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1. Introduction

We investigate the following asymmetric elliptic problem:

Δpu= λ
[
m(x)

(
u+
)p−1−n(x)

(
u−
)p−1]

in Ω,

u= 0 on Γ1,
∂u

∂ν
= 0 on Γ2,

(1.1)

where Δpu = div(|∇u|p−2∇u) is the p-Laplacian of u with 1 < p <∞, and λ is a real
parameter. Moreover, Ω is a smooth bounded domain in RN , N ≥ 1, whose boundary
∂Ω is made of two disjoint nonempty closed sets Γ1 and Γ2 which are smooth manifolds
of dimension N − 1, m and n are weights which may be indefinite and unbounded, ∂/∂ν
denotes the exterior normal derivative, and u± =max{±u,0}.

The main motivation for considering problem (1.1) arises from the study of the Fučik
spectrum. This spectrum is defined as the set Σ of those (α,β)∈R2 such that the problem

−Δpu= αm(x)
(
u+
)p−1−βn(x)

(
u−
)p−1

in Ω,

u= 0 on Γ1,
∂u

∂ν
= 0 on Γ2,

(1.2)
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has a nontrivial solution u. One recovers the spectrum of (1.1) by taking α= β in (1.2).
Another relation between (1.1) and (1.2) comes from the fact that the line of slope s
through the origin of R2 meets Σ at a point (α,β = sα) if and only if α is an eigenvalue for
(1.1) for the weights m and sn.

Of special interest for our purposes is the work in [1] where a study of problems such
as (1.1) and (1.2) was carried out in the case of the Dirichlet boundary conditions.

In [1], the existence of the first nontrivial curve in the Fučik spectrum was derived and
some of its properties were established. In particular, it was shown that if both m and n
change signs, then Σ contains a first hyperbolic-like curve in each quadrant of R2. More-
over, the asymptotic behavior of these first curves was shown to depend on the supports
of the weights. The case of the Neumann boundary conditions was considered later in [2]
where, contrary to what happened in the Dirichlet case, the asymptotic behavior of the
first curve did not depend on the supports of the weights.

Thus, the concern now naturally arises to study the Fučik spectrum under other
boundary conditions, particularly the asymptotic behavior of the first curve. Our pur-
pose in this work is to investigate a case which is somehow intermediate between Dirich-
let’s and Neumann’s, that is, the case of the classical “mixed” boundary conditions. While
trying to adapt the approach in [1, 2] to the present situation, new difficulties arise in
connection with the lack of regularity of the eigenfunctions. It is well known that weak
solutions of degenerate elliptic quasilinear equations, more generally the one considered
here, under Dirichlet or Neumann boundary conditions are essentially bounded in Ω
and at least of class Cαloc(Ω) (cf. [3–7]). A little more regularity result is gained when
the weights are bounded. In fact, the results in [6–8] imply that solutions of (1.1) under
Dirichlet or Neumann boundary conditions for m and n bounded are at least of class
C1,α(Ω).

In the case of mixed boundary conditions considered here, one can easily adapt the
above regularity results and derives that any solution of (1.1) (or (1.2)) is also of class
Cαloc and is essentially bounded. However, to our knowledge, there is no result stating a
C1,α(Ω) regularity when the weights are bounded.

As in [1], we will construct a positive nonprincipal eigenvalue for (1.1) by applying
a version of the mountain pass theorem to the functional

∫
Ω |∇u|p restricted to the C1

manifold:

