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2ΦxΦxt = 0. Periodic travelling-wave solutions with an arbitrary fundamental period T0

will be built by using Jacobian elliptic functions. Stability (orbital) of these solutions by
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eigenvalue problem associated to the Lame equation is set up.
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1. Introduction

In this paper, we consider the existence of periodic travelling-waves solutions and the
study of nonlinear orbital stability of these solutions for the one-dimensional Boussinesq-
type equation

Φtt −Φxx + aΦxxxx− bΦxxtt +ΦtΦxx + 2ΦxΦxt = 0, (1.1)

where a and b are positive numbers.
One can see that this Boussinesq-type equation is a rescaled version of the one-

dimensional Benney-Luke equation

Φtt −Φxx +μ
(
aΦxxxx− bΦxxtt

)
+ ε
(
ΦtΦxx + 2ΦxΦxt

)= 0, (1.2)
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which is derived from evolution of two-dimensional long water waves with surface ten-
sion. In this model, Φ(x, t) represents the nondimensional velocity potential at the bot-
tom fluid boundary, μ represents the long-wave parameter (dispersion coefficient), ε rep-
resents the amplitude parameter (nonlinear parameter), and a− b = σ − 1/3, with σ be-
ing named the Bond number which is associated with surface tension.

An important feature is that the Benney-Luke equation (1.2) reduces to the Korteweg-
de-Vries equation (KdV) when we look for waves evolving slowly in time. More precisely,
when we seek for a solution of the form

Φ(x, t)= f (X ,τ), (1.3)

where X = x− t and τ = εt/2. In this case, after neglecting O(ε) terms, η = fX satisfies
the KdV equation

ητ −
(
σ − 1

3

)
ηXXX + 3ηηX = 0. (1.4)

It was established by Angulo [1] (see also [2]) and Angulo et al. [3] that cnoidal
waves solutions of mean zero for the KdV equation exist and they are orbitally stable
in H1

per[0,T0]. The proof of orbital stability obtained by Angulo et al. was based on the
general result for stability due to Grillakis et al. [4] together with the classical arguments
by Benjamin in [5], Bona [6], and Weinstein [7] (see also Maddocks and Sachs [8]). This
approach is used for obtaining stability initially in the space of functions of mean zero,

�1 =
{
q ∈H1

per

([
0,T0

])
:
∫ T0

0
q(y)dy = 0

}
. (1.5)

The reason to use the space �1 to study stability is rather simple. Cnoidal wave solutions
are not critical points of the action functional on the space H1

per([0,T0]), however on
the space �1 cnoidal waves solutions are characterized as critical points of the action
functional, as required in [4, 7]. The meaning of this is that the mean-zero property makes
the first variation effectively zero from the point of view of the constrained variational
problem, and so the theories in [4–7] can be applied.

Due to the strong relationship between the Benney-Luke equation (1.1) and the KdV
equation (1.4), we are interested in establishing analogous results in terms of existence
and stability of periodic travelling-waves solutions as the corresponding results obtained
by Angulo et al. in the case of the KdV equation. More precisely, we want to prove ex-
istence of periodic travelling-wave solutions for the Benney-Luke equation (1.1) and to
study the orbital stability of them.

In this paper, we will study travelling-waves for (1.1) of the form Φ(x, t)= φc(x− ct)
such that ψc ≡ φ′c is a periodic function with mean zero on an a priori fundamental period
and for values of c such that 0 < c2 < min{1,a/b}. So, φc will be a periodic function. The
profile φc has to satisfy the equation

(
c2− 1

)
φ′c +

(
a− bc2)φ′′′c −

3c
2

(
φ′c
)2 = A0, (1.6)
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where A0 is an integration constant. So, by following the paper of Angulo et al., we obtain
that ψc is of type cnoidal and it is given by the formula

ψc(x)=− 1
3c

[

β2 +
(
β3−β2

)
cn2

(
1√

a− bc2

√
β3−β1

12
x;k

)]

(1.7)

with β1 < β2 < 0 < β3, β1 +β2 +β3 = 3(1− c2). Moreover, for T0 appropriate, this solution
has minimal period T0 and mean zero on [0,T0]. So, we obtain by using the Jacobian
Elliptic function dnoidal, dn(·;k), that (1.6) has a periodic solution of the form

φc(x)=−β1

3c
x− β3−β2

3cL0k2

∫ L0x

0
dn2(u;k)du+M, (1.8)

for appropriate constants M and L0.
We will show that the periodic travelling-wave solutions φc are orbitally stable with

regard to the periodic flow generated by (1.1) provided that 0 < |c| < 1 <
√
a/b, which

corresponds to the Bond number σ > 1/3 and when for θ small, 0 < |c| < c∗ + θ <
√
a/b <

1, which corresponds to the Bond number σ < 1/3. Here c∗ is a specific positive constant
(see Theorem 4.3). These conditions of stability are needed to assure the convexity of the
function d defined by

d(c)= 1
2

∫ T0

0

(
1− c2)ψ2

c +
(
a− bc2)(ψ′c

)2
+ cψ3

c dx, (1.9)

where ψc = φ′c and φc is a travelling-wave solution of (1.6) of cnoidal type, with speed c
and period T0.

Unfortunately from our approach, it is not clear if our waves are stable for the full
interval 0 < |c| <√a/b < 1.

We recall that in a recent paper, Quintero [9] established orbital stability/instability
of solitons (solitary wave solutions) for the Benney-Luke equation (1.1) for 0 < c2 <
min{1,a/b} by using the variational characterization of d. Orbital stability of the soliton
was obtained when 0 < c < 1 <

√
a/b and orbital instability of the soliton was obtained

when 0 < c0 < c <
√
a/b < 1 for some positive constant c0.

Our result of stability of periodic travelling-wave solutions for (1.1) follows from
studying the same problem to the Boussinesq system associated with (1.1),

qt = rx,

rt = B−1(qx − aqxxx
)−B−1(rqx + 2qrx

)
,

(1.10)

where q = Φx, r = Φt, and B = 1− b∂2
x. More exactly, we will obtain an existence and

uniqueness result for the Cauchy problem associated with system (1.10) inH1
per([0,T0])×

H1
per([0,T0]) and also that the periodic travelling-wave solutions (ψc,−cψc) are orbitally

stable by the flow of (1.10) with periodic initial disturbances restrict to the space �1 ×
H1

per([0,T0]). In this point, we take advantage of the Grillakis et al.’s stability theory. More
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concretely, the stability result relies on the convexity of d defined in (1.9) and on a com-
plete spectral analysis of the periodic eigenvalue problem of the linear operator

�cn =−
(
a− bc2) d

2

dx2
+
(
1− c2)+ 3cψc, (1.11)

which is related with the second variation of the action functional associated with system
(1.10). We will show that �cn has exactly its three first eigenvalues simple, the eigenvalue
zero being the second one with eigenfunction ψ′c and the rest of the spectrum consists
of a discrete set of double eigenvalues. This spectral description follows from a careful
analysis of the classical Lame periodic eigenvalue problem

d2

dx2
Λ+

[
γ− 12k2sn2(x;k)

]
Λ= 0,

Λ(0)=Λ
(
2K(k)

)
, Λ′(0)=Λ′

(
2K(k)

)
,

(1.12)

where K = K(k) represents the complete elliptic integral of first kind defined by

K(k)≡
∫ 1

0

dt
√(

1− t2)(1− k2t2
) . (1.13)

We will show here that (1.12) has the three first eigenvalues simple and the remainder of
eigenvalues are double. The exact value of these eigenvalues as well as its corresponding
eigenfunctions are given.

We note that our stability results cannot be extended to more general periodic pertur-
bations, for instance, by disturbances of period 2T0. In fact, it is well known that problem
(1.12) has exactly four intervals of instability, and so when we consider the periodic prob-
lem in (1.12) but now with boundary conditions Λ(0) = Λ(4K(k)), Λ′(0) = Λ′(4K(k)),
we obtain that the seven first eigenvalues are simple. So, it follows that the linear oper-
ator �cn with domain H1

per([0,2T0]) will have exactly three negative eigenvalues which
are simple. Hence, since the function d defined above is still convex with the integral in
(1.9) defined in [0,2T0], we obtain that the general stability approach in [4, 10] cannot
be applied in this case.

This paper is organized as follows. In Section 2, we establish the Hamiltonian struc-
ture for (1.10). In Section 3, we build periodic travelling-waves of fundamental period
T0 using Jacobian elliptic functions, named cnoidal waves, with the property of having
mean zero in [0,T0]. We also prove the existence of a smooth curve of cnoidal wave solu-
tions for (1.10) with a fixed period T0 and the mean-zero property in [0,T0]. In Section 4,
we study the periodic eigenvalue problem associated with the linear operator in (1.11).
We also prove the convexity of the function d in a different fashion as it was done by
Angulo et al. in [3, KdV equation (1.3)]. In Section 5, we discuss the main issue regard-
ing orbital stability for the Boussinesq system (1.10). This requires proving the existence
and uniqueness results of global mild solutions for this system, and applying Grillakis,
Shatah, and Strauss stability methods, as done in [3]. Finally, in Section 6, we state the
orbital stability of periodic wave solutions of the Benney-Luke equation, by showing the
equivalence between the Cauchy problem for the Benney-Luke equation (1.1) and the
Boussinesq system (1.10).
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2. Hamiltonian structure

The Boussinesq system (1.10) can be written as a Hamiltonian system in the new variables

(q, p)≡
(
q,Br +

1
2
q2
)

(2.1)

as

qt = ∂xB−1
(
p− 1

2
q2
)

,

pt = ∂x
(
Aq− rq),

(2.2)

with A= 1− a∂2
x and B = 1− b∂2

x. This system arises as the Euler-Lagrange equation for
the action functional

�=
∫ t1

t0
�

(
q
p

)

dt, (2.3)

where the Lagrangian � and the Hamiltonian are given, respectively, by

�

(
q
p

)

= 1
2

∫ T0

0

{
B−1

(
p− 1

2
q2
)(

p− 1
2
q2
)
− qAq+B−1

(
p− 1

2
q2
)
q2
}
dx,

�

(
q
p

)

= 1
2

∫ T0

0

{(
p− 1

2
q2
)
B−1

(
p− 1

2
q2
)

+ qAq
}
dx.

(2.4)

In this way, we obtain the canonical Hamiltonian form

∂x�p = qt, ∂x�q = pt, (2.5)

and the Hamiltonian system in the variable V = (
q
p ) as

Vt =
(

0 ∂x
∂x 0

)

�′(V). (2.6)

We observe that the Hamiltonian in (2.4) is formally conserved in time for solutions of
system (2.2), since

d

dt
�(V)=

∫ T0

0

{
�qqt + �p pt

}
dx

=
∫ T0

0

{
�q∂x�p + �p∂x�q

}
dx =

∫ T0

0
∂x
{
�q�p

}
dx.

