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Building on the topological foundations constructed in Part I, we now go on to address
the homological algebra preparatory to the projected final arithmetical phase of our at-
tack on the analytic proof of general reciprocity for a number field. In the present work,
we develop two algebraic frameworks corresponding to two interpretations of Kubota’s
n-Hilbert reciprocity formalism, presented in a quasi-dualized topological form in Part I,
delineating two sheaf-theoretic routes toward resolving the aforementioned (open) prob-
lem. The first approach centers on factoring sheaf morphisms eventually to yield a split-
ting homomorphism for Kubota’s n-fold cover of the adelized special linear group over
the base field. The second approach employs linked exact triples of derived sheaf cate-
gories and the yoga of gluing t-structures to evolve a means of establishing the vacuity of
certain vertices in diagrams of underlying topological spaces from Part I. Upon assigning
properly designed t-structures to three of seven specially chosen derived categories, the
collapse just mentioned is enough to yield n-Hilbert reciprocity.

Copyright © 2007 Michael C. Berg. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

As we conveyed in detail in [1], the motivation for the present investigation is Erich
Hecke’s 80-year-old open problem asking for an analytic proof of the general reciprocity
law for a global algebraic number field, k. Hecke issued his challenge at the end of [2, 3]
where he gave the definitive classical Fourier-analytic treatment of the quadratic case.
This proof was recast in unitary group representation-theoretic terms some forty years
later by Weil [4]. Not long after that, Kubota [5] gave an explicitly low-dimensional co-
homological treatment of Weil’s representation theory and, a few years later, went on to
address the open higher degree case [6]. Specifically, Kubota demonstrated that Hilbert
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reciprocity, that is, the cover of SL2(k)A by the nth roots of unity, μn (assumed to lie in
k, which is to say that k is totally imaginary), split on SL2(k), the rational points. (See [1,
Section 1] for further details.) Perpetuating our jargon from Part I [1], we call this ar-
rangement Kubota’s n-Hilbert reciprocity formalism and observe, as regards our greater
objective, that Hecke’s open problem will be settled if this splitting can be derived with-
out presupposing any higher reciprocity law. Accordingly, we delineated in Part I what we
take the liberty to describe as a quasi-dualization of this Kubota formalism, exchanging
the given setting of algebraic groups for that of sheaves and sheaf complexes on topolog-
ical spaces closely associated to these groups. We also demonstrated in Part I that in this
quasi-dual setting, n-Hilbert reciprocity can be reached along a couple of different paths,
such as by means of factoring a morphism in a natural derived sheaf category through an-
other morphism. We address this homological algebraic theme in the first four sections,
Sections 2–5, of the present work.

Moreover, Proposition 5.1, one of the central results of [1], yields inter alia that n-
Hilbert reciprocity follows if we can prove that the image of a certain mapping, Ω, is
located entirely within a locally closed set,

∐∞
�=1X1;� , sitting inside our primary topologi-

cal space, X̃2
A. In Section 6, below, we translate this condition to the level of derived sheaf

complexes on the indicated neighboring topological spaces. This permits us to prove that
the stated condition will be realized if n− 1 of n derived categories DYξ0

, ξ0 ∈ μn, de-
fined below, are void. We go on to address this matter in Sections 7, and 8 in terms of
the behavior of t-structures on three derived categories, including a DYξ0

, arranged in
a seven-vertex diagram of interlaced, or linked, exact triples accruing to the underlying
spaces, including Yξ0 , ξ0 �= 1. Whenever reasonable, we allow for the likelihood that such
t-structures should be perverse. We systematically glue and unglue t-structures in this
seven-vertex arrangement so as to precipitate relations on them as a consequence of a
uniqueness criterion pertaining to the middle vertex, DX̃2

A
. Beyond this, and more im-

portantly, we gain the wherewithal to identify arithmetically motivated conditions on the
operative initial t-structures directly geared toward the collapse of the DYξ0

and Yξ0 for
1 �= ξ0 ∈ μn, as mentioned above. In part III of this sequence, projected for the near future,
we address some preliminary ideas covering how to phrase these conditions in compu-
tationally accessible ways in anticipation of the final arithmetical phase of our campaign
(tacitly assuming this path to be more lucrative than the first strategem which, however,
has to be kept viable). We propose two broad approaches in this content: one dealing
with a putative index, χ(−), or rather χ(t(−)), acting on t-structures, and the other deal-
ing with the potential of applying a beautiful result due to Bridgeland [7] to the effect that
under certain conditions, a set of t-structures on a derived category can be endowed with
a metric and in fact be made into a finite-dimensional complex manifold. But before we
get to all this, it is useful to draw a quick sketch of the bigger picture as it now takes shape,
supplementing the historically framed discussion in Sections 2 and 3 of Part I.

Despite its origins [2, 3] in Hecke’s classical Fourier analysis, as we already indicated,
our sheaf-theoretic framework for the projected analytic proof of higher reciprocity is
built on the representation theory and low-dimensional cohomology of Weil and Kub-
ota, and we initiated this quasi-dualization of Kubota’s n-Hilbert reciprocity formal-
ism by means of the following moves in Part I. First, we restructured the splitting of
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Kubota’s adelic 2-cocycle, c(n)
A ∈H2(SL2(k)A,μn), on SL2(k), as an assertion about associ-

ated topological spaces designed to convey suppressed group structures, both ordinary
and twisted, by a “doubling” manoeuvre. In our earlier and now readopted number-
ing (cf. [1]), this first level of our quasi-dualization is contained in [1, the diagrams
(4.8), (4.9), and (4.20)], in Top, the category of topological spaces. As already hinted,

the splitting of c(n)
A on SL2(k) =: X0 can, in this arrangement, be rendered as the exis-

tence of a specific continuous mapping Ω=⊗ξ0
Ωξ0 for which, for each ξ0 ∈ μn =: μ, we

have Ωξ0 : X0→
∐∞

�=1Xξ0;� in keeping with (2.1). The object Xξ0;� is the set of all ordered

quadruples (σ ,σ ′;ξ,ξ′) ∈ SL2(k)2
A × μ2 =: X̃2

A, for which c(n)
A (σ ,σ ′) = ξ0; this sets up the

next level of our quasi-dualization, of bounded sheaf complexes collected into derived
categories “above” these first-level topological spaces.

Given this architecture, we will see presently that [1, Proposition 5.1] effectively pro-
vides that n-Hilbert reciprocity amounts to the condition that if ξ0 �=1, the space SL2(k)2×
μ2 =: X̃2

0 fails to meet
∐∞

�=1Xξ0;� . As far as the earlier-mentioned second route is con-
cerned, in what follows we propose to head for this result through careful manipulation
of certain t-structures that may be imparted to the appropriate derived categories. Thus,
our primary future objectives include producing suitable, arithmetically conditioned, ini-
tial t-structures ensuring the a forteriori collapse of t-structures on the derived categories
DYξ0

, for ξ0 �= 1, where Yξ0 is the closure of X̃2
0 ∩

∐∞
�=1Xξ0;� (and DYξ0

= Db(Yξ0 )). This
turns out to be part and parcel of n-Hilbert reciprocity.