Mm,n :=
{

u∈ E(Ω),Bm,n(u)=
∫

Ω

[
m
(
u+)p +n

(
u−
)p]= 1

}

, (1.3)

where the space E(Ω) will be specified later. In Section 4, we show that the eigenvalue
constructed in Section 3 is the first eigenvalue of (1.1) which is greater than λ1(m) and
λ1(n) (where λ1(m), resp., λ1(n), is the positive principal eigenvalue of p-Laplacian with
weight m, resp., n, under the above mixed boundary conditions). Some of the proper-
ties of this distinguished eigenvalue are also briefly indicated. In Section 5, we study the
Fučik spectrum. We show in particular that if m and n both change signs in Ω, then each
of the four quadrants in the (α,β) plane contains a first nontrivial curve of Σ, which is
hyperbolic-like and has a variational characterization. We also study the asymptotic be-
havior of these first curves. For instance, the first curve in R+ ×R+ is asymptotic to the
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line λ1(m)×R if N ≥ p or N < p and the support of n+ intersects Γ1, but it is not asymp-
totic to that line if N < p and the support of n+ is compact in Ω or does not intersect Γ1.
A similar result holds of course for the support of m+ with respect to the line R× λ1(n)
in R+×R+. These results can be generalized to the other quadrants. Section 6 is devoted
to the particular case m = n ≡ 1 in one dimension. The Fučik spectrum in this case is
described explicitly so that the asymptotic values of the first curve are computed. Those
values illustrate as well the result stated in Section 5, in the general case. Section 2 is a
preliminary section and contains particularly some results relative to the usual principal
eigenvalue.

Let us conclude this introduction with some general definitions related to the (PS)
condition. Let E be a real Banach space and let M := {u ∈ E : g(u) = 1}, where g ∈
C1(E,R) and 1 is a regular value of g. Let f ∈ C1(E,R) and consider the restriction f̃

of f to M. The functional f̃ is said to satisfy the (PS) condition on M if for any sequence,

uk ∈M such that f̃ (uk) is bounded and ‖ f̃ ′(uk)‖∗→0. Then, uk admits a converging

subsequence. Here, ‖ f̃ ′(uk)‖∗ denotes the norm of the restriction of f ′(u) to the tangent
space TuM := {v ∈ E : 〈g′(u),v〉 = 0}, where 〈,〉 is the pairing between E and its dual.

2. Preliminaries

Throughout this paper, Ω will be a smooth bounded domain in RN , N ≥ 1, with ∂Ω =
Γ1∪ Γ2, where Γ1 and Γ2 are two closed disjoint nonempty sets which are smooth man-
ifolds of dimension N − 1. The weights m,n will be assumed to belong to Lr(Ω) with
r > N/p if N ≥ p and r = 1 if p > N . We also assume, unless otherwise stated, that

m+ �≡ 0, n+ �≡ 0 in Ω. (2.1)

We will work in the space E(Ω) which is defined as

E(Ω) := {v ∈W1,p(Ω) : v = 0 on Γ1 in the sense of traces
}
. (2.2)

Using the regularity of Ω, one can show that (
∫
Ω |∇u|p)1/p is a norm on E(Ω) which is

equivalent to the W1,p(Ω) norm (cf. [9–11]).
Solutions of (1.1) are always understood in the weak sense, that is, u∈ E(Ω) with the

property

∫

Ω
|∇u|p−2∇u·∇v = λ

∫

Ω

[
m
(
u+)p−1−n(u−)p−1]

v, ∀ v ∈ E(Ω). (2.3)

We will denote by

λ1(m) := inf

{∫

Ω
|∇u|p : u∈ E(Ω) ,

∫

Ω
m|u|p = 1

}

(2.4)

the positive principal eigenvalue of the p-Laplacian with weightm under the above mixed
boundary conditions. Arguing as in the Dirichlet and Neumann cases (see, e.g., [12–14]
for bounded weights and [15–17] for unbounded weights), one can show that λ1(m) is
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nonnegative, simple, and admits an eigenfunction ϕm ∈ E(Ω)∩Cαloc(Ω) with ϕm(x) > 0
in Ω and

∫
Ωmϕ

p
m = 1. In the case m− �≡ 0, the negative principal eigenvalue is obtained by

reversing the sign of the weight: λ−1(m)=−λ1(−m).