(2.7)

So, the Hamiltonian

�

(
q
r

)

= 1
2

∫ T0

0
{rBr + qAq}dx (2.8)
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associated to (1.10) is formally conserved in time. Moreover, since the Hamiltonian is
translation-invariant, then by Noether’s theorem there is an associated momentum func-
tional � which is also conserved in time. This functional has the form

�

(
q
r

)

=
∫ T0

0

(
Br +

1
2
q2
)
qdx. (2.9)

Next we are interested in finding periodic travelling-waves solutions for system (1.10),
in other words, solutions of the form (q,r) = (ψ(x− ct),g(x− ct)). By substituting, we
have that the couple (ψ,g) satisfies the nonlinear system

g =−cψ +A0, (2.10)

c2(1− b∂2
x

)
ψ = (1− a∂2

x

)
ψ +

3c
2
ψ2−A0ψ + �, (2.11)

with A0 and � integration constants. Now, since our approach of stability is based on the
context of the stability theory of Grillakis et al. (see proof of our Theorem 5.1), we need
to show that (ψ,g) satisfies the equation

δ	

(
ψc
g

)

=
(

�
0

)

(2.12)

with

	=� + c�, (2.13)

therefore it follows from (2.10) that we must haveA0 = 0. In other words, we have to solve
the system

g =−cψ, (2.14)

(
1− c2)ψ +

(
bc2− a)ψ′′ +

3c
2
ψ2 =�. (2.15)

On the other hand, if we look for periodic travelling-wave solutions Φ(x, t) = φ(x− ct)
for (1.1), then η ≡ φ′ has mean zero and satisfies equation

(
1− c2)η+

(
bc2− a)η′′ +

3c
2
η2 =�1, (2.16)

where �1 is an integration constant. Note that if η is a periodic solution with mean
zero on [0,L], then �1 �= 0 and φ is periodic of period L. As a consequence of this, we
have to look for periodic solutions ψ with mean zero for (2.15), and so � �= 0. This
simple observation shows that Vc = (

ψc
−cψc ) cannot be a critical point of the action func-

tional 	. This shows the need to adapt Grillakis et al.’s stability result to the present case
(see Theorem 5.1). More precisely, we need in our stability theory to have 	′(Vc)�v =
〈(�,0),�v〉 = 0, for �v = ( f ,g). So, we need to have f ∈�1.
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3. Existence of a smooth curve of cnoidal waves with mean zero

In this section, we are interested in building explicit travelling-wave solutions for (1.1)
and (1.10). Our analysis will show that the initial profile of φc can be taken as periodic or
not, with a periodic derivative ψc of cnoidal form. Our main interest here will be the con-
struction of a smooth curve c→ ψc of periodic travelling-wave with a fixed fundamental
period L and mean zero on [0,L], so we will have that φc is periodic. More precisely, our
main theorem is the following.

Theorem 3.1. For every T0 > 0, there are smooth curves

c ∈ I =
(

−
√

min
{

1,
a

b

}
,

√

min
{

1,
a

b

})

\ {0} −→ ψc ∈H1
per

([
0,T0

])
(3.1)

of solutions of the equation

(
a− bc2)ψ′′c −

(
1− c2)ψc− 3c

2
ψ2
c =Aψc , (3.2)

where each ψc has fundamental period T0 and mean zero on [0,T0]. Moreover, there are
smooth curves c ∈ I → βi(c), i= 1,2,3, such that

Aψc =
−3c
2T0

∫ T0

0
ψ2
c (ξ)dξ = 1

3c
1
6

∑

i< j

βi(c)βj(c), (3.3)

and ψc has the cnoidal form

ψc(x)=− 1
3c

[

β2 +
(
β3−β2

)
cn2

(
1√

a− bc2

√
β3−β1

12
x;k

)]

(3.4)

with β1 < β2 < 0 < β3, β1 +β2 +β3 = 3(1− c2) and k2 = (β3−β2)/(β3−β1).

The proof of Theorem 3.1 is based on the techniques developed by Angulo et al. in
[3], so we use the implicit function theorem together with the theory of complete elliptic
integrals and Jacobi elliptic functions. We divide the proof of Theorem 3.1 in several steps.
The following two subsections will show the construction of cnoidal waves solutions with
mean zero. Sections 3.3 and 3.4 will give the proof of the theorem. Section 3.5 gives a more
careful study of the modulus function k.

3.1. Building periodic solution. One can see directly that travelling-waves solutions for
(1.1), that is, solutions of the form Φ(x, t)= φ(x− ct), have to satisfy the equation

(
c2− 1

)
φ′′ +

(
a− bc2)φ(4)− 3cφ′′φ′ = 0. (3.5)

Integrating over [0,x], we find that φ satisfies equation

(
c2− 1

)
φ′ +

(
a− bc2)φ′′′ − 3c

2
(φ′)2 = A0, (3.6)
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and so ψ ≡ φ′ satisfies equation

(
c2− 1

)
ψ +

(
a− bc2)ψ′′ − 3c

2
ψ2 = A0, (3.7)

where A0 is an integration constant. Note that for periodic travelling-wave solution φ
with a specific period L, we have that ψ has mean zero on [0,L], therefore A0 needs to be
nonzero. Moreover, if ψ is a periodic solution with mean zero on [0,L], then A0 �= 0 and
φ is periodic of period L.

Next we scale function ψ. Defining

ϕ(x)=−βψ(θx), with β = 3c, θ2 = a− bc2, (3.8)

we have that ϕ satisfies the ordinary differential equation

ϕ′′ +
1
2
ϕ2− (1− c2)ϕ= Aϕ (3.9)

with Aϕ =−3cA0. For 0 < c2 < 1, a class of periodic solutions to (3.9) called cnoidal waves
was found already in the 19th century work of Boussinesq [11, 12] and Korteweg and de
Vries [13]. It may be written in terms of the Jacobi elliptic function as

ϕc(x)≡ ϕ(x)= β2 +
(
β3−β2

)
cn2

(√
β3−β1

12
x;k

)

, (3.10)

where

β1 < β2 < β3, β1 +β2 +β3 = 3
(
1− c2), k2 = β3−β2

β3−β1
. (3.11)

Here is a classical argument leading exactly to these formulas. Fix c ∈ (−1,1) and mul-
tiply (3.9) by the integrating factor ϕ′, a second exact integration is possible, yielding the
first-order equation

3(ϕ′)2 =−ϕ3 + 3
(
1− c2)ϕ2 + 6Aϕϕ+ 6Bϕ, (3.12)

where Bϕ is another constant of integration. Suppose ϕ to be a nonconstant, smooth,
periodic solution of (3.12). The formula (3.12) may be written as

[
ϕ′(z)

]2 = 1
3
Fϕ
(
ϕ(z)

)
(3.13)

with Fϕ(t) = −t3 + 3(1− c2)t2 + 6Aϕt + 6Bϕ a cubic polynomial. If Fϕ has only one real
root β, say, then ϕ′(z) can vanish only when ϕ(z) = β. This means that the maximum
value of ϕ which takes on its period domain [0, T̃] is the same, with T̃ = T/θ, as its mini-
mum value there, and so ϕ is constant, contrary to presumption. Therefore Fϕ must have
three real roots, say β1 < β2 < β3 (the degenerate cases will be considered presently). Note
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that for the existence of these different zeros, it is necessary to have that (1− c2)2 + 2Aϕ >
0. So, we have

Fϕ(t)= (t−β1
)(
t−β2

)(
β3− t

)
, (3.14)

where we have incorporated the minus sign into the third factor. Of course, we must have

β1 +β2 +β3 = 3
(
1− c2),

−1
6

(
β1β2 +β1β3 +β2β3

)= Aϕ,

1
6
β1β2β3 = Bϕ.

(3.15)

It follows immediately from (3.13)-(3.14) that ϕ must take values in the range β2 ≤ ϕ≤
β3. Normalize ϕ by letting ρ = ϕ/β3, so that (3.13)-(3.14) become

(ρ′)2 = β3

3

(
ρ−η1

)(
ρ−η2

)
(1− ρ), (3.16)

where ηi = βi/β3, i = 1,2. The variable ρ lies in the interval [η2,1]. By translation of the
spatial coordinates, we may locate a maximum value of ρ at x = 0. As the only critical
points of ρ for values of ρ in [η2,1] are when ρ = η2 < 1 and when ρ = 1, it must be the
case that ρ(0)= 1. One checks that ρ′′ > 0 when ρ = η2 and ρ′′ < 0 when ρ = 1. Thus it is
clear that our putative periodic solution must oscillate monotonically between the values
ρ = η2 and ρ = 1. A simple analysis would now allow us to conclude that such periodic
solutions exist, but we are pursuing the formula (3.10), not just existence.

Change variables again by letting

ρ = 1 +
(
η2− 1

)
sin2 ρ (3.17)

with ρ(0)= 0 and ρ continuous.
Substituting into (3.16) yields the equation

(ρ′)2 = β3

12

(
1−η1

)
[

1− 1−η2

1−η1
sin2 ρ

]
. (3.18)

To put this in standard form, define

k2 = 1−η2

1−η1
, � = β3

12

(
1−η2

)
. (3.19)

Of course 0≤ k2 ≤ 1 and � > 0. We may solve for ρ implicitly to obtain

F(ρ;k)=
∫ ρ(x)

0

dt
√

1− k2 sin2 t
=
√
� x. (3.20)

The left-hand side of (3.20) is just the standard elliptic integral of the first kind (see [14]).
Moreover, the elliptic function sn(z;k) is, for fixed k, defined in terms of the inverse of
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the mapping ρ �→ F(ρ;k). Hence, (3.20) implies that

sinρ= sn(
√
� x;k), (3.21)

and therefore

ρ = 1 +
(
η2− 1

)
sn2(

√
� x;k). (3.22)

As sn2 +cn2 = 1, it transpires that ρ = η2 + (1− η2)cn2(
√
� x;k), which, when properly

unwrapped, is exactly the cnoidal wave solution (3.10), or ψc has the form

ψc(x)=− 1
3c

[

β2 +
(
β3−β2

)
cn2

(
1√

a− bc2

√
β3−β1

12
x;k

)]

. (3.23)

Next we consider the degenerate cases. First, fix the value of c and consider whether or
not periodic solutions can persist if β1 = β2 or β2 = β3. As ϕ can only take values in the
interval [β2,β3], we conclude that the second case leads only to the constant solution
ϕ(x) ≡ β2 = β3. Indeed, the limit of (3.10) as β2 → β3 is uniform in x and is exactly this
constant solution. If, on the other hand, c and β1 are fixed, say, β2 ↓ β1 and β3 = 3(1−
c2)− β2− β1, then k→ 1, the elliptic function cn converges, uniformly on compact sets,
to the hyperbolic function sech and (3.10) becomes, in this limit,

ϕ(x)= ϕ∞ + γ sech2
(√

γ

12
x
)

(3.24)

with ϕ∞ = β1 and γ = β3−β1. If β1 = 0, we obtain

ϕ(x)= 3
(
1− c2)sech2

(√
1− c2

2
x
)
. (3.25)

So, by returning to the original function ψ, we obtain the standard solitary-wave solution

ψ(x)=−1− c2

c
sech2

(
1
2

√
1− c2

a− bc2
x

)

, (3.26)

of speed 0 < c2 <min{1,a/b} of the Benney-Luke equation (see [9]).
Next, by returning to original variable φc, we obtain after integration and using the

formula (see [14])
∫

cn2(u;k)du= 1
k2

[∫ u

0
dn2(x;k)dx− (1− k2)u

]
(3.27)

that

φc(x)=−β1

3c
x− β3−β2

3cL0k2

∫ L0x

0
dn2(u;k)du+M, (3.28)

where M is an integration constant and

L0 = 1√
a− bc2

√
β3−β1

12
. (3.29)
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3.2. Mean-zero property. Cnoidal waves ϕc having mean zero on their natural minimal
period, Tc, for (3.9) are constructed here. The condition of zero mean, namely that

∫ Tc

0
ϕc(ξ)dξ = 0, (3.30)

physically amounts to demanding that the wavetrain has the same mean depth as does
the undisturbed free surface (this is a very good presumption for waves generated by an
oscillating wavemaker in a channel, e.g., as no mass is added in such a configuration).
Wavetrains with non-zero mean are readily derived from this special case as will be re-
marked presently.