2. A reprise of material from Part I

Diagram (2.1), reproduced below, sits at the heart of our quasi-dualized formulation

of the splitting of S̃L2(k)(n)
A = SL2(k)A ×c(n)

A
μn = X̃A on the rational points, SL2(k) = X0,

translated to the category Top, of topological spaces; as already stated above, c(n)
A is Kub-

ota’s adelic 2-cocycle defining the given cover of SL2(k)A by the nth roots of unity:

μ2

m�

∞∐
Xξo;�

j0⊗ j0

m
ξ0;c

(n)
A

μ X̃A

j0

X2
0

�=1
Ωξ0

m0

X0

sA⊗sA

sA

(2.1)

Proposition 5.1 of [1] provides that the important thing is to construct Ωξ0 , or de-
rive its existence, noting that it has to map into

∐∞
�=1Xξ0;� whose constituent spaces are

locally closed (see [1, Corollary 4.6]) in anticipation of the probable appearance of per-
verse sheaves in the future. All the vertices live in Top, so, while the group structures on μ,
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X0, X̃A are suppressed ab initio, the respective multiplications are recovered by the map-
pings m� , m0, mξ0;c(n)

A
. Beyond this, j0 and j0⊗ j0 are just the morphisms opposite to the

obvious imbeddings (see [1, Section 4]), and as always, the dotted arrows denote maps to
be constructed (with Ωξ0 being the one that counts).

If � is an a priori unspecified sheaf on X̃A, identified with its sheaf space when nec-
essary, that is, � ≈ èt�, and if i⊗ 1 : X0 → X̃A is the imbedding σ 
→ (σ ,1), consider, as
part of the next level of our quasi-dualization of Kubota’s formalism, the following sheaf
diagram:

(
mξ0;c(n)

A

)
?m

?
ξ0;cA(n)�

(
j0
)?
j0?

ι
�

ν

ι0

(
(i⊗ 1)◦m0

)
?

(
(i⊗ 1)◦m0

)?
�

(i⊗ 1)? ◦ (i⊗ 1)?�

ν0

(2.2)

Here, ? stands for ∗ or !, making allowances for future appearances of Verdier’s R when
we pass to derived categories in those cases where we have only left exactness (at the sheaf
level) to begin with. Diagram (2.2) typifies what we will call the contravariant option vis-
a-vis (2.1) in the sense that, by comparison, the arrows point backwards. In what follows,
we also consider the respective covariant options for these constructs. Additionally, note
that the sheaf morphisms ι, ν, ι0, ν0 are named with the underlying continuous functions
j0,mξ0;c(n)

A
, i⊗ 1,m0 in mind: a policy we try to follow as often as possible. Lastly, as in [1],

we simplify the cumbersome notation of diagram (2.2), thus

�

�
ι

�

ν

ι0

�

�

ν0

(2.3)

With (2.2), (2.3) situated in the abelian category A :=Sh/X̃A
of sheaves on the central

topological space X̃A, we can (in the contravariant case, with little loss of generality) ar-
ticulate the theme we investigate first in what follows. Proposition 7.1 of [1] asserts that if
we associate sheaf complexes �•, �•, �•, �•, �• to the respective sheaves in (2.3), using
the usual “concentration in degree-zero” convention, and go over to the derived category
D :=�(A), then the condition HomD(Z•[−1],�•) = 0, where Z• is a cone completing
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some distinguished triangle based on �• ν−→�•, abusing notation a bit, is enough to yield

�•

Φ

�•

ϕ

ι
�•

ν

ι0

�•

�•
ν0

(2.4)

which is to say, the factorization ν0 ◦ ι0 =Φ◦ ν. This appearance of Φ yields, in turn, that
(2.1) and (2.2) can be linked as follows:

(
mξ0;c(n)

A

)
?m

?
ξ0;c(n)

A
� Φ (

(i⊗ 1)◦m0
)

?

(
(i⊗ 1)◦m0

)?
�

X̃A = S̃L(k)(n)
A

∞∐

�=1

Xξ0;�

m
ξ0;c

(n)
A

X2
0 = SL2(k)2

Ωξ0

(i⊗1)◦m0

(2.5)

where we briefly use the notation Φ ambiguously (see directly below). The two unnamed
maps in (2.5) are just the usual projections from sheaf spaces to their underlying sites, so
we again have a diagram in Top. Our goal is to investigate the implications of [1, Propo-
sition 7.1] and flesh out (2.5) in preparation for the future task of building �, taking the
indicated arithmetical requirements into account, for making the proper assignments to
the ?’s, and for delineating the morphisms ι, ν, ι0, ν0.

As far as the covariant option is concerned, with (2.1) as our starting point, the first
move is to reverse arrows in (2.4) (whence in (2.2), (2.3)):

�•
η

�• �• �•

Ψ

ν0

�•

ι0

(2.6)

We obtain, parallel to [1, Proposition 7.1], the following.

Proposition 2.1. If Z• is a cone of η, that is, if �• η−→ �• → Z• +1−−→ is a distinguished
triangle in D, and if HomD(�•,Z•)= 0, then Ψ as drawn in (2.6) exists, yielding the fac-
torization ι0 ◦ ν0 = η ◦Ψ. (Even though the proof of this assertion is just dual to that given
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for [1, Proposition 7.1], we include it here for good form and to make an attempt at self-
containment.)

Proof. Go to the associated long exact Hom-sequence part of which is

··· −→HomD

(
�•,Z•[−1]

)−→HomD

(
�•,�•) η∗−→HomD

(
�•,�•

)−→
−→HomD

(
�•,C•

)−→ ··· .
(2.7)

The vanishing of HomD(�•,C•) directly yields the surjectivity of the map η∗ defined, as
always, by the rule η∗(σ)= η ◦ σ , for any σ : �• →�•. So, since ι0 ◦ ν0 ∈HomD(�•,�•),
we get a morphism Ψ : �• →�• with η ◦Ψ= ι0 ◦ ν0, as required. �

Finally, with (2.6) and Proposition 2.1 in place, we obtain the covariant counterpart to
(2.5), namely,

(
mξ0;c(n)

A

)
?m

?
ξ0;c(n)

A
� (

(i⊗ 1)◦m0
)

?

(
(i⊗ 1)◦m0

)?
�

Ψ

X̃A = S̃L2(k)(n)
A

∞∐

�=1

Xξ0;�

m
ξ0;c

(n)
A

X2
0 = SL2(k)2

Ωξ0

(i⊗1)◦m0

(2.8)

with Ψ suffering the same ambiguity as Φ in (2.5). While Propositions 7.1 of [1], and
2.1 address the category D, the diagrams (2.5), (2.8) are supposed to exist in A=Sh/X̃A

.
Thus, the next order of business is to remove these ambiguities, and we address this mat-
ter in the next section.