3. Construction of a nontrivial eigenvalue

In this section, we look for eigenvalues λ of (1.1) with λ > 0. Clearly, (1.1) with λ > 0 has
a nontrivial solution u which does not change sign if and only if λ= λ1(m) or λ= λ1(n).
Moreover, choosing u+ and u− as test functions in (2.3), one easily sees that if (1.1) with
λ > 0 has a solution which changes sign, then λ > max{λ1(m),λ1(n)}. Looking for such
a solution which changes sign is our purpose in this section. Note that condition (2.1) is
necessary for (1.1) with λ > 0 to have a solution which changes sign.

We will use a variational approach and consider the functionals

A(u)=
∫

Ω
|∇u|p, Bm,n(u)=

∫

Ω

[
m
(
u+)p +n

(
u−
)p]

, (3.1)

which areC1 functionals on E(Ω). We are interested in the critical points of the restriction
Ã of A to the manifold:

Mm,n =
{
u∈ E(Ω) : Bm,n(u)= 1

}
. (3.2)

Note that 1 is a regular value of Bm,n and ϕm,−ϕn ∈Mm,n. Using (2.1), one can construct
u∈ C∞c (Ω) which changes sign such that

∫
Ωm(u+)p > 0 and

∫
Ωn(u−)p > 0. Consequently,

u/Bm,n(u)1/p belongs to Mm,n.
By Lagrange’s multiplier rule, u∈Mm,n is a critical point of Ã if and only if there exists

λ∈R such that A′(u)= λB′m,n(u), that is,
∫

Ω
|∇u|p−2∇u·∇v = λ

∫

Ω

[
m
(
u+)p−1−n(u−)p−1]

v (3.3)

for all v ∈ E(Ω). This means that u is a solution of (1.1) in the sense of (2.3). Moreover,
taking v = u in (3.3), one sees that the Lagrange multiplier λ is equal to the critical value
Ã(u). So, problem (1.1) is transformed into the problem of finding critical points and
critical values of Ã.

The following proposition can be proved by a simple adaptation of the arguments in
[1].

Proposition 3.1. (i) ϕm or −ϕn is a global minimum of Ã.

(ii) ϕm and −ϕn are strict local minima of Ã, with λ1(m) or λ1(n) as corresponding
critical values.

(iii) Ã satisfies the Palais-Smale condition on Mm,n.
(iv) The set Γ := {γ ∈ C([−1,1],Mm,n) : γ(−1)= ϕm and γ(1)=−ϕn} is nonempty.
(v) The minimum value

c(m,n) := inf
γ∈Γ

max
u∈γ([−1,1])

Ã(u) (3.4)

is a critical value of Ã, with c(m,n) >max{λ1(m), λ1(n)}.
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(vi) c(m,n) is the first nonprincipal positive eigenvalue of (1.1); that is, there is no eigen-
value of (1.1) between max{λ1(m),λ1(n)} and c(m,n).

Remark 3.2. The construction of the eigenvalue c(m,n) in (3.4) is made by applying a
version of the mountain pass theorem on the C1 manifold Mm,n as given in [1, Proposi-
tion 4].

4. Some properties of c(m,n)

In this section, we study the dependence of c(m,n) with respect to the weights m and n;
namely, continuity, monotonicity, and homogeneity properties will be discussed.

We start by modifying a little bit the variational characterization (3.4) of c(m,n) in
order to allow a larger family of paths, which in addition depends a little less on the
weights. The proof of the following proposition is similar to that of [1, Proposition 21].

Proposition 4.1. One has

c(m,n)= inf
γ∈Γ1

max
u∈γ([−1,1])

Ã(u), (4.1)

where Γ1 := {γ ∈ C([−1,1],Mm,n) : γ(−1)≥ 0 and γ(1)≤ 0}.
The following proposition gives some properties of the eigenvalue c(m,n) and can be

proved by simple adaptations of arguments in [1].

Proposition 4.2. (i) If (mk,nk)→(m0,n0) in Lr(Ω)×Lr(Ω), then c(mk,nk)→c(m0,n0).
(ii) If m≤ m̂ and n≤ n̂, then c(m,n)≥ c(m̂, n̂).