Let a phase speed c0 be given with 0 < c2
0 <min{1,a/b}, and consider four constants β1,

β2, β3 and k as in (3.10). The complete elliptic integral of the first kind (see [1, Chapter
2], or [14]) is the function K(k) defined by the formula

K ≡ K(k)≡
∫ 1

0

dt
√(

1− t2)(1− k2t2
) . (3.31)

The fundamental period of the cnoidal wave ϕc0 in (3.10) is Tc0 = Tϕc0 ,

Tc0 ≡ Tc0

(
β1,β2,β3

)= 4
√

3
√
β3−β1

K(k), (3.32)

with K as in (3.31). The period of cn is 4K(k) and cn is antisymmetric about its half
period, from which (3.32) follows.

The condition of mean zero of ϕc0 over a period [0,Tc0 ] is easily determined to be

0= β2 +
(
β3−β2

) 1
2K

∫ 2K

0
cn2(ξ;k)dξ. (3.33)

Simple manipulations with elliptic functions put (3.33) into a more useful form, namely

∫ 2K

0
cn2(ξ;k)dξ = 2

∫ K

0
cn2(u;k)du= 2

k2

[
E(k)− k′2K(k)

]
, (3.34)

where k′ = (1− k2)1/2 and E(k) is the complete elliptical integral of the second kind de-
fined by the formula

E ≡ E(k)≡
∫ 1

0

√
1− k2t2

1− t2 dt. (3.35)

Thus the zero-mean value condition is exactly

β2 +
(
β3−β2

)E(k)− k′2K(k)
k2K(k)

= 0. (3.36)
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Because (β3−β2)k′2 = (β2−β1)k2 and

dK(k)
dk

= E(k)− k′2K(k)

kk′2
(3.37)

(see [14]), the relation (3.36) has the equivalent form

β1K(k) +
(
β3−β1

)
E(k)= 0, (3.38)

dK

dk
=− β2

β3−β2

k

k′2
K. (3.39)

We note that by replacing K(k) and E(k), we have that (3.38) is equivalent to have
A(β2,β3)= 0, where

A
(
β2,β3

)=
∫ 1

0

1√
1− t2

β3−
(
β3−β2

)
t2

√
2β3 +β2−α0−

(
β3−β2

)
t2
dt (3.40)

with β1 +β2 +β3 = α0, α0 = 3(1− c2
0). Now we are in a good position to prove that under

some consideration, ϕc0 has mean zero.

Theorem 3.2. Let α0 = 3(1− c2
0). Then for β3 > α0 fixed, there are numbers β1 < β2 < 0 < β3

satisfying that β1 + β2 + β3 = α0 and the cnoidal wave defined in (3.10), ϕc0 = ϕ(·,β1,β2,
β3) has mean zero in [0,Tc0 ]. Moreover,

(1) the map β2 : (α0,∞)→ ((α0−β3)/2,0), β3 → β2(β3) is continuous,
(2) limβ3→α+

0
Tc0 =∞, and limβ3→∞Tc0 = 0.

Proof. Let β3 > α0 and note that for t ∈ [0,1] and (α0−β3)/2 < s < 0,

2β3 + s−α0−
(
β3− s

)
t2 ≥ β3 + 2s−α0 > 0. (3.41)

In other words, A(s,β3) is well defined for s ∈ I = ((α0−β3)/2,0). We observe that
A(0,β3) > 0 and a straightforward computation shows that

lim
s→(α0−β3)/2

A
(
s,β3

)=−∞. (3.42)

In fact, for s= (α0−β3)/2, we have that

β3−
(
β3− s

)
t2√

1− t2
√

2β3 + s−α0−
(
β3− s

)
t2
=

√
2β3√

3β3−α0

−
√

2
(
β3−α0

)

2
√

3β3−α0

(
t2

1− t2
)
. (3.43)

Moreover, from (see [1, Theorem 5.6]), we have that ∂sA(s,β3)>0 with s∈((α0−β3)/2,0).
Then we can conclude that there exists a unique s0 ∈ ((α0−β3)/2,0) such that
A(s0,β3)= 0.

The continuity of the map β2 : (α0,∞)→ ((α0−β3)/2,0), β3 → β2 = β2(β3) follows by
the implicit function theorem applied to the function A(s,β3).
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Now if the fundamental period Tc0 of ϕc0 is regarded as function of the parameter β3,
then for β2 = β2(β3), we have

Tc0

(
β3
)= 4

√
3

√
2β3 +β2−α0

K(k), k2 =
√
√
√ β3−β2

2β3 +β2−α0
. (3.44)

Since K(1)= +∞ and 2β3 +β2−α0 → α0 as β3 → α0, we conclude that

lim
β3→α+

0

Tc0

(
β3
)= +∞. (3.45)

On the other hand, from the fact that E is a decreasing function in k with E(k) ≤
E(0)= π/2 and (3.38), we have that

K(k)=−
(
β3−β1

β1

)
E(k)=

(
2β3 +β2−α0

β3 +β2−α0

)
E(k)≤ π

2

(
2β3 +β2−α0

β3 +β2−α0

)
. (3.46)

Using that −(β3−α0)/2≤ β2 < 0, we obtain that

0≤ Tc0

(
β3
)= 4

√
3

√
2β3 +β2−α0

K(k)≤ 2π
√

3

⎛

⎝

√
2β3 +β2−α0

β3 +β2−α0

⎞

⎠≤ 4π
√

3

√
2β3−α0

β3−α0
.

(3.47)

So, we conclude that

lim
β3→∞

Tc0

(
β3
)= 0. (3.48)

�

3.3. Fundamental period. The first step to establish the existence of a curve of periodic
wave solutions to the Benney-Luke equation with a given period is based on proving the
existence of an interval of speed waves for cnoidal waves ϕc in (3.10).

Lemma 3.3. Let c0 be a fixed number with 0 < c2
0 < min{1,a/b}, consider β1 < β2 < 0 < β3

satisfying Theorem 3.2 and ϕc0 = ϕc0 (·,β1,β2,β3) with mean zero over [0,Tc0 ]. Define

λ(c)=
√
√
√
√
(
a− bc2

0

)(
1− c2

)

(
a− bc2

)(
1− c2

0

) , (3.49)

with c such that 0 < c2 <min{1,a/b}. Then
(1) there exist an interval I(c0) around c0, a ball B(

−→
β ) around

−→
β = (β1,β2,β3), and a

unique smooth function

Π : I
(
c0
)−→ B(

−→
β ),

c −→ (α1(c),α2(c),α3(c)
) (3.50)
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such that Π(c0)= (β1,β2,β3) and αi ≡ αi(c) with α1 < α2 < 0 < α3 satisfying

4
√

3√
α3−α1

K(k)= λ(c)Tc0 ,

α1 +α2 +α3 = α0,

α1K(k) +
(
α3−α1

)
E(k)= 0,

(3.51)

where k2(c)= (α3(c)−α2(c))/(α3(c)−α1(c));
(2) the cnoidal wave ϕc0 (·,α1(c),α2(c),α3(c)) has fundamental period Tc = λ(c)Tc0 ,

mean zero over [0,Tc], and satisfies the equation

ϕ′′c0
+

1
2
ϕ2
c0
− (1− c2

0

)
ϕc0 =Aϕc0 (·,αi(c)), (3.52)

where

Aϕc0 (·,αi(c)) = 1
2Tc

∫ Tc

0
ϕ2
c0

(
x,αi(c)

)
dx =−1

6

∑

i< j

αi(c)αj(c), (3.53)

for all c ∈ I(c0).

Proof. We proceed as by Angulo et al. in (see [3]). Let Ω⊂R4 be the set defined by

Ω=
{
(
α1,α2,α3,c

)
: α1 < α2 < 0 < α3, α3 > α0, 0 < c2 <min

{
1,
a

b

}}
, (3.54)

let k2 ≡ (α3−α2)/(α3−α1), and let Φ : Ω→R3 be the function defined by

Φ
(
α1,α2,α3,c

)= (Φ1
(
α1,α2,α3,c

)
, Φ2

(
α1,α2,α3,c

)
, Φ3

(
α1,α2,α3,c

))
, (3.55)

where

Φ1
(
α1,α2,α3,c

)= 4
√

3√
α3−α1

K(k)− λ(c)Tc0 ,

Φ2
(
α1,α2,α3,c

)= α1 +α2 +α3−α0,

Φ3
(
α1,α2,α3,c

)= α1K(k) +
(
α3−α1

)
E(k).

(3.56)

From Theorem 3.2, Φ(β1,β2,β3,c0)= 0. The first observation is that

∇(α1,α2,α3)Φ2(−→α ,c)= (1,1,1). (3.57)
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On the other hand, a direct computation shows that

∂α1Φ1(−→α ,c)= 2
√

3K(k)
(
α3−α1

)3/2 +
4
√

3∂α1K(k)
(
α3−α1

)1/2 ,

∂α2Φ1(−→α ,c)= 4
√

3∂α2K(k)
(
α3−α1

)1/2 ,

∂α3Φ1(−→α ,c)=− 2
√

3K(k)
(
α3−α1

)3/2 +
4
√

3∂α3K(k)
(
α3−α1

)1/2 ,

(3.58)

and that

∂α1k =
α3−α2

2k
(
α3−α1

)2 , ∂α2k =
−1

2k
(
α3−α1

) , ∂α3k =
α2−α1

2k
(
α3−α1

)2 . (3.59)

If we assume that α1K(k) + (α3−α1)E(k)= 0, then using that

K ′(k)= E(k)− k′2K(k)
kk′2

, E′(k)= E−K
k

, (3.60)

we obtain the following formulas:

∂α1K(k)=− α2K(k)
2
(
α2−α1

)(
α3−α1

) , ∂α2K(k)= α2K(k)
2
(
α2−α1

)(
α3−α2

) ,

∂α3K(k)=− α2K(k)
2
(
α3−α1

)(
α3−α2

) .