3. Preliminaries on the interplay between D and A

Utilizing the less cumbersome notation of (2.3), we can rewrite (2.5) and (2.8) as

�
Φ

�

X̃A

∞∐

�=1

Xξ0;c(n)
A

X2
0

Ωξ0

� �
Ψ

X̃A

∞∐

�=1

Xξ0;c(n)
A

X2
0

Ωξ0

(3.1)

The trouble is that, as per (2.4), (2.6) and Propositions 7.1 of [1], and 2.1, the morphisms
Φ, Ψ map between the sheaf complexes �• and �• rather than the sheaves � and �,
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so (3.1) involve an obliteration of distinctions between categories. This can be rectified,
however, by setting

δ : A=Sh
/
X̃A
−→D=�(A), (3.2)

ét�≈� 
−→�•, (3.3)

(provisionally) employing the standard concentration of �• in degree zero, and setting

ε : D−→A, (3.4)

�• 
−→�• =: �≈ ét�. (3.5)

Of course, ε can be made to pick off the sheaf in any degree, or do something more so-
phisticated than that, should the need arise, and (3.4), as also (3.2), should be regarded as
provisional. Later considerations should determine what the specifics must be as regards
δ and ε. However, we certainly have that δ : A→D and ε : D→A, and this permits us to
amend and complete (3.1) to

ét�

δ

�• Φ
�•

ε
ét�

βX̃A

∞∐

�=1

Xξ0;� X2
0

Ωξ0

α (3.6)

ét�

β

ε
�• �•

Ψ
ét�

δ

X̃A

∞∐

�=1

Xξ0;� X2
0

Ωξ0

α
(3.7)
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so that we need only arrange for the continuity of

Ωξ0 := β ◦ ε ◦Φ◦ δ ◦α (3.8)

or

Ωξ0 := β ◦ ε ◦Ψ◦ δ ◦α, (3.9)

respectively, according as α, β live in (3.6) or (3.7). Once Ωξ0 is continuous (for each ξ0),
it is fit for insertion into (2.1), ending the game.

But we say no more about this for the moment and proceed, next, to take a closer look
at Φ (and Ψ).

4. The meaning of a vanishing Hom-group

We already observed at the end of [1, Section 7] that the condition HomD(Z•[−1],
�•)= 0 translates to a requirement on the relevant sheaf complexes involving chain ho-
motopy, and this will constitute our point of departure for what follows in the present
section as well as the next. We begin, however, by positing that in these two sections we
require the various sheaves populating the degrees of the upcoming derived sheaf com-
plexes to take their values in the category of vector spaces; imposing this restriction allows
us to render the various morphisms situated in these derived categories as simple, ordi-
nary arrows, sparing us the task of having to deal with, for example, fraction constructs
of the type •�•→ •. (In this connection, see [8, pages 72-73] and [9, page 485]: it is easy
to prove that a sheaf of vector spaces is injective.) Also, following, for example, [10], we
write •� • for a quasi-isomorphism. Now we get the following.

Proposition 4.1. HomD(Z•[−1],�•) = 0 if and only if every D-morphism f : Z• →�•

admits a quasi-isomorphism s : �• →�•, for some chain complex �•, such that s◦ f is chain
homotopic to 0.

Proof. This is an immediate consequence of [11, pages 38-39]. �

It follows that, in order to obtain the existence of Φ in (2.4), it is enough to have that
for any such f : Z• →�•, there should exist s : �• → �• and a chain map

Ψ : Z•[−1]−→ �•[−1] (4.1)

such that

sn ◦ f n =−dn−1
�• ◦ψn +ψn−1 ◦dnZ•[−1] (4.2)
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for all n∈ Z, or, in the usual notation,

s◦ f 
ψ 0. (4.3)

This leads to the ladder diagram

··· ··· ···

Z−2 = Z−1[−1]
ψ−1

s−1◦ f −1

�−1[−1]=�−2

Z−1 = Z◦[−1]
ψ◦

s0◦ f 0

�◦[−1]=�−1

Z0 = Z1[−1]
ψ1

s1◦ f 1

�1[−1]=�0

Z1 = Z2[−1]
ψ2

s2◦ f 2

�2[−1]=�1

Z2 = Z3[−1]
ψ3

�3[−1]=�2

··· ··· ···

(4.4)

where all the vertical maps are the indicated differentials in the appropriate degrees. Here,
we have also taken into account the sign convention (cf. [12, page 31])

dnX•[k] = (−1)kdn+k
X• (4.5)

for an arbitrary object X• in D; additionally, the fact that we have

Z•[−1]
f

s◦ f

�•

s

�•

(4.6)

means that for all n∈ Z,

Zn+1
f n

sn◦ f n

�n

sn

�n

(4.7)
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in view of the usual shift convention (see [12]), namely,

Xn[k]= Xn+k. (4.8)

Accordingly, (4.2) becomes

sn ◦ f n =−dn−1
�• ◦ψn−ψn+1 ◦dn+1

Z• . (4.9)

Bearing in mind the possibility, if not the likelihood, that our erstwhile maps δ, ε,
of Section 3, might have to be chosen in unorthodox ways later, we consider now what
happens if we simply go with the standard choice of locating A in D(A) (indeed, this is
really preordained by the construction of the very derived category D(A) itself). In other
words, we associate to any sheaf � in A=Sh/X̃ the sheaf complex �• (with some abuse
of language) defined by

�n =
⎧
⎨

⎩

�, if n= 0,

0, if n �= 0
(4.10)

(concentration in degree 0); thus, we certainly have acyclicity in nonzero degrees.
With the preceding convention in place, we have, first, the following.

Proposition 4.2. If Z•ν is the (actual) mapping cone of ν : �• →�•, which is to say that

Z•ν =�•[1]⊕�• (4.11)

equipped with the differential

dZ•ν =
⎛

⎝
dn�•[1] 0

νn+1 dn�•

⎞

⎠=
(−dn+1

�• 0
νn+1 dn�•

)

(4.12)

(using (4.6)), then HomD(Z•ν [−1],�•)= 0.

Proof. Sufficiency is obvious. As for necessity, suppose that we have HomD(Z•ν [−1],�•)=
0 and let f : Z•[−1]→�•, where Z• is any cone for ν (so Z• ∼=D Z•ν ). Then, we have

�• �• Z•

σ

�•[1]

�• �• Z•ν

σ−1

�•[1]

(4.13)

where the morphism pair (σ ,σ−1) realizes the D-isomorphism between Z• and Z•ν . Thus
(σ[−1],σ[−1]−1) gives Z•[−1]∼=D Z•ν [−1] and this immediately yields

Z•ν [−1]
σ[−1]−1

f ◦σ[−1]−1

Z•[−1]

f

Z•

(4.14)
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But now, f ◦ σ[−1]−1 ∈ HomD(Z•ν [−1],�•) = 0, forcing the relation f ◦ σ[−1]−1 = 0.
Now, just compose with σ[−1] to get f = 0. �

Of course, if we look beyond the outlandish notation of derived categories, this is really
just the elementary fact that in any reasonable category, C, we have that HomC(X0,Y)= 0
if and only if, for all X ∼= X0,HomC(X ,Y) = 0. In any event, the upshot (and the raison
d’être for Proposition 4.2) is that we can now safely turn our attention to the case where
Z• = Z•ν as given by (4.11) and (4.13), and prove the following useful result.

Proposition 4.3. Let �•, �•, �• be concentrated in degree 0 and let Z•ν (resp., Z•) be the
(resp., any) mapping cone of ν : �• →�•. Then HomD(Z•ν [−1],�•)= 0=HomD(Z•[−1],
�•) if and only if, with A the underlying abelian sheaf category, so that D=D(A), HomD(�,
�)= 0. (cf. (4.10)).