(iii) If m≤ m̂ and n≤ n̂ with, in addition,
∫

Ω

(
m̂−m)(u+)p +

∫

Ω

(
n̂−n)(u−)p > 0, (4.2)

for at least one eigenfunction u associated to c(m,n), then c(m,n) > c(m̂, n̂).
(iv) If 0 < s < ŝ, then c(sm,n) > c(ŝm,n) and c(m,sn) > c(m, ŝn).

To conclude this section, let us observe that definition (3.4) clearly implies that c(m,n)
is homogeneous of degree −1:

c(sm,sn)= 1
s
c(m,n) for s > 0. (4.3)

5. Fučik spectrum with weights

Let m,n ∈ Lr(Ω) with r > N/p if N ≥ p and r = 1 if p > N . Unless otherwise stated, we
also assume (2.1). The Fučik spectrum Σ = Σ(m,n) clearly contains the lines λ1(m)×R
and R× λ1(n), and also, if m− �≡ 0 (resp., n− �≡ 0), λ−1(m)×R (resp., R× λ−1(n)). These
lines are in fact exactly made of those (α,β)∈ Σ for which (1.2) admits a solution which
does not change sign. We denote below by Σ∗ = Σ∗(m,n) the set Σ minus those trivial
lines.

Let us start by looking at the part of Σ∗ which lies in R+×R+. From the properties of
the first eigenvalue recalled in Section 2, it follows that if (α,β) ∈ Σ∗ ∩ (R+ ×R+), then
α > λ1(m) and β > λ1(n).
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Theorem 5.1. For any s > 0, the line β = sα in the (α,β) plane intersects Σ∗ ∩ (R+×R+).
Moreover, the first point in this intersection is given by α(s)=c(m,sn), β(s)=sα(s)=c(m/s,n),
where c(·,·) is defined in (3.4).

Proof. It is an easy consequence of Proposition 3.1 (cf. (v) and (vi)). �

Letting s > 0 vary, we get a first curve � := {(α(s),β(s)) : s > 0} in Σ∗ ∩ (R+ ×R+).
Here are some properties of this curve.

Proposition 5.2. The functions α(s) and β(s) in Theorem 5.1 are continuous. Moreover,
α(s) is strictly decreasing and β(s) is strictly increasing. One also has α(s)→+∞ if s→0 and
β(s)→+∞ if s→+∞.

Proof. The first two statements are direct consequences of Proposition 4.2. To show that
α(s)→ +∞ as s→0, let us assume by contradiction that α(s) remains bounded as s→0.
Then, β(s)= sα(s)→0 as s→0, which is impossible since β(s) > λ1(n) for all s > 0. Similar
argument holds for the behavior of β(s) as s→+∞. �

We now investigate the asymptotic values α∞ := lim s→+∞α(s) and β∞ := lim s→0β(s) of
the first curve �. We will limit ourselves below to the study of α∞. One has a similar result
for the asymptotic value β∞ by interchanging the roles of m and n.

The following proposition is the main result of this section.

Proposition 5.3. (i) α∞ = λ1(m) if p ≤N or p > N , with supp n+∩Γ1 �≡∅.
(ii) α∞ > λ1(m) if p > N , with supp n+ compact in Ω.

Proof. The proof borrows ideas from [1], but new difficulties arise here in connection
with the boundary conditions.