(3.61)

Similarly, under such assumptions, we conclude that

∂α1E(k)=− α3K(k)
2
(
α3−α1

)(
α3−α1

) , ∂α2E(k)= α3K(k)
2
(
α3−α1

)(
α3−α2

) ,

∂α3E(k)=− α3
(
α2−α1

)
K(k)

2
(
α3−α1

)(
α3−α1

)(
α3−α2

) .

(3.62)

Replacing these in previous equalities, we have, for (−→α ,c) satisfying

4
√

3√
α3−α1

K(k)− λ(c)Tc0 = 0, (3.63)

that

∂α1Φ1(−→α ,c)= 4
√

3K(k)
(
α3−α1

)1/2

( −α1

2
(
α3−α1

)(
α2−α1

)
)
= −α1λ(c)Tc0

2
(
α3−α1

)(
α2−α1

) ,

∂α2Φ1(−→α ,c)= 4
√

3K(k)
(
α3−α1

)1/2

(
α2

2
(
α2−α1

)(
α3−α2

)
)
= α2λ(c)Tc0

2
(
α2−α1

)(
α3−α2

) ,

∂α3Φ1(−→α ,c)= 4
√

3K(k)
(
α3−α1

)1/2

( −α3

2
(
α3−α1

)(
α3−α2

)
)
= −α3λ(c)Tc0

2
(
α3−α1

)(
α3−α2

) ,

(3.64)
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and that

∇(α1,α2,α3)Φ3
(−→α ,c0

)

= K(k)
(
α2α3−α1α2−α1α3

2
(
α2−α1

)(
α3−α1

) ,
α2α3−α1α3 +α1α2

2
(
α3−α2

)(
α2−α1

) ,
α2α1−α1α3−α2α3

2
(
α3−α2

)(
α3−α1

)
)
.

(3.65)

In particular, for (
−→
β ,c0), we obtain that λ(c0)= 1, so it follows that

∂α1Φ1
(−→
β ,c0

)= −β1Tc0

2
(
β3−β1

)(
β2−β1

) ,

∂α2Φ1
(−→
β ,c0

)= β2Tc0

2
(
β2−β1

)(
β3−β2

) ,

∂α3Φ1
(−→
β ,c0

)= −β3Tc0

2
(
β3−β1

)(
β3−β2

) ,

(3.66)

and that

∇(α1,α2,α3)Φ3
(−→
β ,c0

)

= K(k1
)
(
β2β3−β1β2−β1β3

2
(
β2−β1

)(
β3−β1

) ,
β2β3−β1β3 +β1β2

2
(
β3−β2

)(
β2−β1

) ,
β2β1−β1β3−β2β3

2
(
β3−β2

)(
β3−β1

)
)

,

(3.67)

with k2
1 = (β3−β2)/(β3−β1). The properties of the cnoidal wave ϕc0 (·,−→β ) lead to

1
2Tc0

∫ Tc0

0
ϕ2
c0

(ξ,
−→
β )dξ =A

ϕc0 (·,−→β )
. (3.68)

Using previous calculation, the Jacobian determinant of Φ(·,·,·,c) at (
−→
β ,c0) is given by

det

⎛

⎜
⎝

∇αΦ1

∇αΦ2

∇αΦ3

⎞

⎟
⎠

(
−→
β ,c0)

= Tc0K(k)
(
β1β2 +β1β3 +β2β3

)

4
(
β2−β1

)(
β3−β2

)(
β3−β1

)

= −3K(k)
∫ Tc0

0 ϕ2
c0

(ξ,
−→
β )dξ

4
(
β2−β1

)(
β3−β2

)(
β3−β1

) �= 0.

(3.69)

As a consequence of this, the implicit function theorem implies the existence of a function
Π from a neighborhood of I(c0) of c0 to a neighborhood of (β1,β2,β3) satisfying the first
part of the lemma. The second part of the lemma is immediate. �

3.4. Existence of curve of solutions. In this subsection as a consequence of the previous
results, we establish the proof of Theorem 3.1.
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Proof of Theorem 3.1. We start by proving the existence of a smooth curve of cnoidal

waves solutions for (3.7) with a fixed period
√
a− bc2

0Tc0 and with mean zero on

[0,
√
a− bc2

0Tc0 ]. In fact, let ϕc0 (·,αi) be the cnoidal wave determined by Lemma 3.3 with
αi = αi(c) for c ∈ I(c0). Define

ϕc
(
ζ ,αi

)≡ 1− c2

1− c2
0
ϕc0

(√
1− c2

1− c2
0
ζ ,αi

)

, ζ ∈R. (3.70)

Then ϕc(·,αi) has period Tϕc ≡ θ(c)Tc0 , with θ(c) =
√
a− bc2

0/
√
a− bc2, and mean zero

on [0,Tϕc]. Moreover, it is not hard to see that ϕc(·,αi) satisfies the differential equation

ϕ′′c +
1
2
ϕ2
c −

(
1− c2)ϕc = Aϕc , (3.71)

where

Aϕc =
1

2Tϕc

∫ Tϕc

0
ϕ2
c

(
ξ,αi(c)

)
dξ

=
(

1− c2

1− c2
0

)2

Aϕc0 (·,αi) =−
1
6

(
1− c2

1− c2
0

)2∑

i< j

αi(c)αj(c).

(3.72)

Next, we obtain a smooth curve of solution for (3.7). From (3.8), define

ψc(x)≡− 1
3c
ϕc

(
x√

a− bc2
,αi(c)

)

. (3.73)

Then it is easy to see that ψc has period T0 =
√
a− bc2

0Tc0 and mean zero on [0,T0]. On
the other hand, from (3.71) and (3.72), it follows that ψc satisfies the differential equation
(3.2) with Aψc given by (3.3).

Now, the regularity of the map c→ ψc follows from the properties of ϕc0 and αi. More-
over, from Theorem 3.2, we obtain that Tc0 = Tc0 (β3) can be taken arbitrarily in the in-
terval (0,+∞), and so the solution ψc can be taken with an arbitrary period T0 with
T0 ∈ (0,+∞). Finally, by uniqueness of the map Π in Lemma 3.3 and by c0 being arbi-
trary with 0 < c2

0 < min{1,a/b}, we can conclude that the map Π can be extended such
that we obtain the following smooth curves of cnoidal wave solutions to (3.7):

c ∈
(

−
√

min
{

1,
a

b

}
,

√

min
{

1,
a

b

})

\ {0} −→ ψc ∈H1
per

([
0,Tc0

])
, (3.74)

with an arbitrary period Tc0 and mean zero on [0,Tc0 ]. This finishes the proof of Theorem
3.1. �

3.5. Monotonicity of the modulus k. In this subsection, we show some properties of
the modulus k determined in Lemma 3.3. We start by recalling that for every c ∈ I(c0),
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Φ(Π(c),c) = (0,0,0), where Π(c) = (α1(c),α2(c),α3(c)). As done above, from formulas
(3.57), (3.64), and (3.65) it is not hard to see that

det

⎛

⎜
⎝

∇αΦ1

∇αΦ2

∇αΦ3

⎞

⎟
⎠

(−→α ,c)

= λ(c)Tc0K(k)
(
α1α2 +α1α3 +α2α3

)

4
(
α2−α1

)(
α3−α2

)(
α3−α1

) . (3.75)

As a consequence of this, we conclude that

d

dc
Π(c)=−

⎛

⎜
⎝

∇αΦ1

∇αΦ2

∇αΦ3

⎞

⎟
⎠

−1⎛

⎜
⎝

−λ′(c)Tc0

0
0

⎞

⎟
⎠ , (3.76)

with α= (α1,α2,α3). Next by finding the inverse matrix in (3.76), we obtain that

d

dc
Π(c)= 2λ′(c)

λ(c)Σαiαj

⎛

⎜
⎜
⎝

α2
3

(
α1−α2

)
+α2

2

(
α1−α3

)

α2
1

(
α2−α3

)
+α2

3

(
α2−α1

)

α2
1

(
α3−α2

)
+α2

2

(
α3−α1

)

⎞

⎟
⎟
⎠ . (3.77)

Using this fact, we are able to establish that k is a monotone function, depending on the
wave speed.

Theorem 3.4. Consider c with 0 < c2 <min{1,a/b}. Define the modulus function

k(c)=
√
α3(c)−α2(c)
α3(c)−α1(c)

. (3.78)

Then,
(1) for 0 < |c| <√a/b < 1, ⇒ c(d/dc)k(c) > 0,
(2) for 0 < |c| < 1 <

√
a/b, ⇒ c(d/dc)k(c) < 0.

Proof. Denoting A(c) = Σαiαj and B(c) = 2(α3 − α1)3/2√α3−α2, we obtain from (3.77)
and Lemma 3.3 that

d

dc
k(c)= 1

B(c)

[
(
α3−α2

)dα1(c)
dc

− (α3−α1
)dα2(c)

dc
+
(
α2−α1

)dα3(c)
dc

]

=− 4λ′(c)
λ(c)A(c)B(c)

(
α3−α2

)(
α2−α1

)(
α3−α1

)
Σαi

=−6
(
1− c2

0

)(
α2−α1

)

λ(c)A(c)
λ′(c)k(c).

(3.79)

Next, since A(c) < 0 and

λ′(c)=
√
√
√
√a− bc2

0

1− c2
0

c(b− a)
(
a− bc2

)3/2√
1− c2

, (3.80)

we obtain immediately our theorem. �
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4. Spectral analysis and convexity

In this section, attention is turned to set the main tools to be used in order to establish
stability of the cnoidal-wave solutions (ψc,−cψc) determined by Theorem 3.1 for system
(1.10).

4.1. Spectral analysis of the operator �cn = −(a− bc2)(d2/dx2) + (1− c2) + 3cψc. By
Theorem 3.1, we consider for L = T0 > 0 the smooth curve of cnoidal wave c → ψc ∈
H1

per([0,L]) with fundamental period L. As it is well known, the study of the periodic
eigenvalue problem for the linear operator �cn considered on [0,L] is required in the
stability theory. The spectral problem in question is

�cnχ ≡
[
− (a− bc2) d

2

dx2
+
(
1− c2)+ 3cψc

]
χ = λχ,

χ(0)= χ(L), χ′(0)= χ′(L),
(4.1)

where c is fixed such that 0 < c2 < min{1,a/b}. The following result is obtained in this
context.

Theorem 4.1. Let ψc be the cnoidal wave solution given by Theorem 3.1. Then the linear
operator

�cn =−
(
a− bc2) d

2

dx2
+
(
1− c2)+ 3cψc (4.2)

defined on H2
per([0,L]) has exactly its three first eigenvalues λ0 < λ1 < λ2 simple. Moreover,

ψ′c is an eigenfunction with eigenvalue λ1 = 0. The rest of the spectrum is a discrete set of
eigenvalues which is double. The eigenvalues only accumulate at +∞.