Proof. Because Z•ν =�•[1]⊕�•, so that Z•ν [−1]=�• ⊕�•[−1], we can employ the ear-
lier shift and imbedding connections (4.8), (4.10) to infer that if n �= 0,1, then �n =
0 = �n−1, forcing Znν [−1] = 0⊕ 0 = 0. On the other hand, when n = 0, �0 = � and
�0[−1] =�−1 = 0, so that Z0

ν [−1] = Z−1
ν = �⊕ 0 = �, whereas when n = 1, �1 = 0

and �1[−1] =�0 =�, so that Z1
ν [−1] = Z0

ν = 0⊕� =�. Additionally, setting n = −1
in (4.12) produces d−1

Z•ν = ( 0 0
ν 0 ), because d0

�• : �• = �→ �1 = 0 and f −1
�• =�−1 = 0→

�0 =�, while ν0 = ν, of course. So, d−1
Z•ν simply reduces to μ. Putting all this together, we

see that, with Z•ν in place of Z• and with the hypotheses of Proposition 4.1 in place, (4.4)
becomes

··· ···

0= Z−2
ν

ψ−1

−d−2
Z•ν s0◦ f 0

�−2

−d−2
�•

�

−ν

Z−1
ν

ψ0

s1◦ f 1−d−1
Zν

�−1

−d−1
�•

� Z0
ν

ψ1

−d0
Zν

s2◦ f 2

�0

−d0
�•

0= Z1
ν

ψ2

−d1
Zν

s3◦ f 3

�1

−d1
�•

0= Z2
ν

ψ3

�2

··· ···

(4.15)
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We can read off immediately that if n �= 0,1, thenψn = 0 and, more to the point, if n �= 1,2,
then sn ◦ f n = 0. However, (4.7) provides that if n �= 0, then in = 0 (use (4.10), mutatis
mutandis), forcing sn ◦ f n = 0 for all n ∈ Z with the only possibly nontrivial annihila-
tion (with sn �= 0, possibly) occurring in degree zero. It follows that f should satisfy the
commutativity

�= Z−1
ν

f 0

0

�0 =�

s0

�0

(4.16)

in degree zero, and this is just a diagram in A. Furthermore, the degenerate nature of �•,
together with the requirement from Proposition 4.1 that s should be a quasi-
isomorphism, yields that Hn(�•) = 0 if u �= 0 and H0(�•) = �0 ∼=H0(�•) = �• = �. In
other words, s0 is a sheaf isomorphism, forcing immediately that f 0 = 0 in Mor (A). Fi-
nally, it follows from the surjectivity of the (natural) map

HomD

(
Z•ν [−1],�•

)−→HomA(�,�),
[
f : �• ⊕B•[−1]−→�•

] 
−→ [
f 0 : �−→�

] (4.17)

that HomA(�,�)= 0 too. The converse is obvious. �

The implications of this result for getting at Φ in (2.4) and, therefore, for the entire
formalism represented by (2.4), (2.2), and (2.3), are dramatic. Specifically, in (2.3) we
obtain that the composite morphism ν◦ ◦ ι0 ∈HomA(�,�) has to vanish:

�

�
ι

�

ν

0

ι◦

�

�

ν0

(4.18)

Consequently, if we abuse notation over more and just write Φ for Φ0 = ε ◦Φ◦ δ in (3.8),
we get the sheaf diagram

�
Φ

� �
0

ν

ι0

�

�

ν0

(4.19)
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The upshot for future work is that our sheaf �, as well as its “neighbors” �, �, �, �,
should be designed so as to satisfy the conditions

ν0 ◦ ι0 = 0=Φ◦ ν. (4.20)

Appearances notwithstanding, this requirement is not that preclusive. In fact, already
in the abelian category of sheaves of abelian groups on a space, X , it is easy to arrange
nontrivial, or nondegenerate, sheaves �, � on X with HomSh/X (�,�)= 0: for example,
take � = (Z3)X and � = (Z2)X . However, the sheaves in (4.19), which is to say in (2.2)
completed by Φ, will undoubtedly have to be considerably more sophisticated in view of
what we will be asking of them as far as n-Hilbert reciprocity is concerned. The nature of
the underlying toplogical spaces (cf. (2.1)) driving our quasi-duality also augurs strongly
for this, and (2.5) will obviously also have its due. In light of such objectives, (4.20) begins
to appear as an aid rather than an obstacle.

Regarding the parallel covariant option, it is evident that similar calculations can be
brought to bear on the matter of ψ’s existence (see (2.6)) as a consequence of having
HomD(�•,Z•) = 0, where now Z• is a mapping cone of η : �• →�• (see Proposition
2.1).

5. Adjointness

The thrust of the foregoing considerations is that locating our quasi-dual Kubota formal-
ism in the abelian category Sh/X̃A

leads to the task of designing � such that HomA(�,�)=
0, and by means of Proposition 4.3, to the observation that if we use the “concentration in
degree-zero” convention for situating A in its derived category, we really do not gain any-
thing. So, let us abandon this convention for the moment, which is to say that we suggest
that δ, ε, as per (3.2), (3.4), should be rather more sophisticated mappings, and observe
by way of synopsis that in this more liberal environment the idea is to design a sheaf com-
plex �•, of some appropriate arithmetical character, subject to HomD(Z•ν [−1]�•)= 0 or,
for the covariant option, HomD(�•,Z•η)= 0, with D=D(A). We saw that Z•ν (resp., Z•η)
can actually be any mapping cone of ν : �• →�• (resp., η : �• →�•).

Furthermore, recalling (cf. (2.2), (2.3), (2.4)) that �• = (m?
ξ0;c(n)

A
)?mξ0;c(n)

A
�• and �• =

((i⊗ 1)◦m0)?((i⊗ 1)◦m0)?�•, we are faced with the additional task of assigning “values”
to ?’s chosen from ∗, !, modulo Verdier’s R, all still in the cause of bringing about the
vanishing of one of the above Hom-groups. It stands to reason that adjointness should be
a major player in this part of the game, and so we devote the present section to this topic.

The general situation we are facing is this if Y
f−→ X is a continuous function acting

between topological spaces and if � (resp., �) is a sheaf on X (resp., Y), then f∗ and f ∗,
respectively, direct and inverse image (with their usual definitions), comprise an adjoint
pair as follows:

HomSh/X

(
�, f∗�

)∼=HomSh/Y

(
f ∗�,�

)
. (5.1)
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If �• (resp., �•) lives in D+(Sh/X) (resp., D+(Sh/Y )), then this adjointment becomes

HomD+(Sh/X )
(
�•,R f∗�•

)∼=HomD+(Sh/Y )
(
f ∗�•,�•

)
, (5.2)

where, in general terms, D+(A) is the full subcategory of D(A) consisting of derived sheaf
complexes vanishing in sufficiently low degrees; R f∗ is required due to f∗ being merely
left exact instead of exact. Next, the functor f!, “direct image with proper supports,” re-
alizes in f!� a subsheaf of f∗�, and then, taking things to the next level once more, the
according-derived function R f! realizes in R f!�• a subcomplex of R f∗�•. In the derived
category, setting this engenders that R f! admits an adjoint functor f !, so that

HomD+(Sh/X )
(
R f!�•,�•

)∼=HomD+(Sh/Y )
(
�•, f !�•

)
. (5.3)

The details of all this, replete with carefully presented definitions and constructions, are
given in [12, Chapters II and III].

We now specialize to the case Y = X2
0 = SL2(k)2, X = X̃A = S̃L2(k)(n)

A , and f =
(i⊗ 1) ◦m0, which, for the sake of brevity, we continue to denote by f , under these cir-
cumstances, we get immediately that HomA(�,�) = HomA(�, f? f ?�), with A :=
Sh/X̃A

, whereas HomD+
A

(Z•ν [−1],�•) = HomD+
A

(Z•ν [−1],R f? f ?�•) and HomD+
A

(�•,
Z•η)=HomD+

A
(R f? f ?�•,Z•η), where D+

A=D+(Sh/X̃A
). We also set B :=Sh/X2

0
and D+

B :=
D+(Sh

/
X2

0
). Then, we have the following.