We start by introducing

α := inf

{∫

Ω

∣
∣∇u+

∣
∣p : u∈ E(Ω),

∫

Ω
m
(
u+)p = 1,

∫

Ω
n
(
u−
)p
> 0

}

(5.1)

and show that α∞ = α. The proof of this equality is a direct adaptation of [1].
Clearly, α≥ λ1(m). One first considers the case N ≥ p. Adapting the arguments of [1],

one easily obtains α= λ1(m).
We now consider the case where p > N and the fact that the support of n+ intersects

Γ1.
For ε > 0 sufficiently small, let us take a nonempty neighborhood of Γ1, denoted by

the set

Ω̃ε =
{
x ∈Ω;dist

(
x,Γ1

)
< ε
}

(5.2)

such that

Ω̂ε = int
(
Ω/Ω̃ε

)
(5.3)

is a smooth bounded domain. On Ω̂ε, we consider the boundary conditions of Neumann
on Γ2 and those of Dirichlet on ∂Ω̂ε \ Γ2. We denote by λ1(m,Ω̂ε) the corresponding
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principal eigenvalue of −Δp with the weight m, and by ϕm(Ω̂ε) the associated normalized
positive eigenfunction. Note that these are well defined for ε > 0 sufficiently small since
m+ �≡ 0 in Ω (cf. Section 2). By the regularity of Ω̂ε, extending ϕ̂m(Ω̂ε) by zero on Ω/Ω̂ε

yields a function in E(Ω), which we still denote by ϕ̂m(Ω̂ε). Moreover, the argument of
[18, Lemma 3.1] immediately extends to the present situation and shows that as ε→0,
λ1(m,Ω̂ε)→λ1(m) and ϕm(Ω̂ε)→ϕm in E(Ω). Then, the argument [1, page 601] can be
adapted to obtain α= λ1(m)

Let us finally consider the case where p > N and the fact that the support of n+ is
compact in Ω. Assume by contradiction that α = λ1(m) and let uk be a minimizing se-
quence in definition (5.1) of α. It follows by standard arguments that for a subsequence,
u+
k converges to ϕm weakly in E(Ω) and uniformly on supp n+. Since there exists ε > 0

such that ϕm(x)≥ ε on the compact set supp n+, we deduce that u+
k ≥ ε/2 on supp n+ for

k sufficiently large. Consequently, for those k, u−k = 0 on supp n+, which implies that

∫

Ω
n
(
u−k
)p =

∫

Ω
n+(u−k

)p−
∫

Ω
n−
(
u−k
)p =−

∫

Ω
n−
(
u−k
)p ≤ 0, (5.4)

which is a contradiction since uk is admissible in definition (5.1) of α. �

Remark 5.4. If ϕm ∈ C1(Ω), the assumptions of Proposition 5.3(ii) can be weakened and
this proposition can be stated as follows.

Proposition 5.5. (i) α∞ = λ1(m) if p ≤N or p > N , with supp n+∩Γ1 �=∅.
(ii) α∞ > λ1(m) if p > N , with supp n+∩Γ1 =∅.

Proof. The proof of (i) is similar to the corresponding part in Proposition 5.3. The proof
of (ii) can be simplified since ϕm ∈ C1(Ω). In fact, from the maximum principle of
Vázquez (cf. [19]), one deduces that ϕm(x) > 0 for all x ∈ Ω∪ Γ2. If supp n+ ∩ Γ1 = ∅,
then there exists ε > 0 such that ϕm(x)≥ ε on supp n+ ⊂Ω∪ Γ2. Hence, one can use the
same arguments as in the proof of Proposition 5.3. �

We finally observe that the distribution of Σ∗ in the other quadrants of R×R can be
studied in a way similar to that of [1].

The figures illustrate the result of Proposition 5.3. In Figure 5.1(b), α−1 is defined by

α−1 = inf

{∫

Ω

∣
∣∇u+

∣
∣p, u∈ E(Ω),

∫

Ω
m
(
u+)p =−1,

∫

Ω
n
(
u−
)p
< 0

}

, (5.5)

and β and β−1 are deduced from (5.1) and (5.5) by interchanging the roles of the weights
m and n.