Proof. From the theory of compact symmetric operators applied to the periodic
eigenvalue problem (4.1), it is known that the spectrum of �cn is a countable infinity
set of eigenvalues with

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · ·, (4.3)

where double eigenvalue is counted twice and λn →∞ as n→∞. Now, from the Floquet
theory [15], with the eigenvalue periodic problem, there is an associated eigenvalue prob-
lem, named semiperiodic problem in [0,L],

�cnψ = μψ,

ψ(0)=−ψ(L), ψ′(0)=−ψ′(L).
(4.4)

As in the periodic case, there is a sequence of eigenvalues

μ0 ≤ μ1 ≤ μ2 ≤ μ3 ≤ · · ·, (4.5)

where double eigenvalue is counted twice and μn→∞ as n→∞. So, for the equation

�cn f = γ f , (4.6)
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we have that the only periodic solutions, f , of period L correspond to γ = λj for some j
whilst the only periodic solutions of period 2L are either those associated with γ = λj , but
viewed on [0,2L], or those corresponding γ = μj , but extended as f (L+ x)= f (L− x) for
0≤ x ≤ L.

Next, from oscillation theory [15], we have that the sequences of eigenvalues (4.3) and
(4.5) have the following property:

λ0 < μ0 ≤ μ1 < λ1 ≤ λ2 < μ2 ≤ μ3 < λ3 ≤ · · ·. (4.7)

Now, for a given value γ, if all solutions of (4.6) are bounded, then γ is called a stable
value, whereas if there is an unbounded solution, γ is called unstable. The open intervals
(λ0,μ0),(μ1,λ1),(λ2,μ2),(μ3,λ3), . . . are called intervals of stability. The endpoints of these
intervals are generally unstable. This is always so for γ = λ0 as λ0 is always simple. The
intervals (−∞,λ0),(μ0,μ1),(λ1,λ2),(μ2,μ3), . . . , and so on are called intervals of instability.
Of course, at a double eigenvalue, the interval is empty and omitted from the discussion.
Absence of an interval of instability means that there is a value of γ for which all solutions
of (4.6) are either periodic of period L or periodic with basic period 2L.

We also have the following characterization of the zeros of the eigenfunctions associ-
ated with the problems (4.1) and (4.4), χn and ψn, respectively,

(1) χ0 has no zeros in [0,L],
(2) χ2n+1 and χ2n+2 have exactly 2n+ 2 zeros in [0,L),
(3) ψ2n+1 and ψ2n+2 have exactly 2n+ 1 zeros in [0,L).

Using this fact and the relationship between the sequence of eigenvalues (4.7) and
�cnψ′c = 0, we conclude that λ0 < λ1 ≤ λ2 with λ1 = 0 or λ2 = 0.

We will show that λ2 > λ1 = 0. First define the transformation Rη(x) = χ(ηx), where
η2 = 12(a− bc2)/(β3−β1). It is not hard to see using the explicit form for ψc in (3.4) that
the problem (4.1) is equivalent to the eigenvalue problem for Λ≡ Rη,

d2

dx2
Λ+

[
γ− 12k2 sn2(x;k)

]
Λ= 0,

Λ(0)=Λ(2K), Λ′(0)=Λ′(2K),
(4.8)

where K = K(k) is defined by (3.31) and

γ =− 12
β3−β1

[
1− c2−β3− λ

]
. (4.9)

The differential equation in (4.8) is called the Jacobian form of Lame’s equation. Now, from
[15, 16], we obtain that Lame’s equation has four intervals of instability which are

(−∞,γ0
)
,
(
μ′0,μ′1

)
,
(
γ1,γ2

)
,
(
μ′2,μ′3

)
, (4.10)

where μ′i ≥ 0 are the eigenvalues associated to the semiperiodic problem determined by
Lame’s equation (see [1, 15]). So, we have that the first three eigenvalues γ0, γ1, γ2 as-
sociated with (4.8) are simple and the rest of eigenvalues are double, namely, γ3 = γ4,
γ5 = γ6, . . ..
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We present the first three eigenvalues γ0, γ1, γ2 and their corresponding eigenfunc-
tions Λ0, Λ1, Λ2. Since γ1 = 4 + 4k2 is an eigenvalue of (4.8) with eigenfunction Λ1(x)=
cn(x)sn(x)dn(x)= CRη(ψ′c(x)), it follows from (4.9) that λ= 0 is a simple eigenvalue of
problem (4.1) with eigenfunction ψ′c . It was shown by Ince (see [16]) that the eigenfunc-
tions of (4.8) Λ0 and Λ2 have the forms

Λ0(x)=
[

1−
(

1 + 2k2−
√

1− k2 + 4k4
)

sn2(x)
]

dn(x),

Λ2(x)=
[

1−
(

1 + 2k2 +
√

1− k2 + 4k4
)

sn2(x)
]

dn(x).
(4.11)

In this case, the associated eigenvalues γ0 and γ2 have to satisfy the equation

γ = k2 +
5k2

1 + (9/4)k2− (1/4)γ
, (4.12)

which has two roots

γ0 = 2 + 5k2− 2
√

1− k2 + 4k4, γ2 = 2 + 5k2 + 2
√

1− k2 + 4k4. (4.13)

Now note that Λ0 has no zeros in [0,2K] and Λ2 has exactly 2 zeros in [0,2K], then Λ0

corresponds to eigenfunction associated to γ0, which must be the first eigenvalue of (4.8).
On the other hand, (β3−β1)k2 = β3−β2 and β1 +β2 +β3 = 3(1− c2), then

−β1
(
k2 + 1

)= (2− k2)β3− 3
(
1− c2), λ0 =

[
1− 1

4
(
1 + k2

)γ0

]
(
1− c2−β3

)
.

(4.14)

Since γ0 < γ1 = 4(1 + k2), we have that λ0 < 0 and it is the first negative eigenvalue of �cn

with eigenfunction χ0(x)=Λ0(x/η) which has no zeros. We also have that γ1 < γ2 for any
k ∈ (0,1), then we get from (4.9) that

λ2 =
[

1− 1
4
(
1 + k2

)γ2

]
(
1− c2−β3

)
> 0. (4.15)

This implies that λ2 is the third eigenvalue of �cn with eigenfunction χ2(x) = Λ2(x/η),
which has exactly 2 zeros in [0,L). On the other hand, it can be shown that the first two
eigenvalues of Lame’s equation in the semiperiodic case are

μ′0 = 5 + 2k2− 2
√

4− k2 + k4, μ′1 = 5 + 5k2− 2
√

4− 7k2 + 4k4, (4.16)

with corresponding eigenfunctions with exactly one zero in [0,2K),

ζ0,sp = cn(x)
[

1−
(

2 + k2−
√

4− k2 + k4
)

sn2(x)
]

,

ζ1,sp = 3sn(x)−
(

2 + 2k2−
√

4− 7k2 + 4k4
)

sn3(x).
(4.17)

But we have that μ′0 < μ
′
1 < γ1 = 4 + 4k2 and that

μ′ = − 12
β3−β1

[
1− c2−β3−μ

]
. (4.18)
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As a consequence of this, we found that the first three intervals of instability of �cn are
(−∞,λ0

)
,

(
μ0,μ1

)
,

(
λ1,λ2

)
. (4.19)

We also have,

μ′2 = 5 + 2k2 + 2
√

4− k2 + k4, μ′3 = 5 + 5k2 + 2
√

4− 7k2 + 4k4 (4.20)

eigenvalues with corresponding eigenfunctions

ζ2,sp = cn(x)
[

1−
(

2 + k2 +
√

4− k2 + k4
)

sn2(x)
]

,

ζ3,sp = 3sn(x)−
(

2 + 2k2 +
√

4− 7k2 + 4k4
)

sn3(x),
(4.21)

respectively, with exactly three zeros in [0,2K). Finally, we conclude from (4.18) that the
last interval of instability for �cn is (μ2,μ3). �

4.2. Convexity of d(c). As we showed in Section 2, cnoidal wave solutions ψc are charac-
terized in such a way that the couple Vc = (

ψc
−cψc ) is a solution of

δ	
(
Vc
)= δ(� + c�)

(
Vc
)=

(
�
0

)

, (4.22)

with � being a nonzero number. Now we consider the study of the convexity of the func-
tion d defined by

d(c)=	
(
Vc
)
, (4.23)

where the cnoidal wave solution ψc is given by Theorem 3.1. If we differentiate (4.23) with
respect to c, we get that

d′(c)= δ	
(
Vc
)
(
d

dc
Vc

)
+ �

(
Vc
)=

〈
�,

d

dc
ψc

(
+ �

(
Vc
)
, (4.24)

where 〈·,·〉 represents the pairing between H1
per([0,T0]) and H−1

per([0,T0]). Using that
∫ T0

0 (d/dc)ψc(x)dx = 0, we have 〈�, (d/dc)ψc〉 = 0. As a consequence, we obtain

d′(c)=�
(
Vc
)=−

∫ T0

0

(
cψ2

c + bc
(
ψ′c
)2− 1

2
ψ3
c

)
dx. (4.25)

Next we obtain the following expression to d′ in (4.25):

d′(c)=−2Tc0

√
a− bc2

0

45

[
a
(
1− c2

)
+ θ2

0

(
4c2 + 1

)

c3θ2
0

Aϕc +
a+ 2c2b

c3θ2
0

Bϕc

]
, (4.26)

where θ0 =
√
a− bc2. Indeed, since T0 =

√
a− bc2

0Tc0 and from formula (3.73), we obtain
from (4.25) that

d′(c)=−θ0

∫ Tϕc

0

1
9c
ϕ2
c (x) +

b

9cθ2
0

[
ϕ′c(x)

]2
+

1
54c3

ϕ3
c (x)dx, (4.27)
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where ϕc satisfies (3.71) and Tϕc ≡ θ(c)Tc0 , with θ(c) =
√
a− bc2

0/
√
a− bc2. Next from

(3.71), we obtain the following formula:

(
ϕ′c
)2 = 1

3

[−ϕ3
c + 3

(
1− c2)ϕ2

c + 6Aϕcϕc + 6Bϕc
]
, (4.28)

where Aϕc is given by (3.72) and from (3.52), (3.12), (3.15), and (3.70), we have that

Bϕc =
(

1− c2

1− c2
0

)3

Bϕc0 (c), with Bϕc0 (c)= 1
6
Παi(c). (4.29)

Moreover, from (3.71) we obtain

2
3

∫ Tϕc

0

(
ϕ′c
)2
dx = 1

3

∫ Tϕc

0
ϕ3
c dx−

2
(
1− c2

)

3

∫ Tϕc

0
ϕ2
c dx. (4.30)

So integrating (4.28), we obtain from (4.30) that

∫ Tϕc

0

(
ϕ′c
)2
dx = 1

5

(
1− c2)

∫ Tϕc

0
ϕ2
c dx+

6
5
BϕcTϕc . (4.31)

Similarly, by integrating (4.28) and from (4.31), it follows that

∫ Tϕc

0
ϕ3
c dx =

12
5

(
1− c2)

∫ Tϕc

0
ϕ2
c dx+

12
5
BϕcTϕc . (4.32)

Hence by substituting formulas (4.31) and (4.32) in (4.27), we obtain (4.26) after some
manipulations.

