-supplement in M, there exists X ≤M such that X + (M1 +
U)=M and X ∩ (M1 +U)�δ X . For (X +U)∩M1, since M1 is a δ-supplemented mod-
ule, there exists Y ≤M1 such that (X +U)∩M1 +Y =M1 and (X +U)∩Y �δ Y . Thus
we have X +U +Y =M and (X +U)∩Y �δ Y , that is, Y is a δ-supplement of X +U
in M. Next, we will show that X +Y is a δ-supplement of U in M. It is clear that (X +
Y) +U =M, so it suffices to show that (X +Y)∩U �δ X +Y . Since Y +U ≤M1 +U ,
X ∩ (Y +U)≤ X ∩ (M1 +U)�δ X . Thus (X +Y)∩U ≤ X ∩ (Y +U) +Y ∩ (X +U)�δ

X +Y by Lemma 2.1, as required. �

Proposition 3.5. Let M1 and M2 be δ-supplemented modules. If M =M1 +M2, then M is
a δ-supplemented module.

Proof. Let U be a submodule of M. Since M1 +M2 +U =M trivially has a δ-supplement
in M, M2 +U has a δ-supplement in M by Lemma 3.4. Thus U has a δ-supplement in M
by Lemma 3.4 again. So M is a δ-supplemented module. �

Proposition 3.6. If M is a δ-supplemented module, then every finitely M-generated mod-
ule is a δ-supplemented module.

Proof. From Proposition 3.5, we know that every finite sum of δ-supplemented mod-
ules is a δ-supplemented module. Next we will show that every factor module of a δ-
supplemented module is again a δ-supplemented module.

Let M be a δ-supplemented module and M/N any factor module of M. For any sub-
module L of M containing N , since M is a δ-supplemented module, there exists K ≤M
such that L+K =M and L∩K�δ K . Thus M/N = L/N + (N +K)/N and (L/N)∩ ((N +
K)/N)= (N + (L∩K))/N�δ (N +K)/N , that is, (N +K)/N is a δ-supplement of L/N in
M/N , as required. �

Proposition 3.7. Let M be a module. If every submodule of M is a δ-supplemented module,
then M is an amply δ-supplemented module.

Proof. Let L,N ≤M and M = N + L. By assumption, there is H ≤ L such that (L∩N) +
H = L and (L∩N)∩H = N ∩H�δ H . Thus H +N ≥H + (L∩N) = L and hence H +
N ≥ (N +L)=M. Therefore, M =H +N as desired. �
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Corollary 3.8. Let R be any ring. Then the following statements are equivalent.
(1) Every module is an amply δ-supplemented module.
(2) Every module is a δ-supplemented module.

A module M is said to be π-projective if for every two submodules U , V of M with
U +V =M there exists f ∈ End(M) with Im f ≤U and Im(1− f )≤V .

Theorem 3.9. Let M be a module. If M is a π-projective δ-supplemented module, then M
is an amply δ-supplemented module.

Proof. Let A, B be submodules of M such that M = A+B. Since M is π-projective, there
exists an endomorphism e of M such that e(M)≤ A and (1− e)(M)≤ B. Note that (1−
e)(A) ≤ A. Let C be a δ-supplement of A in M. Then M = e(M) + (1− e)(M) = e(M) +
(1− e)(A+C)≤ A+ (1− e)(C)≤M, so that M = A+ (1− e)(C). Note that (1− e)(C) is
a submodule of B. Let y ∈ A∩ (1− e)(C). Then y ∈ A and y = (1− e)(x)= x− e(x) for
some x ∈ C. Next x = y + e(x)∈ A, so that y ∈ (1− e)(A∩C). But A∩C�δ C gives that
A∩ (1− e)(C) = (1− e)(A∩C)�δ (1− e)(C). Thus (1− e)(C) is a δ-supplement of A
in M. It follows that M is an amply δ-supplemented module. �

Theorem 3.10. Let M be a module. Then M is Artinian if and only if M is an amply
δ-supplemented module and satisfies DCC on δ-supplement submodules and on δ-small
submodules.

Proof. The necessity is clear. Conversely, suppose that M is an amply δ-supplemented
module which satisfies DCC on δ-supplement submodules and on δ-small submodules.
Then δ(M) is Artinian by Theorem 2.5. Next, it suffices to show that M/δ(M) is Artinian.
It is clear that M/δ(M) is semisimple by Lemma 3.1.

Now suppose that δ(M)≤ N1 ≤ N2 ≤ N3 ≤ ··· is an ascending chain of submodules
of M. Because M is an amply δ-supplemented module, there exists a descending chain
of submodules K1 ≥ K2 ≥ ··· such that Ki is a δ-supplement of Ni in M for each i ≥ 1.
By hypothesis, there exists a positive integer t such that Kt = Kt+1 = Kt+2 = ··· . Because
M/δ(M) = Ni/δ(M)⊕ (Ki + δ(M))/δ(M) for all i ≥ t, it follows that Nt = Nt+1 = ··· .
Thus M/δ(M) is Noetherian, and hence finitely generated. So M/δ(M) is Artinian, as
desired. �

Example 3.11. For ZZ, the only δ-supplement submodules are 0 and Z and the only δ-
small submodule is 0, but ZZ is not Artinian.