6. The spectra in dimension 1

In this section, we give a full description of the classical spectrum and the Fučik spectrum
Σ= Σ(1,1) in case of dimension 1. In particular, the first curve in Σ(1,1) has been clearly
specified.
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β

λ1(n)

λ
�1(m)

λ
�1(n)

0 αλ1(m)

�(N � pwithm� �= 0andn� �= 0) or
(N < pwith supp(m�)�Γ1 �=� and supp (n�)�Γ1 �=�)

(a)

β

β

λ1(n)

λ
�1(m)

λ
�1(n)

0 ααλ1(m)α
�1

β
�1

�N < pwithm� �= 0, n� �= 0 and
supp (m�), supp (n�) compacts

(b)

Figure 5.1. Mixed Fučik spectrum with weights.

Let Ω=]0,π[ and m≡ n≡ 1 in Ω. Then, (1.2) holds in this case as

−(Φp
(
u′
))′ = αΦp

(
u+
)−βΦp

(
u−
)

in ]0,π[,

u(0)= u′(π)= 0,
(6.1)

where Φp(x)= |x|p−2x and 1 < p < +∞.
It is well known (cf. [20]) that any weak solution of (6.1) belongs to C1([0,π]). Thus,

by a solution of (6.1), we mean a function u∈ C1([0,π]) such thatΦp(u′) is continuously
differentiable in [0,π] and satisfies (6.1).

When α= β = λ in (6.1), one recovers the classical eigenvalue problem

−(Φp
(
u′
))′ = λΦp(u) in ]0,π[,

u(0)= u′(π)= 0.
(6.2)

As in Section 2, we look for eigenvalues and nontrivial solutions of (6.1) and (6.2).
The following result gives the description of the spectrum of (6.2).

Theorem 6.1. (i) The eigenvalues of (6.2) are of the form

λk,p :=
(

2k+ 1
2

πp
π

)p
, k ∈N∪{0}, (6.3)

where πp := (2(p− 1)1/p/p)(π/ sin(π/p)) and N= {1,2,3, . . .}.
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(ii) The eigenfunctions associated to λk,p, k ≥ 0, are the constant multiples of

u(t)= sinp
(
λ

1/p
k,p t
)
, (6.4)

where y(s)= sinp(s) is the function implicitly defined by the equation

s=
∫ y

0

dt
(
1− tp/(p− 1

))1/p (6.5)

for s∈ [0,πp/2], extended by symmetry on [πp/2, πp] and by πp-periodicity on R (cf. [21,
22]).

Proof. Let us consider the function v defined by v(t)= λ−1/psinp(λ1/pt), with λ∈R∗ and
R∗ =R \ {0}.

It is well known (cf. [22]) that the function v is πp-periodic and is the unique solu-
tion of the equation in (6.2), satisfying the initial value conditions v(0)= 0 and v′(0)= 1.
Moreover, any nontrivial solution u of (6.2) is such that u′(0) �=0 (cf. [20]) and accord-
ingly u should be of the form

u(t)= u′(0)
[
λ−1/psinp

(
λ1/pt

)]
, (6.6)

with λ∈R∗ to be specified with respect to the second boundary condition u′(π)= 0.
To go further, let us consider the well known beta function defined by

β(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt. (6.7)

Since it verifies β(z,1− z)= π/ sin(πz), one deduces from the definition of πp that

πp
2
= (p− 1)1/p

p
β
(

1
p

,1− 1
p

)

= (p− 1)1/p

p

∫ 1

0
z1/p−1(1− z)−1/pdz

= ∫ (p−1)1/p

0

(
1− tp

p− 1

)−1/p

dt.

(6.8)

Moreover, (p− 1)1/p ∈ ]0,πp/2[ (using the definition of πp). Thus, one deduces from
(6.5) that

sin p

(
πp
2

)
= (p− 1)1/p. (6.9)

On the other hand, one has

y′(s)= dy

ds
(s)=

[
1− sin

p
p(s)

p− 1

]1/p

, ∀ s∈
[

0,
πp
2

]
(6.10)
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and the derivative function y′ is also πp-periodic. By solving y′(s)= 0, one has

sinp(s)= (p− 1)1/p = sinp

(
πp
2

)
. (6.11)