Proposition 5.1. In the setting of sheaves, that is, of sheaf categories, the existence of Φ
follows if HomB( f ∗�, f ∗�) = 0. In the setting of derived sheaf categories, the existence
of Φ follows if HomD+

B
( f ∗Z•ν [−1], f ∗�•) = 0, while (again for the covariant option) the

existence of ψ follows if HomD+
B

( f !�•, f !Z•η)= 0.

Proof. In [1, Proposition 7.1], the existence of Φ follows if HomD(Z•ν [−1],�•) = 0,
which, by means of Proposition 4.3, is equivalent to having HomA(�,�) = 0, that is,
HomA(�, f∗ f ∗�) = 0, setting each ? equal to ∗ as regards �. Applying (5.1) with � =
f ∗� immediately gives that HomA( f ∗�, f ∗�) = 0. Going on to the derived category
setting, we observe that all the relevant sheaf complexes that have figured in the foregoing
assertions are (trivially) situated in D+

A or D+
B, whence we can safely invoke (5.2) instead

of (5.1) to get that in this setting, too, the existence of Φ follows if 0=HomD+
A

(Z•ν [−1],
R f∗ f ∗�•) ∼=HomD+

B
( f ∗Z•ν [−1], f ∗�•). Finally, utilizing (5.3), we obtain that ψ’s ex-

istence follows if 0=HomD+
A

(R f! f !�•,Z•η)=HomD+
B

( f !�•, f !Z•η), via Proposition 2.1.
�

Added to the tasks set out in Section 3, the content of Proposition 5.1 is to provide
us with marching orders down the first of the two paths mentioned in Section 1, the
objective being n-Hilbert reciprocity as a consequence of the indicated factorization(s) of
a sheaf- or sheaf-complex morphism in our quasi-dualized Kubota formalism.

6. Another first-level diagram

We now take up the second theme discussed in Section 1, namely, the development of a
calculus of t-structures on a network of exact triples of derived categories.
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The diagram (2.1), of Part I, restated in Section 2, captures the essence of our restruc-
turing of Kubota’s approach to n-Hilbert reciprocity in terms of topological spaces instead
of algebraic groups; see also [1, diagram (3.6)]. It is now indicated that we look at this di-
agram in Top (the locale for the first level of our quasi-dual construct) more carefully
so as to become able to identify the right-derived categories for the purpose of applying
Proposition 8-1 in an avant-garde fashion.

One more time, then

μ2

m�

∞∐
Xξ0;�

i0⊗ j0

m
ξ0;c

(n)
A

μ X̃A

j0

X2
0

�=1
Ωξ0

m0

X0

sA⊗sA

sA

(6.1)

for all ξ0 ∈ μn = μ, with X̃A = SL2(k)A ×c(n)
A
μn, X0 = SL2(k); also, as stated in [1, equa-

tion (4.19)],
∐∞

�=1Xξ0;� is the set of all quadruples (σ ,σ ′,ξ,ξ′) of adelic 2× 2 matrices

σ ,σ ′ ∈ SL(k)A and roots of unity ξ,ξ′ ∈ μn such that c(n)
A (σ ,σ ′)= ξ0. Partitioning the lat-

ter collection into sets Xξ0;� , indexed on � ≥ 1, entails identifying adèlic pairs (σ ,σ ′) in

accord with the particular local action induced by c(n)
A = ⊗pc

(n)
p , where, with p ranging

over the places of k, we have that c(n)
p ∈H2(SL2(kp),μn). This local action on pairs (σ ,σ ′)

yields a notion of length, � (see [1, Section 4]); however, for our upcoming purposes,

the facts that each
∐∞

�=1Xξ0;� is nothing else than (c(n)
A )−1(ξ0)× μ2 and each Xξ0;� is lo-

cally closed (see [1, Corollaries 4.5 and 4.6]) are much more salient; for further specifics
regarding the Xξ0;� (e.g., their rather cumbersome definition, which we will not need at
this time), we refer to [1, Section 4], especially [1, equation (4.18)]. Finally, restating [1,
equation (4.19)], we have that

X̃2
A =

(
SL2(k)A×μn

)2 =
∐

ξ0∈μ

∞∐

�=1

Xξ0;�. (6.2)

Proposition 5.1 of [1] provides that (i) the existence of sA and sA ⊗ sA is equivalent
to that of Ω =⊗ξ0

Ωξ0, with (ii) sA and sA ⊗ sA group homomorphisms if and only if

c(n)
A |X2

0
≡ 1, which just says that im(Ω)⊂∐∞�=1X1;� , so that we recover Kubota’s phrasing

of n-Hilbert reciprocity to the letter. Additionally, (iii) id ⊗sA splits X̃A on X0 (Kubota
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redux) if and only if

μ X̃A

j0
∞∐

�=1

Xξ0;�

m
ξ0;c

(n)
A

X0

sA

X2
0

Ωξ0

m0

(6.3)

(isolating the critical part of (6.1)) for all ξ0 ∈ μ; finally, (iv) of Proposition 5.1 is essen-
tially a generalization of (ii). We can, in light of (ii), state the following proposition.

Proposition 6.1. If one sets, first,

X̃0 := SL2(k)×μ (6.4)

and then define (with, generally X for the closure of X)

Yξ0 := X̃2
0 ∩

∞∐

�=1

Xξ0;� , (6.5)

then n-Hilbert reciprocity follows if, for all ξ0 �= 1 in μ, Yξ0 =∅.

Proof. The stated condition implies immediately that unless ξ0 = 1, the action of Ωξ0 is
null, that is, im(Ω)⊂∐∞�=1X1;� . �

Corollary 6.2. If Yξ0 =∅ for all ξ0 �= 1, then n-Hilbert reciprocity follows.

Proof. The proof is obvious (and trivial). �

Now let X̆ξ0 denote the closure of
∐∞

�=1Xξ0;� in X̃2
A, rather than the more cumbersome

expression in (6.5), so that Uξ0 = X̃2
0 ∩ X̆ξ0 and Yξ0 ⊆ X̆ξ0 . We identify the following at-

tendant (or, in a sense to become clear immediately, neighboring) topological spaces:
Ŭ

open
ξ0

= X̃2
A\X̆ξ0 , W

open
ξ0

= X̆ξ0\Yξ0 , U
open
ξ0

= X̃2
A\Yξ0 , and, finally, Zclosed

ξ0
=Uξ0\Ŭξ0 = X̆ξ0\

Yξ0 = (X̃2
A\X̆ξ0 )\(X̃2

A\Yξ0 ). Observe that, as sets, Wξ0 and Zξ0 are the same, that is, they
agree with X̆ξ0\Yξ0 , but we opt to distinguish them here because we wish to regard Wξ0 as
relatively open in X̆ξ0 and Zξ0 as relatively closed in Uξ0 ; the latter condition hinges on Ŭξ0

being open (in the open set Uξ0 : everything starts with Yξ0 being closed), which clearly
results from X̆ξ0 being closed.
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We can arrange these spaces in the diagram

Yξ0

iξ0
îξ0

X̆ξ0

ĭξ0
X̃2

A Ŭξ0

ĵξ0

j̆ξ0

Wξ0

j

Uξ0

jξ0

Zξ0

i

(6.6)

In anticipation of the appearance of the methodology of gluing t-structures on the
scene, we observe that each of the four morphism pairs in (6.6), that is, (îξ0 , j), (ĭξ0 , j̆ξ0 ),
(iξ0 , jξ0 ), and (i, ĵξ0 ), is of the form

Y closed i−→ X
j←−Uopen = X\Y (6.7)

(for general i, j) and, as we will see in Section 8, it is standard for that such a stratification
of X as Y �U gives rise to an exact triple

DY =D+(Sh
/
Y

) i∗−→DX =D+(Sh
/
X

) j∗−→DU =D+(Sh
/
U

)
(6.8)

of derived categories which inflates into a diagram (cf. (7.17) below) with six exact func-
tors arranged into four adjoint pairs; this arrangement carries the germ of gluing data for
any pair of t-structures on DY and DU .