Next, by using the formula for d′-(4.26), formula for Aϕc-(3.72), and formula for Bϕc-
(4.29), we find that

d′(c)= Tc0

√
a− bc2

0

405
(
1− c2

0

)3

(

α0g1(c)
∑

i< j

αiαj − g2(c)α1α2α3

)

, (4.33)

where

g1(c)= [− 4bc4 + (3a− b)c2 + 2a
](

1− c2)2
c−3(a− bc2)−1

,

g2(c)= 3
(
2bc2 + a

)(
1− c2)3

c−3(a− bc2)−1
.

(4.34)

In order to establish the convexity of d, we have to compute

d

dc

(
∑

i< j

αiαj

)

,
d

dc

(
α1α2α3

)
. (4.35)

The following result is obtained in this context.
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Lemma 4.2. Let α1, α2, and α3 be as in Lemma 3.3. Then,

d

dc

∑

i< j

αiαj = 6Fα0α1α2α3− 2M

(
∑

i< j

αiαj

)

,

d

dc

(
α1α2α3

)= 4Fα2
0α1α2α3−α0M

(
∑

i< j

αiαj

)

− 3Mα1α2α3,

(4.36)

where α0 = 3(1− c2
0), M(a,b,c)≡ 2λ′(c)/λ(c), and F =M/∑i< j αiαj .

Proof. First we note that for d/dc = “ ′ ” that

(
∑

i< j

αiαj

)′
= α′1

(
α2 +α3

)
+α′2

(
α1 +α3

)
+α′3

(
α2 +α1

)

= α′1
(
α0−α1

)
+α′2

(
α0−α2

)
+α′3

(
α0−α3

)

=−(α1α
′
1 +α2α

′
2 +α3α

′
3

)
+α0

(
α0
)′ = −(α1α

′
1 +α2α

′
2 +α3α

′
3

)
.

(4.37)

Using expressions for α′i obtained in Lemma 3.3, we have that for i, j,k ∈ {1,2,3} with
j �= i, j �= k, and k �= i that

αiα
′
i = F

[
α2
i

(
α2
j +α2

k

)−αiαjαk
(
αj +αk

)]
. (4.38)

Then summation over i gives us that

(
∑

i< j

αiαj

)′
= −F

[

− 2α0α1α2α3 + 2
∑

i< j

α2
i α

2
j

]

. (4.39)

But a direct computation shows that

(
∑

i< j

αiαj

)2

=
(
∑

i< j

α2
i α

2
j

)

+ 2α0α1α2α3. (4.40)

Using these formulas in previous equation lets us conclude that

(
∑

i< j

αiαj

)′
= −F

⎡

⎣−6α0α1α2α3 + 2

(
∑

i< j

αiαj

)2
⎤

⎦= 6Fα0α1α2α3− 2M
∑

i< j

αiαj . (4.41)

To get the second part, we note that

(
α1α2α3

)′ = α′1α2α3 +α1α
′
2α3 +α1α2α

′
3 (4.42)

and for i, j,k ∈ {1,2,3} with j �= i, j �= k, and k �= i,

αiαjα
′
k = F

[(
α0−αk

)2
α1α2α3−

(
α0−αk

)
α2
i α

2
j − 2α2

i α
2
j αk
]
. (4.43)
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Thus, we get

(
α1α2α3

)′ = F
[

α1α2α3

(∑(
α0−αi

)2
)
−α0

(
∑

i< j

α2
i α

2
j

)

−α1α2α3

(
∑

i< j

αiαi

)]

= F
[

α1α2α3

(

2α2
0− 2

∑

i< j

αiαj

)

−α0

(
∑

i< j

α2
i α

2
j

)

−α1α2α3

(
∑

i< j

αiαi

)]

= F
⎡

⎣α1α2α3

(

4α2
0− 3

∑

i< j

αiαj

)

−α0

(
∑

i< j

αiαj

)2
⎤

⎦

= 4Fα2
0α1α2α3−α0M

(
∑

i< j

αiαj

)

− 3Mα1α2α3.

(4.44)

�

Now we are in position to prove the convexity of function d.

Theorem 4.3. d is a strictly convex function for 0 < |c| < 1 <
√
a/b, and for 0 < |c| < c∗ +

θ <
√
a/b < 1, where θ is small and c∗ is the unique positive root of the polynomial

P(c)= 12b2c6 +
(
13b2− 19ab

)
c4 +

(
9ab− 9a2)c2− 6a2. (4.45)

Proof. From our previous computations and using formulas in Lemma 4.2 for the deriva-
tives of

∑
i< j αiαj and α1α2α3 with respect to c, we obtain that

d′′(c)= Tc0

√
a− bc2

0

405
(
1− c2

0

)3

{

α0
(
g′1(c) +M

[
g2(c)− 2g1(c)

])∑

i< j

αiαj

+
[

2α2
0M∑

i< j αiαj

(
3g1(c)− 2g2(c)

)
+
(
3g2(c)M− g′2(c)

)]
α1α2α3

}

.

(4.46)

Using that

M = 2λ′(c)
λ(c)

= 2c(b− a)
(
1− c2

)(
a− bc2

) , (4.47)

we obtain by a direct computation that

g′1(c) +M
[
g2(c)− 2g1(c)

]

=
(
1− c2

)2(
12b2c6 +

(
13b2− 19ab

)
c4 +

(
9ab− 9a2

)
c2− 6a2

)

c4
(
a− bc2

)2 ,
(4.48)

[
3g1(c)− 2g2(c)

]
M = −30(a− b)2

(
1− c2

)

c2
(
a− bc2

)2 < 0,

3g2(c)M− g′2(c)= 9
(
1− c2

)3(
2b2c4 + abc2 + a2

)

5c4
(
a− bc2

)2 > 0.

(4.49)
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Now, let us define the following polynomial:

P(c)= 12b2c6 +
(
13b2− 19ab

)
c4 +

(
9ab− 9a2)c2− 6a2. (4.50)

The first observation is that

P(c)= 6b2c4(c2− 1
)

+ 6
(
b2c6− a2)+ 19bc4(b− a) + 9ac2(b− a). (4.51)

If we assume that a > b and c2 < 1, we have that b2c6 − a2 < 0. Thus we conclude that
P(c) < 0, for a > b and c2 < 1. On the other hand, if we assume that a < b and 0 < |c| <√
a/b, we have that P(±√a/b) = 16a2(b− a)/b > 0, but P(0) = −6a2 < 0. As a conse-

quence of this, there exists a unique c∗ with P(c∗) = 0, 0 < c∗ <
√
a/b < 1, such that

P(c) < 0 for 0 < |c| < c∗ in case of having b > a. Note that P′(c) > 0 for c > 0.
Therefore we have from Lemma 3.3 that α1α2α3 > 0 and from (3.72) that

∑
i< j αiαj < 0,

so we can conclude initially from (4.46) and (4.49) that
(1) d is a strictly convex function in 0 < |c| < 1 for a > b,

(1∗) d is a strictly convex function in 0 < |c| < c∗ for 0 < c∗ <
√
a/b < 1.

Next, note that d′′(c∗) > 0, and so from continuity we can choose θ small such that
(2) d is a strictly convex function in 0 < |c| < c∗ + θ for 0 < c∗ + θ <

√
a/b < 1,

as desired. �

5. Stability theory for the Boussinesq-type system (1.10)

In this section, we establish a theory of stability for the branch of cnoidal waves solutions

c −→ (ψc(x− ct),−cψc(x− ct)
)
, (5.1)

associated to system (1.10) determined by Theorem 3.1. These smooth curves of solutions
to (3.7), c ∈ (−√min{1,a/b},√min{1,a/b}) \ {0} → ψc ∈H1

per([0,T0]), have an arbitrary
period T0 and mean zero on [0,T0].

We first note from (2.12) that �ψc = (ψc,−cψc)t is not a critical point to the action
functional 	 in (2.13) indicating that the general theory of Grillakis, Shatah, and Strauss
cannot be applied directly to the problem at hand over allH1

per([0,T0])×H1
per([0,T0]). To

overcome this, we will proceed as in the proof of orbital stability of cnoidal wave solutions
with respect to the periodic flow of solutions with mean zero for the initial value problem
associated with the KdV equation (see [3]). In other words, we consider the following
spaces:

�1 =
{
q ∈H1

per

([
0,T0

])
:
∫ T0

0
q(y)dy = 0

}
, 
≡�1×H1

per

([
0,T0

])
, (5.2)

where ‖ · ‖
 := ‖·‖H1
per×H1

per
. We will see below that Grillakis et al.’s approach in [4] can be

used to obtain the stability of �ψc by perturbations belonging to 
. In fact, in this case we
consider 	 defined on the space 
 and so the cnoidal waves �ψc is a critical point, namely,
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for �v = ( f ,g)∈
, we obtain

	′(�ψc
)
�v = 〈(−Aψc ,0

)
,�v
〉=−Aψc

∫ T0

0
f dx = 0. (5.3)

More exactly, we obtain the following stability result associated to system (1.10).

Theorem 5.1. Consider c with 0< c2<min{1,a/b} and let {ψc} be the cnoidal wave branch
of period T0 given in Theorem 3.1. Then, for c satisfying the conditions in Theorem 4.3, the
orbit {(ψc(·+ s),−cψc(·+ s))}s∈R is stable in 
 with regard to T0-periodic perturbations
and the flow generated by system (1.10). More precisely, given any ε > 0, there is a δ = δ(ε)
such that if (q0,r0)∈
 and ‖(q0,r0)− (ψc,−cψc)‖
 < δ, then

inf
s∈R
∥
∥(q(t),r(t)

)− (ψc(·+ s),−cψc(·+ s)
)∥∥


 < ε (5.4)

for all t, where (q(t),r(t)) is the solution of system (1.10) with initial value (q0,r0).

The proof of Theorem 5.1 needs some preliminary results. First of all, we have to es-
tablish the existence and uniqueness of global mild periodic solutions for the periodic
Cauchy problem associated with system (1.10), and second, we need to study the peri-
odic eigenvalue problem associated with the operator 	′′(ψc,−cψc).