Hence,

y′(s)= 0 iff s= πp
2

+ kπp =
(2k+ 1)πp

2
, k ∈N∪{0}. (6.12)

Using (6.12) and the fact that u(t)= u′(0)λ−1/p y(λ1/pt), one deduces that

u′(π)= 0 iff λ1/pπ =
(

2k+ 1
2

)
πp, k ∈N∪{0}, (6.13)

that is, λ= [((2k+ 1)/2)(πp/π)]p, and then the conclusions of Theorem 6.1 follow. �

Remark 6.2. Let

λk := λk−1,p, k ∈N. (6.14)

One derives from Theorem 6.1 that the first eigenvalue is defined by

λ1 = λ0,p =
(
πp
2π

)p
, (6.15)

and the spectrum of the p-Laplacian (with mixed boundary conditions) is defined by the
sequence

λ1 < λ2 ≤ λ3 ≤ ··· . (6.16)

The following theorem gives the full description of the Fučik Σ= Σ(1,1).

Theorem 6.3. The Fučik spectrum Σ= Σ(1,1) of (6.1) is composed of two trivial lines R×
{λ1} and {λ1}×R, and the sequence of curves

�1
2k =

{
(α,β)∈R∗+ ×R∗+ :

k

α1/p +
2k− 1

2β1/p =
π

πp

}
,

�2
2k =

{
(α,β)∈R∗+ ×R∗+ :

2k− 1
2α1/p +

k

β1/p =
π

πp

}
,

�1
2k+1 =

{
(α,β)∈R∗+ ×R∗+ :

2k+ 1
2α1/p +

k

β1/p =
π

πp

}
,

�2
2k+1 =

{
(α,β)∈R∗+ ×R∗+ :

k

α1/p +
2k+ 1

2β1/p =
π

πp

}
, k ≥ 1.

(6.17)

Remark 6.4. The curves �1
2k and �2

2k pass through the points λ2k,λ2k; the curves �1
2k+1

and �2
2k+1 pass through the points λ2k+1,λ2k+1.
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β

λ2

λ2

λ1

λ10 αα0

α0

�1
2

�2
2

�1

Figure 6.1. The first curve in the Fučik spectrum.

Proof of Theorem 6.3. Let us define the functions ui, i= 1,2, by

u1(t)=

⎧
⎪⎨

⎪⎩

α−1/psinp
(
α1/pt

)
if t ∈ ]0,α−1/pπ p

]
,

−β−1/psinp
[
β1/p(t−α−1/pπ p

)]
if t ∈ [α−1/pπ p,

(
α−1/p +β−1/p)πp

]
;

u2(t)=

⎧
⎪⎨

⎪⎩

β−1/psinp
(
β1/pt

)
if t ∈ ]0,β−1/pπ p

]
,

−α−1/psinp
[
α1/p

(
t−β−1/pπ p

)]
if t ∈ [β−1/pπ p,

(
α−1/p +β−1/p)πp

]
.

(6.18)

Extending these functions by symmetry and by (α−1/p + β−1/p)πp-periodicity, one gets
functions ũi defined on ]0,π[ which verify (6.1). Hence, the conclusion follows by using
the fact that ũi(0)= ũ′i (π)= 0. �

Corollary 6.5. A first curve �1 in the Fučik spectrum Σ= Σ(1,1) of (6.1) is defined by (see
Figure 6.1)

�1 =min
(
�1

2,�2
2

)
. (6.19)

The asymptotic values here are

α∞ = β∞ =
(
πp
2π

)p
, α0 =

(
πp
π

)p
. (6.20)
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[3] M. Guedda and L. Véron, “Quasilinear elliptic equations involving critical Sobolev exponents,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 13, no. 8, pp. 879–902, 1989.

[4] O. Ladyzhenskaya and N. Uraltseva, Equations aux dérivées partielles du type elliptique du second
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01 BP 613, Porto-Novo, Benin
Email addresses: leadiare@imsp-uac.org; leadiare@yahoo.com
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