Before we address this avant-garde material, however, we recall and collect some gen-
eral facts about derived categories as triangulated categories and the k-structures they
support.

7. Some category-theoretical generalities

References for the material in this section include [13, 14] by Gelfand and Manin, [12]
by Kashiwara and Schapira, [8] by Kiehl and Weissauer, and of course [15] by Beı̆linson
et al.

An additive category is triangulated if it is equipped with a shift operatorA 
→ A[1], for
every object A, giving rise to distinguished triangles characterized by the following con-
ditions. If (A,B,C) is distinguished, with A, B, C objects of the given category, then so is
(B,C,A[1]); any morphism A→ B can be fitted into a distinguished triangle (A,B,C); or-
dinary minimal commutative diagrams can be inflated into morphisms of distinguished
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triangles:

A B

A′ B′

(7.1)

completes to

A B C
+1

A′ B′ C′
+1

(7.2)

where we use the more evocative notation A→ B → C
+1−−→ for a distinguished triangle

(A,B,C); and, lastly, the so-called Oktaederaxiom holds, for an account of which we refer
the reader to any of the sources mentioned above. The most striking (and singularly use-
ful) result in this connection is that a distinguished triangle always gives rise to a pair of
long exact sequences, a feature already used to some advantage in Section 4.

By definition, a t-structure on a triangulated category, D, is a pair (D≤0,D≥0)=: t(D)
of full subcategories such that, writing D≤n :=D≤0[−n] and D≥n =: D≥0[−n], we have,
first, that D≤0 ⊂D≥1 and D≥0 ⊃D≥1; second, that if A∈D≤0, B ∈D≥1, then HomD(A,
B)= 0; and third, that, functorially, for every A∈D, there exist objects τ≤0A∈D≤0 and
τ≥1A∈D≥1 such that

τ≤0A−→ A−→ τ≥1A
+1−−→ (7.3)

is a distinguished triangle. Indeed, it is the case that for all n, there exist functors, the
so-called truncation functors,

τ≥n : D−→D≥n, (7.4a)

τ≥n : D−→D≤n, (7.4b)

for which the following convenient facts hold true: τ≤nA= 0 if and only if A
∼−→ τ≥n+1A;

for all p ≥ 0, we can identify τ≤m+p with τ≤m and τ≥m−p with τ≥m; also, for all p ≥ 0,
we can identify τ≥mτ≤m+p with τ≤m+pτ≥m, and then we write τm,m+p := τ≥mτ≤m+p =
τ≤m+pτ≥m. We obtain in particular that

H0 := τ0,0 = τ≥0τ≤0 = τ≤0τ≥0 : D−→D≤0∩D≥0 (7.5)

is a cohomological functor. Writing core t(D)) for D≤0∩D≥0, by definition, the core of
the given t-structure, we get

Hn :=H0(
−[n]

)
: D−→ core

(
t(D)

)
. (7.6)
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The latter category, core (t(D)), is abelian; furthermore, if D is the derived category of
a given abelian category, A, which is to say that D = D(A) and t(D) is the canonical t-
structure on D (cf. [12, page 33ff.]), so that “truncation” has its original meaning, we
obtain that

core t(D)= core t
(
D(A)

)=A, (7.7)

and the formulations (7.5), (7.6) take on their more familiar meaning. For example, if A

is a sheaf category, we recover cohomology sheaves in this way.
Returning to the general context of a triangulated, but not necessarily derived, cate-

gory, the definitive result concerning the Hn is the following.

Proposition 7.1. If t(D) is nondegenerate, meaning that ∩nD≤n = (0)=∩nD≥n, then
(i) A

∼−→ B in D if and only if Hn(A)
∼−→Hn(B) for all n

(ii) D≤n = {A∈D |Hν(A)= 0 if ν > n}, D≥n = {A∈D |Hν(A)= 0 if ν < n
}

.

Proof. See, for example, [13, page 135]. �

Regarding the matter of a t-structure’s degeneracy, as just mentioned, in light of future
considerations, it behooves us to remark that this can occur in two ways: either there exists
A �= 0 in D such that A∈∩nD≤n or A∈∩nD≥n, or we have that ∩nD≤n =∅=∩nD≥n.
For our upcoming purposes, the sort of degeneracy that counts is the latter, seeing that
we will presently be concerned with t-structures for which

core t(D)=D≤ ∩D≥0 =∅. (7.8)

We take the liberty of referring to this kind of t-structure as strongly degenerate.
Next, suppose that C, D, E are triangulated categories and that C and E are equipped

with t-structures t(C)= (C≤0,C≥0), t(E)= (E≤0,E≥0). Suppose, too, that we have an in-

clusion functor C
P−→D such that P(C), identified with C, is a thick subcategory of D,

and a localization functor D
Q−→ E rendering E the localization of D at the class of quasi-

isomorphisms imported from C. Under these circumstances, we say that

C
P−→D

Q−→ E (7.9)

engenders an exact triple and we obtain the following critical fact.

Proposition 7.2. If P, Q in the exact triple (7.9) possess both left and right adjoints, then
t(Z) and t(E) determine a t-structure

t(D) := t(C)∧ t(E) (7.10)

on D by means of the prescriptions

D≤0 = {A∈⊥ (PC>0) |Q(A)∈ E≤0}, (7.11a)

D≥0 = {A∈ (PC<0)⊥ |Q(A)∈ E≥0}, (7.11b)
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where

⊥(PC>0)= {A∈D |Hom(A,B)= 0∀B ∈ PC>0}, (7.12a)
(
PC<0)⊥ = {A∈D |Hom(B,A)= 0∀B ∈ PC<0}. (7.12b)

Proof. See, for example, [13, page 137]. �

Under these circumstances, t(D) is said to be the result of gluing t(Z) and t(E) (in the
indicated order). Well definition is taken care of by the fact that P(C≤0)⊂D≤0, P(C≥0)⊂
D≥0, Q(D≤0) ⊂ E≤0, Q(D≥0) ⊂ E≥0. We take the liberty to complement our notation
(7.10) by the diagram

t(C) t(C)∧ t(E) t(E)

C
P

D
Q

E

(7.13)

Going in the other direction, suppose now that (7.9) supports a t-structure at D,
being t(D) = (D≤0,D≥0). Then, the simple manoeuvres C≥0 :=D≤0 ∩C, C≥0 :=D≥0 ∩
C, E≤0 :=Q(D≤0), and E≥0 :=Q(D≥0) provide t-structures on C, E, respectively; that is,
we get t(C)= t(D)∩C, t(E)=Q(t(D)), in more succinct jargon. We will call this process
“ungluing” and encode it by the diagram

t(D)∩C t(D) Q
(
t(D)

)

C
P

D
Q

E

(7.14)

The status of gluing and ungluing as relative inverse operations is captured by the
following (formal) result.