5.1. Global existence and uniqueness of mild solutions. The proof of global mild so-
lution for system (1.10) follows by the use of classical theory of semigroups. We will use
that � in (2.8) is conserved in time along classical solutions of system (1.10) to prove that
local mild solutions are already global mild solutions. To do this, we will use a density ar-
gument and the fact that the nonlinear part has a nice behavior (see [17]). We start by
rewriting the first-order system (1.10) as

(
q
r

)

t

=M
(
q
r

)

+ �1

(
q
r

)

, (5.5)

where

M =
(

0 ∂x
∂xB−1A 0

)

, �1

(
q
r

)

=
(

0
−B−1

(
rqx + 2qrx

)

)

. (5.6)

In order to study the initial value problem for system (5.5), we have to consider the
natural spaces given by the Hamiltonian �. In other words, we will seek for solutions
(q(t,·),r(t,·))∈H1

per([0,T0])×H1
per([0,T0]). We start discussing some properties of the

operator M which is defined in the Hilbert space H2
per([0,T0])×H2

per([0,T0]). In this
space, we have that M ∈ �(H2

per([0,T0]) × H2
per([0,T0]),H1

per([0,T0]) × H1
per([0,T0])).

Moreover, M is the infinitesimal generator of a bounded C0-group �1(t) on H1
per([0,T0])

× H1
per([0,T0]). If we define �1(t) := ∑∞

−∞ �̂1
n(t)e2πinx/T0 , it can be shown by using
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Fourier series that the n-symbol for �1(t) is

�̂1
n(t)=

⎛

⎜
⎝

cos
(
nΛ(n)t

)
i
sin
(
nΛ(n)t

)

Λ(n)
iΛ(n)sin

(
nΛ(n)t

)
cos
(
nΛ(n)t

)

⎞

⎟
⎠ , with Λ2(n)= 1 + 4π2a|n|2/T2

0

1 + 4πb|n|2/T2
0
.

(5.7)

Now note that B−1 is a bounded linear operator from L2
per([0,T0]) toH2

per([0,T0]) since
it is defined as

B−1 f =
∞∑

−∞

(
1

1 + 4bπ2n2/T2
0

)
f̂ne

2πinx/T0 , for f =
∞∑

−∞
f̂ne

2πinx/T0 ∈ L2
per

([
0,T0

])
.

(5.8)

On the other hand, if f ∈H1
per([0,T0]), then f ∈ L∞(R). Thus, if we assume that (q,r)∈

H1
per([0,T0])×H1

per([0,T0]), then q and r are bounded functions. Since qx,rx ∈ L2
per, we

conclude that rqx + 2qrx ∈ L2
per([0,T0]), and so we have that B−1(rqx + 2qrx) ∈ H2

per([0,
T0]). In other words, we have shown that �1 maps H1

per([0,T0]) ×H1
per([0,T0]) into

H2
per([0,T0])×H2

per([0,T0]), meaning that �1 gains some regularity. Moreover, inequality

∥
∥B−1(r1

(
q1
)
x + 2q1

(
r1
)
x

)−B−1(r2
(
q2
)
x + 2q2

(
r2
)
x

)∥∥
H2

per
≤ ∥∥(q1,r1

)− (q2,r2
)∥∥

H1
per×H1

per

(5.9)

implies that �1 is locally Lipschitz from H1
per([0,T0])×H1

per([0,T0]) into H2
per([0,T0])×

H2
per([0,T0]). Using this fact, it is easy to prove the following existence and uniqueness

result.

Theorem 5.2. Let (q0,r0)∈H1
per([0,T0])×H1

per([0,T0]). The initial value problem

(
q
r

)

t

=M
(
q
r

)

+ �1

(
q
r

)

, (5.10)

(
q
r

)

(0,·)=
(
q0

r0

)

(5.11)

has a unique global mild solution (q(t,·),r(t,·))∈H1
per([0,T0])×H1

per([0,T0]).

Corollary 5.3. Let (q0,r0) ∈ 
. Then (q(t,·),r(t,·)) solution of (5.10) with initial data
(q0,r0) belongs to 
 for all t ∈R.

Corollary 5.3 is a direct consequence of Theorem 5.2 and the conservation property of
the functional

�(q,r)=
∫ T0

0
q(x)dx (5.12)

by the flow of (5.10).
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Proof of Theorem 5.2. The first step to prove this result is to show local (in-time) existence
and uniqueness of T0-periodic classical solutions for initial data (q0,r0)∈H2

per([0,T0])×
H2

per([0,T0]), which follows because M is the infinitesimal generator of a bounded C0-
group S(t) in H1

per([0,T0])×H1
per([0,T0]) and �1 is locally Lipschitz form H1

per([0,T0])×
H1

per([0,T0]) to H2
per([0,T0])×H2

per([0,T0]). Now, from the variation of constants for-
mula, we can obtain for a (q,r)−H2

per×H2
per solution the a priori bound

∥
∥
∥
∥
∥∂xx

(
q
r

)

(t,·)
∥
∥
∥
∥
∥
L2×L2

� C

⎛

⎝

∥
∥
∥
∥
∥∂xx

(
q0

r0

)

(·)
∥
∥
∥
∥
∥
L2×L2

+ t

∥
∥
∥
∥
∥

(
q
r

)

(t,·)
∥
∥
∥
∥
∥
H1

per×H1
per

⎞

⎠ . (5.13)

Since the Hamiltonian � (equivalent norm inH1
per×H1

per) is a conserved quantity in time
on classical solutions for (5.5), it follows that any local T0-periodic classical solution in
H2

per([0,T0])×H2
per([0,T0]) can be extended to [0,∞).

The second step is to prove that a local mild T0-periodic solution (q,r)∈H1
per([0,T0])

×H1
per([0,T0]) exists with initial data (q0,r0) ∈ H1

per([0,T0])×H1
per([0,T0]), which fol-

lows from classical semigroup theory.
Finally, by using that the embeddingH2

per([0,T0])↩H1
per([0,T0]) is dense and we have

classical solutions inH2
per([0,T0])×H2

per([0,T0]), we prove that the Hamiltonian � is also
conserved in time on mild T0-periodic solutions, and therefore for any t0 > 0 we have

lim
t↑t0

∥
∥
∥
∥
∥

(
q
r

)

(t,·)
∥
∥
∥
∥
∥
H1

per×H1
per

<∞, (5.14)

which implies global existence. �

5.2. Spectral analysis for 	′′(ψc,−cψc) = �′′(ψc,−cψc) + c�′′(ψc,−cψc). As already
known, the study of the periodic eigenvalue problem considered on [0,T0] is required
to use the stability theory outlined in [3, 4]. The spectral problem in question is given for

�χ = λχ,

χ(0)= χ(T0
)
, χ′(0)= χ′(T0

)
,

(5.15)

where

�≡	′′(ψc,−cψc
)=

⎛

⎝
1− a∂2

x + 3cψc c
(
1− b∂2

x

)

c
(
1− b∂2

x

)
1− b∂2

x

⎞

⎠ , (5.16)

ψc being the cnoidal wave solution given in Theorem 3.1 for 0 < c2 < min{1,a/b}. The
following result is obtained in this context.

Theorem 5.4. Let 0 < c2 <min{1,a/b} and let ψc be the cnoidal wave given in Theorem 3.1.
Then the periodic eigenvalue problem (5.15) on H2

per([0,T0])×H2
per([0,T0]) has exactly a

negative eigenvalue which is simple. λ = 0 is a simple eigenvalue with eigenfunction (ψ′c ,
−cψ′c)t and the rest of the spectrum is bounded away from zero.
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Proof. The proof is based on the min-max principle and Theorem 4.1. Indeed, for ζ =
(ψ′c ,−cψ′c)t, it follows that �ζ = (�cnψ′c ,0)t = (0,0)t. In other words, λ = 0 is an eigen-
value of � with eigenvector ζ = (ψ′c ,−cψ′c)t. Moreover, λ = 0 is simple. In fact, con-
sider χ = ( f ,g)t such that �χ = (0,0)t. Then we obtain that g = −c f and �cn f = 0.
So, f = αψ′c , and therefore ( f ,g) = α(ψ′c ,−cψ′c), showing that λ = 0 is simple. Now, for
ζ = ( f ,g)t, it is easy to see that

〈�ζ ,ζ〉 = 〈�cn f , f
〉

+
∥
∥cB1/2 f +B1/2g

∥
∥2

, (5.17)

where B1/2 is the square root of the positive linear operator B and 〈·,·〉, 〈·,·〉 represent
the scalar products in L2 × L2 and L2, respectively. So, by taking χ0 such that �cnχ0 =
λ0χ0 for λ0 < 0, we obtain from (5.17) that 〈�ζ0,ζ0〉 = 〈�cnχ0,χ0〉 < 0 for ζ0 = (χ0,−cχ0)t.
Therefore, � has a negative eigenvalue. Now, we show that this negative eigenvalue is
unique, and so will be simple. In fact, let ζ1 = (χ0,0)t and ζ2 = (ψ′c ,0)t. Then for ϕ =
( f ,g)t, ‖ϕ‖ = 1, it follows from min-max principle that the third eigenvalue for �, η3

satisfies

η3 = sup
[ξ1,ξ2]

inf
ϕ⊥ξ1,ϕ⊥ξ2

〈�ϕ,ϕ〉� inf
ϕ⊥ζ1,ϕ⊥ζ2

〈�ϕ,ϕ〉

� inf
f⊥χ0, f⊥ψ′c

[〈
�cn f , f

〉
+
∥
∥cB1/2 f +B1/2g

∥
∥2]� δ0 > 0,

(5.18)

where in the last inequality we have used Theorem 4.1. So, we finish the theorem. �

Now we focus on a mean-zero branch {ψc} of cnoidal waves as was guaranteed by
Theorem 3.1. As we saw in (4.25),

d′(c)=−
∫ T0

0

[
cψ2

c + bc
(
ψ′c
)2− 1

2
ψ3
c

]
dx. (5.19)

Next, differentiating (3.2) with respect to c, we also have for ζ = (d/dc)(ψc,−cψc) that

�ζt =
(
cBψc− 3

2
ψ2
c −

d

dc
Aψc ,−Bψc

)t
. (5.20)

Thus we obtain the basic relation

−〈�ζt,ζt〉= d′′(c)= d

dc
�
(
ψc,−cψc

)
. (5.21)

We note in this point that even if we have that ζ ∈ 
 and 〈�ζt,ζt〉 < 0, we cannot
assure that the restriction of � to 
, �|
, will have a negative eigenvalue. In fact, since �
in general does not map vectors with first component having mean zero in vectors with
this same property, we cannot perform a min-max principle’s argument for �|
.