Corollary 3.12. Let M be a finitely generated δ-supplemented module. Then M is Artinian
if and only if M satisfies DCC on δ-small submodules.

Proof. “⇐” Since M/δ(M) is semisimple and M is finitely generated, M/δ(M) is Artinian.
Now that M satisfies DCC on δ-small submodules, δ(M) is Artinian by Theorem 2.5.
Thus M is Artinian.

“⇒” It is clear. �

Remark 3.13. Let R be a ring. If RR is an amply δ-supplemented module, then R is a right
Artinian ring if and only if R satisfies DCC on δ-small right ideals. Thus a right perfect
ring which satisfies DCC on δ-small right ideals is a right Artinian ring.
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Let us end this section with the following.

Proposition 3.14. If M is a δ-supplemented module and satisfies DCC on δ-small sub-
modules, then so does M/A for any submodule A of M.

Proof. Let A be any submodule of M and B1/A≤ B2/A≤ · · · where each Bi/A�δ M/A.
Let C be a δ-supplement of A in M. Then M/A = (A + C)/A � C/A∩C. Since Bi/A is
δ-small in M/A, Bi/A�Di/A∩C� C/A∩C for some Di. Next we prove that Di�δ M.
Let Di + E =M with M/E singular. Then (Di + (E + A∩ C))/A∩ C =M/A∩ C. Hence
E +A∩C =M and E =M. Thus we have D1 ≤ D2 ≤ · · ·. Since M satisfies ACC on δ-
small submodules, there exists n such that Dk = Dk+1 for all k ≥ n. Thus Bk/A = Bk+1/A
for all k ≥ n. Therefore M/A satisfies ACC on δ-small submodules, as required. �

4. δ-semiperfect modules

In this section, we introduce the concept of δ-semiperfect modules and investigate the
interconnections between δ-supplemented modules and δ-semiperfect modules. Let P
and M be modules, we call an epimorphism f : P →M a δ-cover in case Ker f �δ P. A
δ-cover f : P→M is called a projective δ-cover in case P is a projective module.

Definition 4.1. A module M is called a δ-semiperfect module if any homomorphic image
of M has a projective δ-cover.

Proposition 4.2. If f : M → N is an epimorphism with Ker f ≤ δ(M), then δ(N) =
f (δ(M)).

Proof. It follows from [7, Corollary 8.17]. �

Lemma 4.3. If both f : P→M and g : M→N are δ-covers, then g f : P→N is a δ-cover.

Proof. If both f : P→M and g : M →N are δ-covers, then Ker f �δ P and Kerg�δ M.
We want to show that Kerg f �δ P. Let P = Kerg f + L with P/L singular. Then M =
Kerg + f (L). Since M/ f (L) is singular, M = f (L). This implies that P = L since P/L is
singular and Ker f �δ P, as desired. �

Lemma 4.4. If each fi : Pi→Mi (i= 1,2, . . . ,n) is a δ-cover, then
⊕n

i=1 fi :
⊕n

i=1Pi→
⊕n

i=1Mi

is a δ-cover.

Proof. It is straightforward. �

Theorem 4.5. LetM be a module andU ≤M. Then the following statements are equivalent.
(1) M/U has a projective δ-cover.
(2) If V ≤M and M =U +V , then U has a δ-supplement U ′ ≤ V such that U ′ has a

projective δ-cover.
(3) U has a δ-supplement U ′ which has a projective δ-cover.

Proof. “(1)⇒(2)” Let f : P →M/U be a projective δ-cover. Since M = U + V , g : V →
M/U via v �→ v +U is an epimorphism. Since P is projective, there is a homomorphism
h : P → V such that f = gh. It is easy to see that M = U + h(P), where h(P) ≤ V . Now
Ker f �δ P, so we have U ∩h(P)= h(Ker f )�δ h(P) and h(P) is a δ-supplement of U in
M. Since Kerh⊆ Ker f �δ P, h : P→ h(P) is a projective δ-cover.
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“(2)⇒(3)” It is obvious.
“(3)⇒(1)” Let f : P → U ′ be a projective δ-cover. Since U ′ is a δ-supplement of U ,

the natural epimorphism g : U ′ → U ′/U ∩U ′ � U + U ′/U =M/U is a δ-cover. Hence
hg f : P→M/U is a projective δ-cover by Lemma 4.3, where h : U ′/U ∩U ′ �U +U ′/U is
an isomorphism �

Theorem 4.6. Let M be a module. Then the following statements are equivalent.
(1) M is δ-semiperfect.
(2) M is amply δ-supplemented by δ-supplements which have projective δ-covers.
(3) M is δ-supplemented by δ-supplements which have projective δ-covers.

Proof. It is clear from Theorem 4.5. �

Example 4.7. A δ-semiperfect module is not necessarily semiperfect. Let Q = Π∞i=1Fi,
where each Fi = Z2. Let R be the subring of Q generated by

⊕∞
i=1Fi and 1Q. Then RR

is δ-semiperfect but not semiperfect. It is also seen that RR is a δ-supplemented module
but not a supplemented module (see [1, Example 4.1]).
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