Proposition 7.3. If (7.13) is in effect, then t(C)= [t(C)∧ t(E)]∩C and t(E)=Q(t(C)∧
t(E)). Dually, if (7.14) is in effect, then t(D)= [t(D)∩C]∧Q(t(D)).

Proof. Left to the reader. �

The stipulation that the exact triple C
P−→D

Q−→ E admits gluing data in the sense that
P and Q admit both left and right adjunct functors (which, by the way, is true for P if
and only if it is true for Q; see [13, page 137]) is in particular satisfied when C, D, E are
the respective derived sheaf categories attached to a topological space stratification of the
type

Y
i−→ X

j←−U , (7.15)

with Y closed, U open, X = Y∐U . With D− =D+(Sh/−), we then explicitly get that the
triple

DY
i∗−→DX

j∗−→DU (7.16)
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is exact (as we already mentioned in the previous section), and we get gluing data given
by

i∗ j!

DY
i∗

DX
j∗

DU

i! Rj∗

(7.17)

where each of the indicated exact functors is in fact left adjoint to the one directly below
it. To wit,

HomDY

(
i∗�•,�•

)∼=HomDX

(
�•, i∗�•

)
, (7.18a)

HomDX

(
i∗�•,�•

)∼=HomDY

(
�•, i!�•

)
, (7.18b)

HomDX

(
j!H

•,�•
)∼=HomDU

(
H•, j∗�•

)
, (7.18c)

HomDU

(
j∗�•,H•

)∼=HomDX

(
�•,Rj∗H•

)
. (7.18d)

Beyond this we have the relations

i∗ j! = 0, (7.19a)

j∗i∗ = 0, (7.19b)

i!Rj∗ = 0, (7.19c)

and the natural transformations

i∗i∗

∼=

id

j !i∗

(7.20a)

j∗Rj∗

∼=

id

j∗ j!

(7.20b)

Finally, there exist morphisms

w : i∗i∗�•−→ j! j
∗�•[1], (7.21a)

w′ : Rj∗ j∗�•−→ i∗�•[1], (7.21b)

functorial in �•, such that

j! j
∗�• u−→�• v−→ i∗i∗�• w−→ j! j

∗�•[1], (7.22a)

i∗i!�•
u′−→�• v−→ Rj∗ j !�•

w′−→ i∗i!�•[1], (7.22b)

with u, v, w′, v′ the indicated adjunction morphisms, are distinguished triangles.
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It is a particularly marvellous dividend of (7.17), which is to say, of having derived
sheaf categories to work with, that (7.11a), (7.11b) simplify as follows.

Proposition 7.4. If (6.7), (6.8), (7.7) are in effect, then DX acquires a glued t-structure
t(DX)= (D≤0

X , D≥0
X )= t(DY )∧ t(Du) by means of

D≤0
X =

{
�• | j∗�• ∈D≤0

U , i∗�• ∈D≤0
Y

}
, (7.23a)

D≥0
X =

{
�• | j∗�• ∈D≥0

U , i!�• ∈D≥0
Y

}
. (7.23b)

Proof. This is [15, Theorem 1.4]. �

And now, we come to perverse sheaves, which we only treat in a cursory manner at
this point. Should the need arise, we will return to this matter later.

Seeing that the stratifications of interest are all of the type (6.7), it suffices to look at
this situation, that is,

X = Y closed
∐

Uopen, (7.24)

the most elementary nontrivial case, and present the attendant formalism. By definition,
if 	 = {Y ,U} is the stratification given by (7.24) (and (6.7)), a perversity on 	 is just a
function

p : 	−→ Z, (7.25)

that is, a pair of integers (p(Y), p(U)), allowing the reformulation of (7.23a), (7.23b) as
follows:

pD≤0
X =

{
�• |Hn j∗�• = 0 if n≥ p(U), Hni∗�• = 0 if n≥ p(Y)

}
, (7.26a)

pD≥0
X =

{
�• |Hn j !�• = 0 if n≤ p(U), Hni!�• = 0 if n≤ p(Y)

}
, (7.26b)

(cf. [13, page 163]). We naturally write pt(DX)= (pD≤0
X ,pD≥0

X ) in this circumstance.

8. Linked exact triples of derived categories

Now, we turn our attention to (6.6) and note that, by design, all four morphism pairs
•−→ •←−• are of the type (6.7), rendering (6.8) viable. By systematically invoking (6.8),
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using the standard push-forward and pull-back notation as regards the aforementioned
morphism pairs, and bearing in mind that ( f ◦ g)∗ = f∗ ◦ g∗, ( f ◦ g)∗ = g∗ ◦ f ∗, we
(again) obtain the diagram

DYξ0

iξ,0∗
îξ0,∗

DX̆ξ0

ĭξ0,∗

j∗

DX̃2
A

j̆∗ξo

j∗ξ0

DŬξ0

DWξ0
DUξ0

ĵ∗ξ0

DZξ0

i∗

(8.1)

Suppose that we have initial t-structure data situated on the derived sheaf categories
DX̆ξ0

, DŬξ0
, DZξ0

, denoted by t(DX̆ξ0
), t(DŬξ0

), t(DZξ0
), respectively. In anticipation of

the arithmetical phase of our investigations, we must allow for the contingency that these
t-structures should be perverse, but we will cross this bridge when we get to it. For now,
we will work with (7.23a), (7.23b) rather than (7.26a), (7.26b), and the situation at hand
is now rendered thus:

t
(
DX̆ξ0

)∩DYξ0
DYξ0

t
(
DX̆ξ0

)∧ t(DŬξ0

)

t
(
DX̆ξ0

)
DX̆ξ0

DX̃2
A

DŬξ0
t
(
DŬξ0

)

j∗
(
t
(
DX̆ξ0

))
DWξ0

DUξ0
t
(
DZξ0

)∧t(DŬξ0

)

[
t
(
DX̆ξ0

)∩DYξ0

]∧
∧[t(DZξ0

)∧ t(DŬξ0

)]

DZξ0 t
(
DZξ0

)

(8.2)
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Here, we have used (7.13), (7.14), and Proposition 7.3, with the obvious assignments to
P’s and Q’s as per (7.9). Since gluing and ungluing should undo each other (Proposition
7.3) and since we require (8.2) to be unambiguous, we should check that the two indi-
cated glued t-structures on DX̃2

A
agree with the following.

Proposition 8.1. t(DX̆ξ0
)∧ t(DŬξ0

)= [t(DX̆ξ0
)∩DYξ0

]∧ [t(DZξ0
)∧ t(DŬξ0

)].

Proof. By means of (7.17), we get that

i∗ ĵξ0, !

DZξ0

i∗ DUξ0

ĵ∗ξ0 DŬξ0

R ĵξ0,∗

(8.3a)

ĭ∗ξ0 j̆ξ0, !

DX̆ξ0

ĭξ0,∗
DX̃2

A

j̆∗ξ0 DŬξ0

ĭ!ξ0 R j̆ξ0,∗

(8.3b)

i∗ξ0 jξ0, !