Proof of Theorem 5.1. Next, for convenience of the readers, we will establish the basic
changes in the abstract theory by Grillakis et al. such that we can apply it to the so-
lutions �ψc = (ψc,−cψc). In fact, from [4, Lemma 3.2], there exist ε > 0 and a C1 map
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α :Uε →R/T0, where

Uε =
{−→
p ∈H1

per

([
0,T0

])×H1
per

([
0,T0

])
:

inf
s∈R
∥
∥−→p − (ψc(·+ s),−cψc(·+ s)

)∥∥
H1

per×H1
per

� ε
} (5.22)

such that for all −→p ∈Uε,

〈
τα(−→p )

−→
p ,−→ψc′

〉= 0, τα
−→
p =−→p (·+α). (5.23)

Now, from (5.20), (5.21), and Theorem 4.3 which assure that d′′(c) > 0, we can use the
ideas in [4, Theorem 3.3] and [18] to show that

η = inf
{〈�ϕ,ϕ〉 :

〈
ϕ,ξc

〉= 〈ϕ,−→ψc′
〉= 0, ‖ϕ‖2 = 1

}
> 0, (5.24)

where ξc = (cBψc − (3/2)ψ2
c − (d/dc)Aψc ,−Bψc) has the main property that �ζt = ξtc .

Moreover, from (5.24) and from the specific form of �, there is a positive constant β
such that if 〈ϕ,ξc〉 = 〈ϕ,−→ψc′〉 = 0, then

〈�ϕ,ϕ〉� β‖ϕ‖2
H1

per×H1
per
. (5.25)

Now for−→p = (p,r) with
∫ T0

0 pdx = 0, write τα(−→p )
−→
p −−→ψc = μξc +ϕ, where 〈ϕ,ξc〉 = 0. Then

by taking �(−→p )=�(−→ψc) and Taylor’s theorem, we have

�
(−→
ψc
)=�(−→p )=�

(
τα(−→p )

−→
p
)

=�
(−→
ψc
)

+
(
�′(−→ψc

)
,τα(−→p )

−→
p −−→ψc

)
+O

(∥
∥τα(−→p )

−→
p −−→ψc

∥
∥2
H1

per×H1
per

)
.

(5.26)

So, we obtain that μ=O(‖τα(−→p )
−→
p −−→ψc‖2

H1
per×H1

per
).

Considering L(−→p )=�(−→p ) + c�(−→p ), then another Taylor expansion gives

L(−→p )= L(τα(−→p )
−→
p
)= L(−→ψc

)
+
〈
L′
(−→
ψc
)
,v
〉

+
1
2

〈
L′′
(−→
ψc
)
v,v
〉

+ o
(
‖v‖2

H1
per×H1

per

)
, (5.27)

where v ≡ τα(−→p )
−→
p −−→ψc. Now, for v = ( f ,g), we have

∫ T0

0 f dx = 0. Therefore, since

L′
(−→
ψc
)
v =−〈(Aψc ,0

)
,v
〉=−Aψc

∫ T0

0
f dx = 0, (5.28)



32 International Journal of Mathematics and Mathematical Sciences

�(−→p )=�(−→ψc) and L′′(−→ψc)=�, we get

�(−→p )−�
(−→
ψc
)= 1

2
〈�v,v〉+ o

(
‖v‖2

H1
per×H1

per

)
= 1

2
〈�ϕ,ϕ〉+ o

(
‖v‖2

H1
per×H1

per

)
. (5.29)

Now, since 〈−→ψc′,ξc〉 = 0, it follows from (5.23) that 〈ϕ,−→ψc′〉 = 0. Therefore, (5.25) implies
that

�(−→p )−�
(−→
ψc
)
� 1

2
D‖ϕ‖2

H1
per×H1

per
+ o
(
‖v‖2

H1
per×H1

per

)
(5.30)

for some constant D > 0. Finally, since ‖ϕ‖H1
per×H1

per
� ‖v‖H1

per×H1
per
−O(‖v‖2

H1
per×H1

per
), we

obtain that for ‖v‖H1
per×H1

per
small enough,

�(−→p )−�
(−→
ψc
)
�D1

∥
∥τα(−→p )

−→
p −−→ψc

∥
∥2
H1

per×H1
per

(5.31)

for all −→p = (p,r)∈Uε which satisfy �(−→p )=�(−→ψc) and
∫ T0

0 pdx = 0.
Thus by using standard arguments, we show from inequality (5.31) and from the in-

variance of the functional �(p,r)= ∫ T0

0 p(x)dx with regard to system (1.10) that the orbit
{(ψc(·+ s),−cψc(·+ s))}s∈R is stable in 
. �

6. Orbital stability for the Benney-Luke equation

In order to prove the stability of periodic solutions for the Benney-Luke equation, we have
to establish existence and uniqueness of mild solutions in an appropriate space for the
Cauchy problem associated with (1.1). We start by defining the natural space to consider
the existence result. Let

= {w ∈ C∞per

([
0,T0

])
:wx ∈H1

per

([
0,T0

])}
, (6.1)

and define the equivalence relation on  given by: u∼ v if and only if u(x)− v(x)= θ for
x ∈R and θ a real constant. Now define the quotient space �=/ ∼ with the norm

∥
∥[y]

∥
∥

� =
∥
∥yx

∥
∥
H1

per
= ∥∥ux

∥
∥
H1

per
, ∀u∈ [y]. (6.2)

Let (�,‖ · ‖�) be the closure of � with respect to ‖ · ‖�. In particular, if [Φ]∈�,

∥
∥[Φ]

∥
∥

� =
∥
∥[Φ]

∥
∥

� =
∥
∥Φx

∥
∥
H1

per
. (6.3)

Hereafter we will identify any equivalence class with a representative. Roughly speaking,
the space � can be viewed as the closure of  with respect to the “norm” ‖ · ‖�. Moreover,
as we will see below, � can be identified with the space �1 through the linear operator ∂x.
So, it will give us an easy way to recover all the stability theories associated to system (1.10)
in �1 to �. Finally, we note that as (1.1) is invariant by the translation Φ→Φ+ const, �
is a natural space to be considered in our stability study.
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Now we have to note that the Benney-Luke equation can be written as the system in
the variables Φ and Φt = r,

(
Φ
r

)

t

=M0

(
Φ
r

)

+ �0

(
Φ
r

)

, (6.4)

where operators M0 and �0 are given by

M0 =
(

0 I
∂2
xB

−1A 0

)

, �0

(
Φ
r

)

=
(

0
−B−1

(
rΦxx + 2Φxrx

)

)

. (6.5)

It is not hard to verify that associated with the linear operator M0, there exists a �0 group
defined in �×H1

per, whose Fourier symbols are given by

�̂0
n(t)=

⎛

⎜
⎝

cos
(
nΛ(n)t

) sin
(
nΛ(n)t

)

nΛ(n)

−nΛ(n)sin
(
nΛ(n)t

)
cos
(
nΛ(n)t

)

⎞

⎟
⎠ . (6.6)

In this paper, we are going to say that a mild solution of the Benney-Luke equation (1.1)
with initial data (u0,u1) is a couple (Φ,r) such that

(Φ,r)∈ C(Rt;�×H1
per

([
0,T0

]))
, (6.7)

and it satisfies the integral equation

(
Φ
r

)

(t)=�0(t)

(
u0

u1

)

+
∫ t

0
�0(t− y)�0

(
Φ
r

)

(y)dy. (6.8)

The first observation is that we have the following relationship between �0 and �1:

(
∂x 0
0 I

)

�0 =�1

(
∂x 0
0 I

)

, (6.9)

where ∂x is the bounded linear map defined from � to �1 such that ∂x(Φ) = Φ′ for
Φ ∈�. Moreover, each element in �1 induces an element (antiderivative) in �. More
precisely, there is an operator ∂−1

x : �1 →� defined by

∂−1
x (q)(x)= 1

2π

∑

n �=0

qn
in
e2iπnx/T0 , for q(x)=

∑

n �=0

qne
2iπnx/T0 ∈�1. (6.10)

Note that ∂−1
x (q) is a well-defined element in � since the sequence {Φk} ⊆ C∞per([0,T0])

defined by

Φk(x)= 1
2π

n=k∑

n �=0,n=−k

qn
in
e2iπnx/T0 (6.11)
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is a Cauchy sequence in �. So, we have that

∂x
(
∂−1
x (q)

)≡ lim
k→∞

Φ′
k = lim

k→∞

n=k∑

n �=0,n=−k
qne

2iπn(·)/T0 = q. (6.12)

Moreover, it is easy to see that ∂−1
x is a bounded linear operator. As a consequence of this

fact, we obtain that ∂−1
x ∂xΦ=Φ for all Φ∈�.

We will see that the existence and uniqueness associated with the Benney-Luke equa-
tion (1.1) follow directly from the existence and uniqueness of mild periodic solutions
for the Cauchy problem associated with the Boussinesq system (1.10) (see Theorem 5.2).
In fact, let (u0,r0) ∈�×H1

per([0,T0]). Define (q0,r0) ∈ 
 =�1 ×H1
per([0,T0]) by q0 =

∂xu0. Then from Theorem 5.2, there exists a unique global mild solution for (1.10),

(q,r)∈ C(Rt;�1×H1
per

([
0,T0

]))
, (6.13)

such that (q(0),r(0))= (q0,r0) and
(
q
r

)

(t)=�1(t)

(
q0

r0

)

+
∫ t

0
�1(t− y)�1

(
q
r

)

(y)dy. (6.14)

Next, define Φ(t) ∈�, t ∈ R, in such a way that Φ(t) ≡ ∂−1
x q(t) or ∂xΦ(t) = q(t). As a

consequence of this, we conclude that

�1

(
q
r

)

=�0

(
Φ
r

)

=
(

0
−B−1

(
rΦxx + 2Φxrx

)

)

. (6.15)

Again, applying the operator (∂
−1
x 0
0 I

) to (6.14) and using (6.9), one can see that

(
Φ
r

)

(t)=�0(t)

(
u0

r0

)

+
∫ t

0
�0(t− y)�

(
Φ
r

)

(y)dy. (6.16)

Therefore, we conclude that (Φ,r) is a mild solution of the Benney-Luke equation (1.1).
So, from Theorem 5.2 we obtain existence and uniqueness of mild solutions for (1.1) in
the space �×H1

per([0,T0]).
Finally, due to the equivalence between the Cauchy problems associated with the

Benney-Luke equation (1.1) and the Boussinesq system (1.10), we easily derived from
Theorem 5.1 the following stability result.

Theorem 6.1. Consider c with 0 < c2 < min{1,a/b} and let {φc} be such that φ′c = ψc,
where ψc is the cnoidal wave of period T0 given in Theorem 3.1. Then, for c satisfying the con-
ditions in Theorem 4.3, the orbit {(φc(·+ s),−cφ′c(·+ s))}s∈R is stable in �×H1

per([0,T0])
with regard to T0-periodic perturbations and the flow generated by the Benney-Luke equa-
tion (1.1). More precisely, given any ε > 0, there is a δ = δ(ε) such that if (u0,r0) ∈�×
H1

per([0,T0]) and ‖(u0,r0)− (φc,−cφ′c)‖�×H1
per
< δ, then

inf
s∈R
∥
∥(Φ(t),r(t)

)− (φc(·+ s),−cφ′c(·+ s)
)∥∥

�×H1
per
< ε (6.17)

for all t, where (Φ(t),r(t)) is the mild solution (1.1) with initial value (u0,r0).
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