DYξ0

iξ0,∗
DX̃2

A

j∗ξ0 DUξ0

iξ0, ! Rjξ0,∗

(8.3c)

This implies, by means of (7.23a), (7.23b) in Proposition 7.4, that if we set

t
(
DZξ0

)∧ t(DŬξ0

)=: t
(
DUξ0

)= (D≤0
Uξ0

,D≥0
Uξ0

)
, (8.4)

t
(
DX̆ξ0

)∧ t(DŬξ0

)=: t
(
DX̃2

A

)= (1D
≤0
X̃2

A
, 1D

≥0
X̃2

A

)
, (8.5a)

[
t
(
DX̆ξ0

)∩DYξ0

]∧ [t(DZξ0

)∧ t(DŬξ0

)]=: t
(

2DX̃2
A

)= (2D
≤0
X̃2

A
,2 D≥0

X̃2
A

)
, (8.5b)

t
(
DX̆ξ0

)∩DYξ0
=: t

(
DYξ0

)= (D≤0
Yξ0

,D≥0
Yξ0

)
, (8.6)

j∗
(
t
(
DX̆ξ0

))= ( j∗D≤0
X̆ξ0

, j∗D≥0
X̆ξ0

)=: t
(
DWξ0

)= (D≤0
Wξ0

,D≥0
Wξ0

)
, (8.7)

where, ab initio, our initial data is given by

t
(
DX̆ξ0

)= (D≤0
X̆ξ0

,D≥0
X̆ξ0

)
, (8.8a)

t
(
DŬξ0

)= (D≤0
Ŭξ0

,D≥0
Ŭξ0

)
, (8.8b)

t
(
DZξ0

)= (D≤0
Zξ0

,D≥0
zξ0

)
, (8.8c)
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then we obtain

D≤0
Uξ0
=
{

�• ∈DUξ0
| ĵ∗ξ0

�• ∈D≤0
Ŭξ0

, i∗�• ∈D≤0
Zξ0

}
, (8.9a)

D≥0
Uξ0
=
{

�• ∈DUξ0
| ĵ∗ξ0

�• ∈D≥0
Ŭξ0

, i!�• ∈D≥0
Zξ0

}
, (8.9b)

1DX̃2
A
=
{

�• ∈DX̃2
A
| j̆∗ξ0

�• ∈D≤0
Ŭξ0

, ĭ∗ξ0
�• ∈D≤0

X̆ξ0

}
, (8.10a)

1D
≥0
X̃2

A
=
{

�• ∈DX̃2
A
| j̆∗ξ0

�• ∈D≥0
Ŭξ0

, ĭ!ξ0
�• ∈D≥0

X̆ξ0

}
, (8.10b)

2D
≤0
X̃2

A
=
{

�• ∈DX̃2
A
| j∗ξ0

�• ∈D≤0
Uξ0

, i∗ξ0
�• ∈D≤0

Yξ0

}
, (8.11a)

2D
≥0
X̃2

A
=
{

�• ∈DX̃2
A
| j∗ξ0

�• ∈D≥0
Uξ0

, i!ξ0
�• ∈D≥0

Yξ0

}
. (8.11b)

But then, (8.4)–(8.8) directly imply that

2D
≥0
X̃2

A
=
{

�• | ĵ∗ξ0
j∗ξ0

�• ∈D≤0
Ŭξ0

, i∗ j∗ξ0
�• ∈D≤0

Zξ0
, i∗ξ0

�• ∈D≤0
X̆ξ0
∩DYξ0

}
, (8.12a)

2D
≥0
X̃2

A
=
{

�• | ĵ∗ξ0
j∗ξ0

�• ∈D≥0
Ŭξ0

, i! j∗ξ0
�• ∈D≥0

Zξ0
, i!ξ0

�• ∈D≥0
X̆ξ0
∩DYξ0

}
, (8.12b)

which means that 1t(DX̃2
A
)=2 t(DX̃2

A
) if and only if

j̆∗ξ0
�• ∈D≤0

Ŭξ0
, ĭ∗ξ0

�• ∈D≤0
X̆ξ0
⇐⇒ j̆∗ξ0

j∗ξ0
�• ∈D≤0

Ŭξ0
, i∗ j∗ξ0

�•∈

∈D≤0
Zξ0

, i∗ξ0
�• ∈D≤0

X̆ξ0
∩DYξ0

,
(8.13a)

j̆∗ξ0
�• ∈D≥0

ξ0
, ĭ!ξ0

�• ∈D≥0
Ŭξ0
⇐⇒ ĵ∗ξ0

j∗ξ0
�• ∈D≥0

Ŭξ0
, i! j∗ξ0

�•∈

∈D≥0
Xξ0

, i!ξ0
�• ∈D≥0

X̆ξ0
∩DYξ0

.
(8.13b)

And now, i∗ j∗ξ0
�• ∈D≤0

Zξ0
, i! j∗ξ0

�• ∈D≥0
Zξ0

obtain tautologically from (8.1), and the fact

that we have j̆∗ξ0
= ĵ∗ξ0

j∗ξ0
provides that we need only verify that the conditions ĭ∗ξ0

�• ∈D≤0
Ŭξ0

(resp., ĭ!ξ0
�• ∈D≥0

X̆ξ0
) are equivalent to i∗ξ0

�• ∈D≤0
X̆ξ0
∩DYξ0

(resp., i!ξ0
�• ∈D≥0

X̃ξ0
∩DYξ0

).

Again, the diagram (8.1) gives that iξ0,∗ = ĭξ0,∗ îξ0,∗, and this implies, in light of the fact
that with iξ0 = ĭξ0 îξ0 in (6.6) we get i∗ξ0

= î∗ξ0
ĭ∗ξ0

and i!ξ0
= î!ξ0

ĭ!ξ0
, and with iξ0 just inclusion,

that

ĭ∗ξ0
�• ∈D≤0

X̆ξ0
⇐⇒ î∗ξ0

ĭ∗ξ0
�• = i∗ξ0

�• ∈D≤0
X̆ξ0
∩DYξ0

, (8.14a)

ĭ!�• ∈D≥0
X̆ξ0
⇐⇒ î!ξ0

ĭ!ξ0
�• = i!ξ0

�• ∈D≥0
X̆ξ0
∩DYξ0

. (8.14b)

The proof is complete. �
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The thrust of Proposition 8.1 is that assigning initial t-structure data in the form
t(DX̆ξ0

), t(DŬξ0
), t(DZξ0

) provides a single resultant t-structure, t(DX̃2
A
) = 1t(DX̃2

A
) =

2t(DX̃2
A
), on DX̃2

A
. We now seek to exploit this identification of 1t(DX̃2

A
) and 2t(DX̃2

A
) to

evolve a workable phrasing of the desired critical degeneration, namely, Yξ0 = ∅ (or
Yξ0 = ∅) if ξ0 �= 1. If we stipulate that this near-future work, as well as the attendant
task of designing the aforementioned initial t-structure, is to take place in the context
and setting of ordinary truncations of sheaf complexes (determined by perversities), then
we may assume that (7.7) applies. But this permits us to prove the following.

Proposition 8.2. If, for ξ0 �= 1 in μ, there exists a strongly degenerate t-structure on DYξ0
,

then, for ξ0 �= 1, Yξ0 = ∅ = Yξ0 (and, by (6.6) and Proposition 6.1, n-Hilbert reciprocity
follows).

Proof. By (7.8), strong degeneracy yields that core (t(DYξ0
))=∅ for such a t-structure.

But then, the abelian category (Sh/Yξ0
) is void. However, the only topological space that

fails to support even constant sheaves is∅, and the result follows. �

We have made a start on characterizing our initial t-structures and developing the
according yoga of t-structures in (8.2) to conspire to bring about the collapse of all the
DYξ0

except for DY 1
.
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